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1. Introduction and main results

In studying differential equations in the complex plane C, it is always an interesting and quite
difficult problem to prove the existence or uniqueness of the entire or meromorphic solution of a given
differential equation. Note that for the past five or more decades, Nevanlinna theory of meromorphic
functions has been used extensively to tackle problems and derive many interesting results regarding
existence and growth of meromorphic solutions of differential equations in complex
plane(see, e.g., [13, 16, 20] and [27]). Herein, we assume that the reader is familiar with the
fundamental results of Nevanlinna theory and its standard notations such as
m(r, f ), N(r, f ), T (r, f ), S (r, f ) and etc, see e.g., [11, 24]. However, for the convenience of the reader,
we shall repeat some notations needed below.

Given a meromorphic function f , recall that α . 0,∞ is a small function with respect to f , if
T (r, α) = S (r, f ), where S (r, f ) denotes any quantity satisfying S (r, f ) = o{T (r, f )} as r → ∞, possibly
outside a set E of r of finite linear measure.

It will be useful to recall the definition of the order ρ( f ) and the hyper-order ρ2( f ) of a meromorphic
function f . The order is defined as

ρ( f ) = lim sup
r→∞

log T (r, f )
log r

.
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In addition, the hyper-order ρ2( f ) is defined as

ρ2( f ) = lim sup
r→∞

log log T (r, f )
log r

.

Moreover, let k ≥ 1 be an integer, we need the following facts, which can be found, e.g., in [11, 24]
and references therein.

m(r,
f (k)

f
) = S (r, f ) =

{
O(log r) (r → ∞), if ρ( f ) < ∞

O(log(rT (r, f ))) (r → ∞, r < E), if ρ( f ) = ∞.

A differential polynomial Q(z, f ) in f is a finite sum of products of f , derivatives of f , with all the
coefficients being small functions of f . Namely

Q(z, f ) =
∑
λ∈I

aλ f λ0( f ′)λ1 · · · ( f (n))λn , (1.1)

where I is a finite index set. The degree of a single term in Q(z, f ) will now be defined as |λ| :=
λ0 + λ1 + · · · + λn. Of course, the maximal degree of Q(z, f ) will then be defined as |q| := maxλ∈I |λ|.

Before stating our main results, we recall some previous results concerning algebraic differential
equations. An algebraic differential equation is of the form

P(z,w,w′, · · · ,w(k)) = 0, (1.2)

where P is a polynomial in each of its variables. The equation is of order k, if w(k)is the highest
derivative appearing in P. An important part of the theory of algebraic differential equations is to
investigate the order ρ(w) of solutions w meromorphic in C, preferably in terms of P only. For k = 1,
Gol’dberg [9] proved that w(z) must be of finite order.

In 1933, Yosida [25] applied the Nevanlinna theory of meromorphic functions to differential
equations in the complex plane for the first time and generalized a Malmquists theorem.

The following result was shown by Wittich ([22], pp. 64–65), which can be stated as follows:

Theorem A. Let P(z,w,w′, · · · ,w(l)) =
∑

n0···nl
an0···nl(z)wn0(w′)n1 · · · (w(l))nl = 0 be an algebraic

differential equation, where an0n1···nl(z) are polynomials. Then the above equation has no
transcendental entire solution if only one term appears in the equation with a maximal degree.

Since then many interesting results related to the growth or existence of meromorphic solutions
of certain types of generalized differential equations were derived or obtained, see, e.g., [1, 2, 6, 8,
18, 19]. Since 1970’s, Nevanlinna’s value distribution theory (particularly Clunie type of lemmas
relating equations involving differential polynomials) have been used or utilized by some authors (see,
e.g., [15, 16]) to tackle the nonlinear differential equations of the form

f n + Pd(z, f ) = h,

where Pd(z, f ) denotes a polynomial in f and its derivatives with a total degree d ≤ n − 1, with small
functions of f as the coefficients, and h is a given entire or meromorphic function.

Zhang and Liao [26] obtained the following result.
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Theorem B. Let a, p1, p2 and λ be nonzero constants. Then the equation

f 3(z) + a f ′(z) = p1eλz + p2e−λz

does not have any transcendental entire solution.

