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1. Introduction

Let p be an odd prime, and a be an integer with (a, p) = 1. In order to study of the properties
of quadratic residues modulo p, Legendre first introduced the characteristic function of the quadratic
residues

(
a
p

)
, which was later called Legendre’s symbol as follows:

(
a
p

)
=


1, if a is a quadratic residue modulo p;
−1, if a is a quadratic non-residue modulo p;
0 if p | a.

The introduction of this symbol greatly promotes the research about the properties of the quadratic
residues and non-residues modulo p. Therefore, a great number of scholars began to study related work
and obtained a series of valuable research results. For example, if p be an odd prime with p = 4k + 1,
then for any quadratic residue r and quadratic non-residue s modulo p, one has the identity (see [2]:
Theorem 4–11) 1

2

p−1∑
a=1

(
a + ra−1

p

)
2

+

1
2

p−1∑
a=1

(
a + sa−1

p

)
2

= p,

where a−1 is the inverse of a mod p. In detail, a−1 satisfy the equation x · a ≡ 1 mod p.
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Many other papers related to power residues and non-residues modulo p can also be found in
references [4–20], here we will not describe it in detail.

Recently, Wang Tingting and Lv Xingxing [5] studied the distribution properties of a certain
quadratic residues and non-residues modulo p, and proved the following two conclusions:
Theorem A. For any prime p with p ≡ 3 mod 4, one has the identities

N(p, 1) =
{ 1

8 (p − 3) , if p ≡ 3 mod 8;
1
8 (p − 7) , if p ≡ 7 mod 8

and

N(p,−1) =
{ 1

8 (p − 3) , if p ≡ 3 mod 8;
1
8 (p + 1) , if p ≡ 7 mod 8.

where N(p, 1) denotes the number of all integers 1 ≤ a ≤ p − 1 such that a, a + a−1 and a − a−1 are all
quadratic residues modulo p, N(p,−1) denotes the number of all integers 1 ≤ a ≤ p − 1 such that a is
a quadratic non-residue modulo p, a + a−1 and a − a−1 are quadratic residues modulo p.
Theorem B. For any prime p with p ≡ 1 mod 4, one has the asymptotic formulas

N(p, 1) =
{ 1

8 (p − 3) + E(p, 1), if p ≡ 5 mod 8;
1
8 (p − 17) + E1(p, 1), if p ≡ 1 mod 8

and

N(p,−1) =
{ 1

8 (p + 3) + E(p,−1), if p ≡ 5 mod 8;
1
8 (p + 3) + E1(p,−1), if p ≡ 1 mod 8,

where we have the estimates |E(p, 1)| ≤ 3
4 ·
√

p, |E1(p, 1)| ≤ 5
4 ·
√

p, |E(p,−1)| ≤ 3
4 ·
√

p and |E1(p,−1)| ≤
5
4 ·
√

p.
As two corollaries of these results, Wang Tingting and Lv Xingxing [5] solved two open problems

proposed by professor Sun Zhiwei. That is, they proved:
For any prime p ≥ 101, there is at least one integer a, such that a, a+a−1 and a−a−1 are all quadratic

residues modulo p.
For any prime p ≥ 18, there is at least one quadratic non-residue a mod p, such that a + a−1 and

a − a−1 are quadratic residues modulo p.
In the field of the quadratic residues research, it is worth mentioning Z. H. Sun’s important work [6].

We believe that Theorem A and B can also be derived from earlier results in [6]. All research works
are very meaningful. In fact, the distribution of power residues plays an vital role in mathematics and
cryptography, a number of important number theory and information security problems are closely
related to it. A survey on this can be found in F. L. Ţiplea, S. Iftene, G. Teşeleanu, A. M. Nica [10].
Therefore, it is necessary to continue to study the distribution properties of the power residues.

Inspired by the works in [5] and [6], we will naturally ask that what happens to the cubic residues
modulo p?

