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Abstract: The aim of this paper is to develop an accurate symmetric collocation scheme for a class
of linear stationary singular perturbation problems with two boundary layers. To adapt to the character
of solutions, piecewise reproducing kernels is constructed. In the boundary layers intervals, inverse
multiquadrics kernel function is employed. In the regular interval, exponential kernel function is used.
On the basis of the piecewise reproducing kernels, a new symmetric collocation technique is presented
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that our method is easy to implement and is uniformly effective for any small ε.
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1. Introduction

In this study, we focus on the singular perturbation problems (SPPs) with turning points{
εv′′(x) + a0(x)v′(x) + a1(x)v(x) = g(x),
v(0) = τ0, v(1) = τ1,

(1.1)

where 0 ≤ x ≤ 1, 0 < ε � 1, a0(γ) = 0 for a point in interval (0, 1).
The points such that a0(x) = 0 are called turning points. Usually, turning points problems lead to

boundary layers or interior layers. And therefore, for SPPs with turning points, the numerical solutions
is a more challenging job. Under certain assumptions in [1], problem (1) has a unique solution with
two boundary layers at left and right end points of the interval [0, 1]. The goal of the work is to present
an accurate symmetric collocation scheme for this class of SPPs.
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SPPs arise in the physical theory of semiconductors, chemical reactions, biological sciences, etc.
Solutions of SPPs, unlike regular problems, have boundary or interior layers. The derivatives of the
solution in these subintervals grow without bound as ε → 0. For SPPs, the use of classical numerical
techniques for regular problems can not lead to accurate numerical solutions. In the last decade, there
have been many effective numerical methods for SPPs [1–12]. However, most of the existing work
has considered SPPs without tuning points, while much less is known on SPPs with tuning points. In
Ref. [1, 4–8], some existing numerical techniques have been proposed for SPPs with turning points.

Reproducing kernel method (RKM) is a powerful technique for operator equations. Over the last
decades, the method has achieved important developments in fractional differential equations,
singular integral equations, fuzzy differential equations, and so on [8, 9, 13–29]. Unfortunately, the
direct employ of the method can not produce ideal approximate solutions to SPPs with turning points.
In [8], Geng and Qian based on the RKM and the idea of domain decomposition, present an effective
method for SPPs with turning points and having two boundary layers. However, the implement of the
method is complicated. In this paper, we shall construct a piecewise reproducing kernel function
(RKF) based on the inverse multiquadrics kernel functions and the exponential kernel functions. Then
we present a symmetric collocation method for SPPs with turning points.

2. Piecewise reproducing kernels

In this section, following the idea in [20], we will introduce a piecewise reproducing kernel function
which is used to deal with the character of solutions to SPPs (1) .

Definition 2.1. A Hilbert space H consists of complex value functions defined on E, is named a
reproducing kernel Hilbert space (RKHS) if for each x ∈ E, the evaluation functional ex( f ) = f (x) is
continuous.

The application of Riesz Representation Theorem for Hilbert space yields the following theorem.

Theorem 2.1. For the above space H and each x ∈ E, there exists a unique Kx ∈ H such that ( f ,Kx) =

f (x) for all f ∈ H.

Definition 2.2. Let H be a Hilbert function space defined in E. The function K : E × E → R defined
by K(x, y) = Kx(y) is known as a RKF of space H.

Definition 2.3. For asymmetric function K : E×E → R, it is known as a positive definite kernel (PDK)

if for any n ∈ N, x1, x2, . . . , xn ∈ E, c1, c2, . . . , cn ∈ R,
n∑

i, j=1
cic jK(xi, x j) ≥ 0.

Theorem 2.2. The RKF of a RKHS is positive definite. Also, every PDK can define a unique RKHS, of
which it is the RKF.

Theorem 2.3. Both inverse multiquadrics kernel function IMQ(x, y) = 1√
(x−y)2+γ2

and exponential

kernel function G(x, y) = eαxy(α > 0) are strictly positive definite.

By Theorem 2.2, IMQ1(x, y) = IMQ(x, y), x, y ∈ [0, δ1] is the RKF of a RKHS H1[0, δ1],
G(x, y), x, y ∈ [δ1, δ2] is the RKF of a RKHS H2[δ1, δ2] and IMQ2(x, y) = IMQ(x, y), x, y ∈ [δ2, 1] is
the RKF of a RKHS H3[δ2, 1].

AIMS Mathematics Volume 5, Issue 6, 6020–6029.



6022

Define piecewise kernel function

K(x, y) =


IMQ1(x, y), x, y ∈ [0, δ1),
G(x, y), x, y ∈ [δ1, δ2],
IMQ2(x, y), x, y ∈ (δ2, 1],
0, others.

(2.1)

and Hilbert functions space

H[0, 1] = {w(x)|w(x) =


w1(x), x ∈ [0, δ1),
w2(x), x, y ∈ [δ1, δ2],
w3(x), x, y ∈ (δ2, 1].

w1 ∈ H1[0, δ1],w2 ∈ H2[δ1, δ2],w3 ∈ H3[δ2, 1]}. (2.2)

The inner product in this space is

(u, v)H = (u1, v1)H1 + (u2, v2)H2 + (u3, v3)H3 .