In the paper, we first shall study the relevant problems for the following type of differential equation:

Q(z, f ) = a1(z)eb1(z) + a2(z)eb2(z) + p(z), (1.3)

where Q(z, f ) denotes a differential polynomial in f .

Theorem 1.1. Assume that a differential polynomial Q(z, f ) ( with no constant term, i.e., Q(z, 0) ≡ 0 )
contains just one term of maximal degree, p (. 0) is a small function of the exponential function ez,

and ai, bi (i = 1, 2) are nonzero polynomials with b1 . b2. If f is an admissible entire solution to
Eq (1.3), then we have ρ( f ) = max{deg(b1), deg(b2)}.

For example, the differential equation

256 f 4 − 64 f f ′′ = e4z + e−4z − 2

has a transcendental entire solution f (z) = (ez + e−z)/4 and ρ( f ) = 1.
It is not difficult to verify that f (z) = sin z + 1 is a solution to the equation

4 f 3 − 12( f ′′)2 + 3 f ′′ − 12 f = − sin(3z) − 8,

and ρ( f ) = 1.
The equation f 2 + 8 f ′′ − 8 f = 16e2z + 4e−2z − 16 has exactly two entire solutions, namely f1(z) =

4ez − 2e−z and f2(z) = −4ez + 2e−z. Obviously, ρ( f1) = ρ( f2) = 1. In fact, this equation has no other
meromorphic solutions satisfying N(r, f ) = S (r, f ) ( see, e.g., [14]).

Theorem 1.1 fails if Q(z, f ) contains more than one term of the maximal degree. Indeed, the
differential equation

f ′ − (cos z) f = −z cos z + 1

is solved by f (z) = esin z + z, and we would get ρ( f ) = +∞.

Next, we will deal with the growth of entire transcendental solutions of nonlinear differential
equations. Before stating our next result, we recall some previous results concerning the second order
homogeneous linear differential equation of type

f ′′ + P(ez) f ′ + Q(ez) f = 0, (1.4)

where P(ez) and Q(ez) are polynomials in ez and they are not both constants. It is well known that every
solution f of (1.4) is an entire function.

In fact, this type differential equation was discussed by Mathieu in 1868 in connection with the
problem of vibrations of an elliptic membrane in the following manner:

Assume that the membrane, which is in the plane XOY when it is in equilibrium, is vibrating with
frequency p. Then, if we write

V = u(x, y) cos(pt + ε),
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the equation of two dimensional wave motion

∂2V
∂x2 +

∂2V
∂y2 =

1
c2

∂2V
∂t2

becomes
∂2u
∂x2 +

∂2u
∂y2 +

p2

c2 u = 0. (1.5)

By a slight transformation, Eq (1.5) will become a linear differential equation, of the second order,
of the form

d2u
dz2 + (a + 16q cos 2z)u = 0, (1.6)

where a, q are constants.
Mathieu Eq (1.6) has some important applications, which can be found, e.g., in [21] and references

therein for interested readers.
Thereafter up to the present, in this direction, many good results were obtained, see, e.g., [5, 12]. It

is also worth mentioned that when they studied the growth on (1.4), the so called central index
method was used. The purpose of the present paper is to extend these works (see,
e.g., [3, 4, 7, 10, 17]) concerning the nature of solutions of linear differential equations to nonlinear
differentials. Moreover, our results will include several known results for linear differential equations
obtained earlier as special cases.

Before proceeding further, we give an idea of the problem we are dealing with the growth of the
solution to (1.6) by the following assertion.

According to (1.6) and the fact (see, e.g., [11]):

T (r, eP(z)) ∼ T (r, eakzk
) ∼
|ak|

π
rk (r → ∞),

where P(z) = akzk + ak−1zk−1 + · · · + a0 is a polynomial with ak(, 0), then, any solution u . 0 of (1.6)
satisfies

m(r,
u′′

u
) = m(r, a + 16q cos 2z) = T (r, a + 16q cos 2z) ∼

4
π

r (r → ∞),

which shows that ρ(u) = ∞.

Motivated by this, our next aim is to discuss the growth of solutions to some more general forms of
Eq (1.6). To bring about our results from the more general hypotheses without complicated calculations
will probably be the most interesting feature of this note. For convenience, in what follows, we set

Mi(z) = a0izki + a1izki−1 + · · · + aki, k∗ := max{ki, 1 ≤ i ≤ m},

where a0i, a1i, · · · , aki are constants with a0i , 0 (i = 1, 2, · · · ,m).