It is clear that if (p − 1, 3) = 1, then for any integer a with (a, p) = 1, the congruence equation
x3 ≡ a mod p has one solution. So it is a trivial situation in the condition of (p − 1, 3) = 1. But if
p ≡ 1 mod 3, then what happens?
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This paper focuses on such problems. Let p be a prime with p ≡ 1 mod 3, and N(p) denotes the
number of all integers 1 < a < p − 1 such that a + a−1 and a − a−1 are cubic residues modulo p. In this
paper, using the elementary methods, the properties of the third-order characters and Gauss sums, and
the estimate for character sums, we are going to give an exact identity and some asymptotic formulas
for N(p). Our main results are summarized as following three conclusions:
Theorem 1. Let p be an odd prime with p ≡ 7 mod 12. If 2 is a cubic residue mod p, then we have
the identity

N(p) =
1
9
· (p + 4d − 11) ,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.
Theorem 2. Let p be an odd prime with p ≡ 7 mod 12. If 2 is not a cubic residue mod p, then we
have the asymptotic formula

N(p) =
1
9
· (p − 5) + E(p),

where we have the estimates |E(p)| ≤ 2
3 ·
√

p.
Theorem 3. Let p be an odd prime with p ≡ 1 mod 12, then we have the asymptotic formula

N(p) =
{ 1

9 · (p − 13) + E1(p), if 2 is a cubic residue mod p;
1
9 · (p − 1) + E1(p), if 2 is not a cubic residue mod p.

where we have the estimates |E1(p)| < 26
9 ·
√

p.
According to our theorems, we can deduce the following:

Corollary. Let p > 700 be a prime with p ≡ 1 mod 3, then there exists at least one integer 1 < a < p−1
such that a + a−1 and a − a−1 are cubic residues mod p.

2. Several lemmas

To prove our main results, we need following several basic lemmas. For simplicity, there is no need
to repeat some elementary knowledge of number theory and analytic number theory, which can be
found in references [1–3].
Lemma 1. Let p be a prime with p ≡ 1 mod 3. Then for any third-order character λ mod p, we have
the identity

τ3(λ) + τ3
(
λ
)
= dp,

where τ(χ) =
p−1∑
a=1

χ(a) e
(

a
p

)
denotes the classical Gauss sums, and e(y) = e2πiy, d is uniquely

determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.
Proof. This result is Theorem 1 in Zhang Wenpeng and Hu Jiayuan [21].
Lemma 2. Let p be an odd prime with p ≡ 7 mod 12. Then for any third-order character λ mod p, we
have the identity

p−1∑
a=1

λ
(
a + a−1

)
λ
(
a − a−1

)
+

p−1∑
a=1

λ
(
a + a−1

)
λ
(
a − a−1

)
= −4.
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Proof. Note that p ≡ 3 mod 4 and
(
−1
p

)
= −1, so based on the properties of the Legendre’s symbol and

complete residue system mod p, we obtain

p−1∑
a=1

λ
(
a + a−1

)
λ
(
a − a−1

)
=

p−1∑
a=1

λ
(
a2 + 1

)
λ
(
a2 − 1

)
=

p−1∑
a=1

(
1 +

(
a
p

))
λ (a + 1) λ (a − 1)

=

p−2∑
a=1

λ (a + 2) λ (a) +
p−1∑
a=1

(
−a
p

)
λ (−a + 1) λ (−a − 1)

=

p−1∑
a=1

λ
(
1 + 2a−1

)
− 1 −

p−1∑
a=1

(
a
p

)
λ (a − 1) λ (a + 1)

= −2 −
p−1∑
a=1

(
a
p

)
λ (a − 1) λ (a + 1) . (2.1)

Similarly, we can also deduce that

p−1∑
a=1

λ
(
a + a−1

)
λ
(
a − a−1

)
= −2 +

p−1∑
a=1

(
a
p

)
λ (a − 1) λ (a + 1) . (2.2)

Combining (2.1) and (2.2) we have the identity

p−1∑
a=1

λ
(
a + a−1

)
λ
(
a − a−1

)
+

p−1∑
a=1

λ
(
a + a−1

)
λ
(
a − a−1

)
= −4.

