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1. Introduction

It is known that variational inequality, as a very important tool, has already been studied for a wide
class of unilateral, obstacle, and equilibrium problems arising in several branches of pure and applied
sciences in a unified and general framework. Many numerical methods have been developed for solving
variational inequalities and some related optimization problems; see [1-6] and the references therein.

Let H be areal Hilbert space whose inner product and norm are denoted by (-, -) and ||-||, respectively.
Let C be a nonempty, closed and convex subset of H and A : C — H be a nonlinear mapping. The
variational inequality problem (VIP) associated with the set C and the mapping A is stated as follows:

find x* € C such that (Ax*, x — x*) > 0,Vx € C. (1.1)
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In particular, the VIP (1.1) in the case C is the set Fix(T) of fixed points of a nonexpansive self-
mapping T of C and A is of the form A = I — §, with S another nonexpansive self-mapping of C. In
other words, VIP is of the form

find x* € Fix(T) such that (x" — Sx*, x — x*) > 0,Vx € Fix(T). (1.2)

This problem, introduced by Mainge and Moudafi [8] , is called hierarchical fixed point problem
(HFPP).

Subsequently, Moudafi and Mainge [7] studied the explicit scheme for computing a solution of
VIP (1.2) by introducing the following iterative algorithm:

Xn+1 = /lnf(xn) + (1 - /ln)(a/nS Xp + (l - a’n)Txn)a (13)

where f : C — C and {a,}, {1,} C (0, 1). They also proved the strong convergence of the sequence {x,}
generalized by (1.3) to a solution of VIP (1.2).

Yao et al. [9] introduced and analyzed the following two-step iterative algorithm that generates a
sequence {x,} by the following explicit scheme:

{ Yn :ﬁnsxn + (1 _IBVl)x”’ (14)

Xpi1 = O f(x) + (1 —a )Ty, n> 1.

Under appropriate conditions, the above iterative sequence {x,} converges strongly to some fixed point
of T where T is nonexpansive mapping and {x,} is solves VIP (1.2).

Marino et al. [10] introduced a multistep iterative method that generalizes the two-step method
studied in [9] from two nonexpansive mappings to a finite family of nonexpansive mappings that
generates a sequence {x,} by the following iterative scheme:

F(tny y) + 1ty ¥) + 74y = thny thy, = X,), ¥y € C,

Yn1 = ﬁn,lslun + (1 _ﬁn,l)una (1 5)
Yni = PBniS ity + (1 = Bni)yni-1,1 =2,...,N, ’
Xn+l = a’nf(xn) + (1 - a’n)Tyn,N]’ nz 1.

They prove that strong convergence of the method to a common fixed point of a finite number of
nonexpansive mappings that also solves a suitable equilibrium problem.

On the other hand, by combining the regularization method, the hybrid steepest descent method,
and the projection method, Ceng et al. [11] proposed an iterative algorithm that generates a sequence
via the explicit scheme and proved that this sequence converges strongly to a unique solution of the
following problem.

Problem 1.1 Let F : C — H be k-Lipschitzian and n-strongly monotone on the nonempty, closed and
convex subset C of H, where k and 7 are positive constants, that is,

IFx = Fyll < kllx - yll and (Fx — Fy, x — y) > njllx = y|>,Vx,y € C. (1.6)

Let f : C — H be a p-contraction with a coeflicient p € [0,1) and §,7T : C — C be two nonexpansive
mappings with Fix(T) # 0. Let 0 < u < % and 0 < y < 7, where 7 = 1 — /1 — (257 — uk?). Consider
the following triple hierarchical variational inequality problem (THVI): find x* € E such that

((UF —yHx",x—x") >20,¥Yx e &, (1.7)
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where = denotes the solution set of the following hierarchical variational inequality problem (HVIP):
find z* € Fix(T) such that
(WF —y8)Z',z—27) 2 0,Yz € Fix(T), (1.8)

where the solution set = is assumed to be nonempty.