N j(z) = b0 jzl j + b1 jzl j−1 + · · · + bl j, l∗ := max{l j, 1 ≤ j ≤ n},

where b0 j, b1 j, · · · , bl j are constants with b0 j , 0 ( j = 1, 2, · · · , n).

P j( f ) = f λ0 j( f ′)λ1 j · · · ( f (q))λq j , d j = λ0 j + λ1 j + · · · + λq j,
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where λ0 j, λ1 j, · · · , λq j ( j = 1, 2, · · · , n) are nature numbers.
Theorem 1.2 Suppose that αi(z)(i = 1, · · · ,m), β j(z)( j = 1, · · · , n) are nonzero polynomials and
k∗ > l∗. If d1 = d2 = · · · = dn = d ≥ 1, then every entire solution f (. 0) of the equation

n∑
j=1

β j(z)eN j(z)P j( f ) +

m∑
i=1

αi(z)eMi(z) f d = 0 (1.7)

satisfies ρ( f ) = ∞ and ρ2( f ) = k∗.
The following examples show that the conclusion of Theorem 1.2 can occur.

Example 1.1 The equation
f ′ − (cos z) f = 0

is satisfied by f (z) = esin z. It is easy to see that ρ( f ) = ∞ and ρ2( f ) = 1.

Example 1.2 Consider the nonlinear equation

f ′′ f ′ − (e2z + e3z) f 2 = 0.

Then f (z) = eez
solves the above equation and ρ( f ) = ∞, ρ2( f ) = 1.

Example 1.3 The nonlinear equation

f ′ f + ( f ′)2 − (2zez2
+ 4z2e2z2

) f 2 = 0

has an entire solution f (z) = eez2

with ρ( f ) = ∞ and ρ2( f ) = 2.

Example 1.4 The linear differential equation

f ′′′ − f ′ − e3z f = 0

has three entire solutions f j(z) = ec jez−z, in which c3
j = 1, j = 1, 2, 3. Obviously, ρ( f j) = ∞, ρ2( f j) =

1 ( j = 1, 2, 3).

The following examples show that the condition k∗ > l∗ is necessary.

Example 1.5 The equation
(z2 + zez) f ′′ − 2ez f ′ − 6 f = 0

is satisfied by f (z) = z3, and ρ( f ) = 0.

Example 1.6 It is clear that the differential equation

ez f ′′ + f ′ − (1 + ez) f = 0

has a solution f = ez, but ρ( f ) = 1, and ρ2( f ) = 0.
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2. Some Lemmas

In order to prove our results, we also need the following results.

The determinant ω( f1, · · · , fn) is called the Wronskian of f1, · · · , fn, and which is given by

ω( f1, · · · , fn) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn

f ′1 f ′2 · · · f ′n
...

... · · ·
...

f (n−1)
1 f (n−1)

2 · · · f (n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Lemma 2.1 (see, e.g., Proposition 1.4.2 in [13]) Let f1, · · · , fn be meromorphic functions. Then
ω( f1, · · · , fn) vanishes identically if and only if f1, · · · , fn are linearly dependent.

Lemma 2.2 (see, e.g., Lemma 1.9 in [24]) Suppose that g1, g2, · · · , gn are entire functions and
a0, a1, a2, · · · , an are meromorphic functions such that

T (r, a j) = o(
n∑

k=1

T (r, egk)) (r → ∞, r < E, j = 0, 1, 2, · · · , n),

where E is a set whose linear measure is finite. If
n∑

j=1

a jeg j ≡ a0,

then there exist constants c1, c2, · · · , cn, at least one of them is not zero, such that
n∑

j=1

c ja jeg j ≡ 0.

Lemma 2.3 (see, e.g., pp.35, Corollary in [24]) Let f and g be meromorphic functions such that
T (r, f ) = O(T (r, g)) (r → ∞, r < E), where E is a set of finite measure. Then ρ( f ) ≤ ρ(g).

The following Lemma is crucial to the proofs of our main results.