This proves Lemma 2.
Lemma 3. Let p be an odd prime with p ≡ 1 mod 3. Then for any third-order character λ mod p, we
have the identity

p−1∑
a=1

(
λ
(
a − a−1

)
+ λ

(
a − a−1

))
= d +

1
p
·
(
λ(2)τ3(λ) + λ(2) · τ3

(
λ
))
.

Proof. Write χ2 =
(
∗

p

)
. Note that the identities λ = λ2, from the properties of the Gauss sums and the

Legendre’s symbol mod p we have

p−1∑
a=1

λ
(
a − a−1

)
=

p−1∑
a=1

λ2(a)λ
(
a2 − 1

)
=

p−1∑
a=1

λ(a)λ (a − 1) +
p−1∑
a=1

(
a
p

)
λ(a)λ (a − 1)

=
1

τ
(
λ
) p−1∑

b=1

λ(b)
p−1∑
a=1

λ(a)e
(
b(a − 1)

p

)
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+
1

τ
(
λ
) p−1∑

b=1

λ(b)
p−1∑
a=1

λ(a)
(

b
p

)
e
(
b(a − 1)

p

)

=
τ2(λ)

τ
(
λ
) + τ(λχ2)

τ
(
λ
) p−1∑

b=1

λ
2
(b)χ2(b)e

(
−b
p

)
=
τ2(λ)

τ
(
λ
) + (

−1
p

)
τ2(λχ2)

τ
(
λ
) . (2.3)

Now according to the properties of complete residue system mod p, we have

p−1∑
a=1

λ
(
a2 − 1

)
= −1 +

p−1∑
a=1

λ
(
a2 + 2a

)
= −1 +

p−1∑
a=1

λ(a)λ (a + 2)

= −1 +
1

τ
(
λ
) p−1∑

b=1

λ(b)
p−1∑
a=1

λ(a)e
(
b(a + 2)

p

)
= −1 + λ(2) ·

τ2(λ)

τ
(
λ
) . (2.4)

On the other hand, from the properties of Legendre’s symbol mod p we also have

p−1∑
a=1

λ
(
a2 − 1

)
=

p−1∑
a=1

λ (a − 1) +
p−1∑
a=1

χ2(a)λ (a − 1)

= −1 +
p−1∑
a=1

λ (a) +
1

τ
(
λ
) p−1∑

b=1

λ(b)
p−1∑
a=1

χ2(a)e
(
b(a − 1)

p

)

= −1 +
τ(χ2)

τ
(
λ
) p−1∑

b=1

λ(b)χ2(b)e
(
−b
p

)
= −1 +

(
−1
p

) τ(χ2)τ
(
λχ2

)
τ
(
λ
) . (2.5)

Since λ3(2) = 1, so applying (2.4) and (2.5) we can deduce the identity

τ2(λ) =
(
−1
p

)
λ(2)τ(χ2)τ

(
λχ2

)
. (2.6)

Note that τ2(χ2) = χ2(−1)p and τ(λ)τ
(
λ
)
= τ(λ)τ(λ) = p, combining Lemma 1, (2.3) and (2.6) we can

deduce the identity

p−1∑
a=1

(
λ
(
a − a−1

)
+ λ

(
a − a−1

))
=

τ3(λ)
p
+
τ3

(
λ
)

p
+

(
−1
p

)
τ(λ)τ2(λχ2)

p
+

(
−1
p

)
τ
(
λ
)
τ2

(
λχ2

)
p

= d +
(
−1
p

) λ(2)τ
(
λ
)
τ4 (λ)

p · τ2(χ2)
+

(
−1
p

) λ(2)τ (λ) τ4
(
λ
)

p · τ2(χ2)

= d +
1
p
·
(
λ(2)τ3(λ) + λ(2) · τ3

(
λ
))
.