Theorem 2.4. H[0, 1] is a RKHS with RKF K(x, y).

Proof. We will prove K(x, y) given in (2) is a RKF. For each v(y) ∈ H, if x ∈ [0, δ1),

(v(y),K(x, y))H = (v1(y), IMQ1(x, y))H1 + (v2(y), 0)H2 + (v3(y), 0)H3 = v1(x).

Similarly, if x ∈ [δ1, δ2],
(v(y),K(x, y))H = v2(x).

And if x ∈ (δ2, 1],
(v(y),K(x, y))H = v3(x).

This follows that (v(y),K(x, y))H = v(x), for x ∈ [0, 1]. Therefore, H[0, 1] is a RKHS with RKF
K(x, y). �

3. Piecewise RKF-based symmetric collocation method

Setting δ1 = Kε and δ2 = 1 − Kε, the interval [0, 1] is then divided into three subintervals [0, δ1],
[δ1, δ2] and [δ2, 1], where [0, δ1] and [δ2, 1] are the boundary layers regions, and [δ1, δ2] is the regular
region. Eq.(1) is equivalent to

εv′′(x) + a0(x)v′(x) + a1(x)v(x) = g(x),
v(0) = τ0, v(δ−1 ) − v(δ+

1 ) = 0, v′(δ−1 ) − v′(δ+
1 ) = 0,

v(δ−2 ) − v(δ+
2 ) = 0, v′(δ−2 ) − v′(δ+

2 ) = 0, v(1) = τ1.

(3.1)

Define Lv = εv′′ + a0(x)v′ + a1(x)v, B1v = v(0), B2v = v(δ−1 ) − v(δ+
1 ),B3v = v′(δ−1 ) − v′(δ+

1 ), B4v =

v(δ−2 ) − v(δ+
2 ), B5v = v′(δ−2 ) − v′(δ+

2 ), B6v = v(1).
Choosing N distinct scattered points in [0, 1], such as {x1, x2, . . . , xN}. We construct basis functions

by the piecewise RKF K(x, y). Let ψi(x) = LyK(x, y)|y=xi , i = 1, 2, . . . ,N, ψN+ j(x) = B j,yK(x, y), j =
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1, 2 . . . , 6, here B j,y denotes operator B j acts on the function of y. The collocation solution vN(x) for
Eq. (1) may be written as

vN(x) =

N+6∑
i=1

βiψi(x), (3.2)

where {βi}
N+6
i=1 are constants to be determined.

We require vN(x) to satisfy the governing differential equation at all centers x j, j = 1, 2, . . . ,N, i.e.

LvN(xk) =

N+6∑
i=1

βiLψi(xk) = g(xk), k = 1, 2, . . . ,N. (3.3)

In addition, let vN(x) satisfy boundary conditions

B1vN(x) =
N+6∑
i=1

βiB1ψi(x) = τ0,

B2vN(x) =
N+6∑
i=1

βiB2ψi(x) = 0,

B3vN(x) =
N+6∑
i=1

βiB3ψi(x) = 0,

B4vN(x) =
N+6∑
i=1

βiB4ψi(x) = 0,

B5vN(x) =
N+6∑
i=1

βiB5ψi(x) = 0,

B6vN(x) =
N+6∑
i=1

βiB6ψi(x) = τ1.

(3.4)

System (6) and (7) of linear equations can be reduced to the matrix form:

Aβ = g, (3.5)

where β = (β1, β2, . . . , βN+6)>, g = (g(x1), g(x2), . . . , g(xN), τ0, 0, 0, 0, 0, τ1)>. Clearly, A is a symmetric
matrix.

Define functionals λi = δxi ◦ L, i = 1, 2, . . . ,N, λN+ j = B j, j = 1, 2, . . . , 6, i.e. λi(v) = Lv(xi), i =

1, 2, . . . ,N, λN+ j(v) = B j(v), j = 1, 2, . . . , 6.

Theorem 3.1. If the functionals λi, i = 1, 2, . . . ,N + 6 are linearly independent, then the matrix A is
invertible. That is, system (8) has a unique solution.

The present method is outlined as follows:
Step 1: Construct basis functions ψi(x) using the kernel function K(x, y), operator L and
B j, j = 1, 2, . . . , 6.

Step 2: Set collocation approximation vN(x) =
N+6∑
i=1

βiψi(x).

Step 3: Let vN satisfies the equation and boundary conditions in (4).
Step 4: Obtain the coefficients in vN and then get approximate solution vN .
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Theorem 3.2. If a0(x), a1(x) and g(x) ∈ C2[0, 1], then

‖ v(x) − vN(x) ‖∞= max
x∈[0,1]

| v(x) − vN(x) |≤ c h2,

where c > 0 is a real number and h = max
1≤i≤N−1

| xi − xi+1 |.

Proof. Because vN(x) ∈ H[0, 1] and satisfies formula (8), we have

vN(x) ∈ C1[0, 1].