Lemma 2.4 Let F(z) =
∑n

i=1 ai(z)ebi(z), and ai, bi (i = 1, 2, · · · , n) be nonzero polynomials with bi .

b j, i , j. Then
ρ(F) = deg(bs),

in which deg bs := max{deg bi, i = 1, 2, · · · , n}.

Proof: First, by Lemma 2.1 and Lemma 2.2, we assume without loss of generality, that a1(z)eb1(z),

a2(z)eb2(z), · · · , an(z)ebn(z) are linear independence. Thus we see that

ω =

∣∣∣∣∣∣∣∣∣∣∣∣
a1eb1 a2eb2 · · · anebn

(a1eb1)′ (a2eb2)′ · · · (anebn)′
...

... · · ·
...

(a1eb1)(n−1) (a2eb2)(n−1) · · · (anebn)(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣ . 0,
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and which is normally written as ω = ω(a1eb1 , a2eb2 , · · · , anebn).

Again, by repeated differentiation in both sides of F(z) =
∑n

i=1 ai(z)ebi(z), we have
F = a1 1eb1 + a1 2eb2 + · · · + a1 nebn

F′ = a2 1eb1 + a2 2eb2 + · · · + a2 nebn

· · · · · · · · ·

F(n−1) = an 1eb1 + an 2eb2 + · · · + an nebn

(2.1)

with a1 j = a j, ak j = a′k−1 j + ak−1 jb′j, k = 2, 3, · · · , n, j = 1, 2, · · · , n.

On the other hand, one may show that

ak j = (ak−1 jeb j)′e−b j , k = 2, 3, · · · , n, j = 1, 2, · · · , n. (2.2)

Further, we set D =

∣∣∣∣∣∣∣∣∣∣∣∣
a1 1 a1 2 · · · a1 n

a2 1 a2 2 · · · a2 n
...

... · · ·
...

an 1 an 2 · · · an n

∣∣∣∣∣∣∣∣∣∣∣∣ .
It follows from the properties of determinant and (2.2) that D . 0. For sake of brevity and simplicity,

we, as a rule, now make the following reasonable assumption: deg b1 = max{deg bi, i = 1, 2, · · · , n}.
Thus, by Cramer’s ruler, (2.1) gives

eb1 =
D1

D
(2.3)

with D1 =

∣∣∣∣∣∣∣∣∣∣∣∣
F a1 2 · · · a1 n

F′ a2 2 · · · a2 n
...

... · · ·
...

F(n−1) an 2 · · · an n

∣∣∣∣∣∣∣∣∣∣∣∣ .
In view of (2.3) and the expression of D1, we find

eb1 =
A11

D
F +

A21

D
F′ + · · · +

An1

D
F(n−1), (2.4)

where A11, A21, · · · , An1 are co-factors of the first column of D1. In view of ai, bi (i = 1, 2, · · · , n) are
nonzero polynomials, we deduce that A11

D , A21
D , · · · , An1

D are small functions of eb1 . In addition, it is easy
to see by (2.4) that they are also small functions of F.

Consequently, it follows from the logarithmic derivative lemma and (2.4) that

m(r,
eb1

F
) = S (r, F). (2.5)

Moreover, note that eb1 = F eb1

F and (2.5), we would get

T (r, eb1) = m(r, eb1) ≤ T (r, F) + S (r, F).

Therefore, T (r, ebs) = m(r, ebs) ≤ T (r, F) + S (r, F) is satisfies, and then Lemma 2.3 immediately
implies bs = ρ(ebs) ≤ ρ(F). It is easy to see that

T (r, F) ≤ nT (r, ebs) + S (r, ebs).

AIMS Mathematics Volume 5, Issue 6, 6124–6134.



6131

Consequently, on ground of Lemma 2.3, ρ(F) ≤ ρ(ebs) = bs is correct.

This completes the proof of Lemma 2.4.

Lemma 2.5 ([13]) Let f be a meromorphic solution of an algebraic equation

P(z, f , f ′, · · · , f (n)) = 0, (2.6)

where P is a polynomial in f , f ′, · · · , f (n) with meromorphic coefficients small with respect to f . If a
complex constant c does not satisfy Eq (2.6), then

m(r,
1

f − c
) = S (r, f ).

3. Proofs of Theorems

Proof of Theorem 1.1.