This proves Lemma 3.
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Lemma 4. Let p be an odd prime with p ≡ 1 mod 3. Then for any third-order character λ mod p, we
have the identity

p−1∑
a=1

(
λ
(
a + a−1

)
+ λ

(
a + a−1

))
= d +

(
−1
p

)
1
p

(
λ(2)τ3(λ) + λ(2) · τ3

(
λ
))
.

Proof. It can be deduced from the same methods of proving Lemma 3.
Lemma 5. Let p be an odd prime with p ≡ 7 mod 12. Then for any third-order character λ mod p, we
have the identity

p−1∑
a=1

(
λ
(
a2 − a−2

)
+ λ

(
a2 − a−2

))
= d +

1
p
·
(
λ(2)τ3(λ) + λ(2) · τ3

(
λ
))
.

Proof. Note that the identity

p−1∑
a=1

(
a
p

)
λ
(
a − a−1

)
=

p−1∑
a=1

(
−a
p

)
λ
(
−a + a−1

)
= −

p−1∑
a=1

(
a
p

)
λ
(
a − a−1

)
.

From the properties of the Legendre’s symbol mod p we have

p−1∑
a=1

λ
(
a2 − a−2

)
=

p−1∑
a=1

λ
(
a − a−1

)
+

p−1∑
a=1

(
a
p

)
λ
(
a − a−1

)
=

p−1∑
a=1

λ
(
a − a−1

)
. (2.7)

Applying (2.7) and Lemma 3 we may immediately get

p−1∑
a=1

(
λ
(
a2 − a−2

)
+ λ

(
a2 − a−2

))
=

p−1∑
a=1

(
λ
(
a − a−1

)
+ λ

(
a − a−1

))
= d +

1
p
·
(
λ(2)τ3(λ) + λ(2) · τ3

(
λ
))
.

This proves Lemma 5.

3. Proofs of the theorems

In this section, we shall complete the proofs of our main results. First we prove Theorem 1. For
any prime p with p ≡ 7 mod 12, note that

(
−1
p

)
= −1, so for all integers 1 < a < p − 1, we have

(a + a−1, p) = 1. From Lemma 2–5 we have

N(p) =
1
9

p−2∑
a=2

(
1 + λ

(
a + a−1

)
+ λ

(
a + a−1

)) (
1 + λ

(
a − a−1

)
+ λ

(
a − a−1

))
=

1
9

p−1∑
a=1

(
1 + λ

(
a + a−1

)
+ λ

(
a + a−1

)) (
1 + λ

(
a − a−1

)
+ λ

(
a − a−1

))
−

2
9
·
(
1 + λ(2) + λ(2)

)
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=
p − 1

9
+

1
9

p−1∑
a=1

(
λ
(
a + a−1

)
λ
(
a − a−1

)
+ λ

(
a + a−1

)
λ
(
a − a−1

))
+

1
9

p−1∑
a=1

(
λ
(
a + a−1

)
+ λ

(
a − a−1

)
+ λ

(
a + a−1

)
+ λ

(
a − a−1

))
+

1
9

p−1∑
a=1

(
λ
(
a2 − a−2

)
+ λ

(
a2 − a−2

))
−

2
9
·
(
1 + λ(2) + λ(2)

)
=

1
9
·
(
p + 3d − 7 − 2λ(2) − 2λ(2)

)
+

1
9p

(
λ(2)τ3(λ) + λ(2) · τ3

(
λ
))
. (3.1)

If 2 is a cubic residue mod p, then λ(2) = 1, from (3.1) and Lemma 1 we have

N(p) =
1
9
· (p + 4d − 11) .