Although vN(x) only belongs to C1 on the entire interval [0, 1], from the assumptions of the Theorem
and the regularity of functions in H1[0, δ1], H2[δ1, δ2] and H3[δ2, 1], we have

LvN(x) − g(x) ∈ C2

on three subintervals [0, δ1], [δ1, δ2] and [δ2, 1]. respectively.
By applying [28], | v(x) − vN(x) |≤ c h2 on three subintervals. Hence,

‖ v(x) − vN(x) ‖∞= max
x∈[0,1]

| v(x) − vN(x) |≤ c h2.

�

4. Numerical experiments

Define the maximum absolute errors EN =‖ v − vN ‖∞, maxx∈[0,1] | v(x) − vN(x) | .
Example 1

We applied our method to the SPPs given by [1, 9]

εv′′(x) − 2(2x − 1)v′(x) − 4v(x) = 0, x ∈ (0, 1), (4.1)

with the boundary conditions v(0) = v(1) = 1. Its true solution is v(x) = e
−2x(x−1)

ε . Choosing δ1 =

Kε, δ2 = 1−Kε, K = 10, γ = 2ε, α = 1, xi =


δ1∗(i−1)

N1
, i = 1, 2, . . . ,N1,

δ1 +
(δ2−δ1)∗(i−N1)

N2−N1+1 , i = N1 + 1, . . . ,N2,

δ2 +
(1−δ2)∗(i−N2)

N−N2
, i = N2 + 1, . . . ,N,

(N1 = 59,N2 =

69,N = 128) in the present method, Table 1 shows the maximum absolute errors compared with the
methods in [1, 9]. If the zero mean normally distributed white noise with standard derivation of 0.01
is added to the right function g(x) = 0, the obtained errors are depicted in Figure 1. It is found from
Table and Figure 1 that our novel approach has higher accuracy and is robust.

Table 1. Example 1: Comparison of errors EN .

ε N = 128( [1]) N = 128( [9]) N = 128(Our method)

2−8 3.68 × 10−3 3.33 × 10−4 3.88 × 10−5

2−10 8.26 × 10−3 4.70 × 10−3 3.86 × 10−5

2−12 8.01 × 10−3 8.20 × 10−2 3.85 × 10−5

2−16 – – 3.85 × 10−5

2−20 – – 3.85 × 10−5

2−24 – – 3.85 × 10−5
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Absolute errors

Figure 1. Graphics of the absolute errors on the entire interval for ε = 2−12 with noise data.

Example 2 Next, we consider the SPPs given by [1, 9]

{
εv′′(x) − 2(2x − 1)v′(x) − 4v(x) = g(x), x ∈ (0, 1),
v(0) = v(1) = 1,

(4.2)

where g(x) = 4(4x − 1). Its exact solution v(x) = −2x +

 erf
(

2x−1√
2
√
ε

)
erf

(
1√
2
√
ε

) + 2
 e−

2(1−x)x
ε . Taking δ1 = Kε, δ2 =

1 − Kε, K = 10, γ = 2ε, α = 1, xi =


δ1∗(i−1)

N1
, i = 1, 2, . . . ,N1,

δ1 +
(δ2−δ1)∗(i−N1)

N2−N1+1 , i = N1 + 1, . . . ,N2,

δ2 +
(1−δ2)∗(i−N2)

N−N2
, i = N2 + 1, . . . ,N,

(N1 = 59,N2 = 69,N =

128) in the present method, Table 2 shows the maximum absolute errors compared with the methods
in [1, 9]. Figure 2 shows the absolute errors on the left boundary layer for ε = 10−6. Figure 3 shows
the absolute errors on the right boundary layer for ε = 10−6. Figure 4 shows the absolute errors on the
regular interval for ε = 10−6.

Table 2. Example 2: Comparison of errors EN .

ε N = 256( [1]) N = 256( [9]) N = 128(Our method)

2−8 1.33 × 10−3 2.26 × 10−4 1.29 × 10−5

2−12 1.22 × 10−3 5.02 × 10−4 1.28 × 10−5

2−16 – – 1.28 × 10−5

2−20 – – 1.28 × 10−5

2−24 – – 1.28 × 10−5
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Figure 2. Graphics of the absolute errors on the left boundary layer for ε = 10−6.
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Figure 3. Graphics of the absolute errors on the right boundary layer for ε = 10−6.
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Figure 4. Graphics of the absolute errors on the regular interval for ε = 10−6.

AIMS Mathematics Volume 5, Issue 6, 6020–6029.



6027

5. Conclusions

By using the inverse multiquadrics RKF and the exponential RKF, a new piecewise RKF is builded.
Take advantage of the piecewise RKFs, a new symmetric collocation scheme is presented for linear
stationary SPPs. The significant advantage of the present novel technique is that it can adapt to the
character of boundary layers of the solution to SPPs. Our method can give accurate approximation
to the solutions of the considered SPPs on both the boundary intervals and the regular interval. The
results of numerical tests illustrate that the method is uniformly effective for any small ε.
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