Now, we no loss in generality in supposing b1 and b2 are not constants. If (1.3) has an entire solution
f , we then from (1.3) and Lemma 2.4 get

T (r,Q) ≥ max{T (r, eb1), T (r, eb2)} + S (r,Q),

this shows that p is a small function of Q, and we see that p is also a small function of f .
Again, by (1.3), we have

Q′ = (a′1 + a1b′1)eb1 + (a′2 + a2b′2)eb2 + p′ := t1eb1 + t2eb2 + p′,

which, and (1.3), gives

t1Q − a1Q′ = (a2t1 − a1t2)eb2 + t1 p − a1 p′ := s1eb2 + p1, (3.1)

and therefore
t′1Q + (t1 − a′1)Q′ − a1Q′′ = (s′1 + s1b′2)eb2 + p′1. (3.2)

According to (3.1) and (3.2), we obtain

(s′1 + s1b′2)(t1Q − a1Q′) − s1[t′1Q + (t1 − a′1)Q′ − a1Q′′] = s′1 p1 − s1 p′1 + s1 p1b′2. (3.3)

If s′1 p1 − s1 p′1 + s1 p1b′2 ≡ 0, then Ap1 = s1eb2 for a constant A, it is a contradiction. Now, we may
assume that s′1 p1 − s1 p′1 + s1 p1b′2 . 0. Thus applying Lemma 2.5 (where c = 0 is used) to (3.3), we
have

m(r,
1
f

) = S (r, f ). (3.4)

Let N denote the maximal degree of Q(z, f ). Now we claim that

m(r,Q) = N m(r, f ) + S (r, f ). (3.5)
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To prove (3.5), we rewrite Q(z, f ) as

Q(z, f ) =

N∑
j=1

P j f j, (3.6)

where P j ( j = 1, 2, · · · ,N) denote a polynomial of f (k)/ f , k ∈ N.Obviously, it follows by (3.4) and (3.6)
that

m(r,Q) ≤ N m(r, f ) + S (r, f ). (3.7)

On the other hand, according to (3.6)

|Q(z, f )| = | f N ||PN + PN−1
1
f

+ · · · + P1
1

f N−1 | (3.8)

is correct. By the same methods as used in [23], we then by (3.8) have

N m(r, f ) ≤ m(r,Q) + S (r, f ) (3.9)

and thereby (3.5) immediately follows from (3.7) and (3.9).
Therefore, we have N m(r, f ) = max{T (r, eb1),T (r, eb2)} + S (r, f ), which implies

ρ( f ) = max{deg(b1), deg(b2)}, and Theorem 1.1 follows.

Proof of Theorem 1.2.

We first of all rewrite (1.7) as
n∑

j=1

β j(z)eN j(z) P j( f )
f d +

m∑
i=1

αi(z)eMi(z) = 0. (3.10)

Suppose that f is of finite order. Since αi(z)(i = 1, . . . ,m), β j(z)( j = 1, . . . , n) are nonzero
polynomials, it follows by Lemma 2.4 and (3.10) that

O(rk∗) ≤ O(rl∗) + O(log r),

which is impossible. Thus the order of f must be infinite and then it is easily shown in this case there
exists an integer l (1 ≤ l ≤ n) such that

m(r, f (l)/ f ) = O(rk∗),

which gives
S (r, f ) = O(log(rT (r, f )) (r → ∞, r < E),

where E is a set whose linear measure is not greater than 2. Thus, we find

m(r, f (l)/ f ) = O(log rT (r, f )) = O(rk∗) (r → ∞, r < E),

or
rk∗ = O(log rT (r, f )) (r → ∞, r < E),

which and Lemma 2.3 will lead to the conclusion that the order of log T (r, f ) is k∗, which will lead to
the conclusion that hyper-order of f must be k∗. The assertion follows.

Finally, we would like to pose the following conjecture, for further studies.

Conjecture. The asserts of the present paper remain to be valid for meromorphic solutions f satisfying
N(r, f ) = S (r, f ) or N(r, f ) is of finite order.
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4. Conclusions

Using the theory of meromorphic functions and the Cramer’s rule, this paper extends some results
on entire solutions of certain type of linear differential equations to that of nonlinear differential
equations. Some examples show that the existence of solutions for such equations. Meanwhile, a
conjecture is posed for further studies.
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