This proves Theorem 1.
If 2 is not a cubic residue mod p, then 1 + λ(2) + λ(2) = 0, note that the estimate |τ(λ)| =

√
p, from

(3.1) and Lemma 1 we have

N(p) =
p − 7 − 2λ(2) − 2λ(2)

9
+

(3 + λ(2))τ3(λ) + (3 + λ(2)) · τ3
(
λ
)

9p

=
p − 5

9
+

(
2 − λ(2)

)
τ3(λ) + (2 − λ(2)) · τ3

(
λ
)

9p
=

p − 5
9
+ E(p),

where |E(p)| = 1
9p ·

∣∣∣∣(2 − λ(2)
)
τ3(λ) + (2 − λ(2)) · τ3

(
λ
)∣∣∣∣ ≤ 2

3 ·
√

p.
This proves Theorem 2.

If p ≡ 1 mod 12, then there exist integer r such that r2 = (−r)2 ≡ −1 mod p and r+r−1 ≡ 0 mod p.
For this integer 1 < r < p − 1, we also have λ(r) = λ

2
(r) = λ(r2) = λ(−1) = 1, so we have

N(p) =
1
9

p−2∑
a=2

(a2+1,p)=1

(
1 + λ

(
a + a−1

)
+ λ

(
a + a−1

)) (
1 + λ

(
a − a−1

)
+ λ

(
a − a−1

))

=
1
9

p−1∑
a=1

(
1 + λ

(
a + a−1

)
+ λ

(
a + a−1

)) (
1 + λ

(
a − a−1

)
+ λ

(
a − a−1

))
−

4
9
·
(
1 + λ(2) + λ(2)

)
=

p − 1
9
+

1
9

p−1∑
a=1

(
λ
(
a + a−1

)
λ
(
a − a−1

)
+ λ

(
a + a−1

)
λ
(
a − a−1

))
+

1
9

p−1∑
a=1

(
λ
(
a + a−1

)
+ λ

(
a − a−1

)
+ λ

(
a + a−1

)
+ λ

(
a − a−1

))
+

1
9

p−1∑
a=1

(
λ
(
a2 − a−2

)
+ λ

(
a2 − a−2

))
−

4
9
·
(
1 + λ(2) + λ(2)

)
. (3.2)
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From the Weil’s work [22] we have the estimates∣∣∣∣∣∣∣
p−1∑
a=1

λ
(
a2 − a−2

)∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

p−1∑
a=1

λ(a)λ
(
a4 − 1

)∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

p−1∑
a=1

λ
(
a5 − a

)∣∣∣∣∣∣∣ ≤ 5 ·
√

p (3.3)

∣∣∣∣∣∣∣
p−1∑
a=1

λ
(
a + a−1

)
λ
(
a − a−1

)∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

p−1∑
a=1

λ
(
a2 + 1

)
λ
(
a2 − 1

)∣∣∣∣∣∣∣ ≤ 4 ·
√

p. (3.4)

If λ(2) = 1, then note that |d| ≤ 2 ·
√

p, applying (3.2–3.4) and Lemma 1–5 we have asymptotic formula

N(p) =
1
9
· (p − 13) + E1(p), (3.5)

where |E1(p)| ≤ 26
9 ·
√

p.
If λ(2) , 1, then applying (3.2–3.4) and Lemma 2–5 we have asymptotic formula

N(p) =
1
9
· (p − 1) + E1(p), (3.6)

where |E1(p)| ≤ 26
9 ·
√

p.
Now Theorem 3 follows from asymptotic formulas (3.5) and (3.6).
This completes the proofs of our all results.

4. Conclusion

The main results of this paper are three theorems and a corollary. Theorem 1 obtained an exact
formula for N(p) with p = 12k + 7 and 2 is a cubic residue modulo p. Theorem 2 and Theorem 3
established two asymptotic formulas for N(p) with p ≡ 1 mod 3 and 2 is not a cubic residue modulo
p. At the same time, we also give two sharp upper bound estimates for the error terms. As some
applications, we also deduced following corollary:

If p > 700 is a prime with p ≡ 1 mod 3, then there is at least one integer 1 < a < p − 1 such that
a + a−1 and a − a−1 are cubic residues modulo p.
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