Since Problem 1.1 has a triple hierarchical structure, in contrast to bilevel programming
problems [12, 13], that is, a variational inequality problem with a variational inequality constraint
over the fixed point set Fix(T), we also call (1.8) a triple hierarchical variational inequality problem
(THVIP), which is a generalization of the triple hierarchical constrained optimization problem
(THCOP) considered by [14, 15].

Recently, many authors introduced the split monotone variational inequality inclusion problem,
which is the core of the modeling of many inverse problems arising in phase retrieval and other real-
world problems. It has been widely studied in sensor networks, intensity-modulated radiation therapy
treatment planning, data compression, and computerized tomography in recent years; see, e.g., [18, 19,
21,26,27] and the references therein.

The split monotone variational inclusion problem (SMVIP) was first introduced by Moudafi [20] as
follows: find x* € H; such that

{ 0Oe flx* + B x*,

V' =Ax*€ Hy : 0 € fHoy" + Byy", (19)

where fi : Hy — H, and f, : H, — H, are two given single-valued mappings, A : Hy — H, is a
bounded linear operator, and B, : H; — 2" and B, : H, — 2" are multivalued maximal monotone
mappings.

If fi = f> = 0, then (1.9) reduces to the following split variational inclusion problem (SVIP): find
x* € H; such that

{OEBl)C, (110)

V' =Ax" € H,: 0 € Byy".

Additionally, if f; = 0, then (1.9) reduces to the following split monotone variational inclusion
problem (S MVIP): find x* € H; such that

{OEB‘X’ (1.11)

Y =Ax"€ Hy : 0 € fy" + Byy".

We denote the solution sets of variational inclusion 0 € B1x* and 0 € fy* + B,y* by SOLVIP(B;) and
SOLVIP(f + B,), respectively. Thus, the solution set of (1.11) can denoted by I' = {x* € H; : x* €
SOLVIP(B,),Ax" € SOLVIP(f + B,)}.
In 2012, Byrne et al. [21] studied the following iterative scheme for S VIP (1.10): for a given
Xo € Hyand A > 0,
X1 = I [x, + €A"(JP = DAx,]. (1.12)

In 2014, Kazmi and Rizvi [22] introduced a new iterative scheme for S VIP (1.10) and the fixed
point problem of a nonexpansive mapping:

{ Uy = J' [x, + €A*(JP — DAx,], (1.13)

Xnr1 = @ f(x,) + (1 — @) Tuy,
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where A is a bounded linear operator, A* is the adjoint of A, f is a contraction on H;, and T
is a nonexpansive mapping of H;. They obtained a strong convergence theorem under some mild
restrictions on the parameters.

Jitsupa et al. [1] modified algorithm (1.13) for S VIP (1.10) and the fixed point problem of a family
of strict pseudo-contractions:

u, = Jf‘ [x, + )/A’*(Jf2 - DAx,],
Yn = Buttn + (1= B,) X 7" Tiut, (1.14)
n=1

X1 = @, 7f(x,) + (I — a,D)y,,n > 1,

where A is a bounded linear operator, A* is the adjoint of A, {T}}Y is a family of k;-strictly pseudo-
contractions, f is a contraction, and D is a strong positive linear bounded operator. In [1], they prove
under certain appropriate assumptions on the sequences {a,}, {8,} and {nE")}ﬁ , that {x,}, defined by
(1.14), converges strongly to a common solution of S VIP (1.10) and a fixed point of a finite family of
k;-strictly pseudo-contractions, which solve a variational inequality problem (1.1).

In this paper, we consider the following system of variational inequalities defined over a set

consisting of the set of solutions of split monotone variational inclusion, the set of common fixed
points of nonexpansive mappings, and the set of fixed points of a mapping.
Problem 1.2 Let F : C — H be k-Lipschitzian and n-strongly monotone on the nonempty closed
and convex subset C of H, ¢ : C — H be a p-contraction with coefficient p € [0,1) and §;,S,T :
C — C be nonexpansive mappings for all i € {1,...,N}. Let 0 < u < % and 0 < ¢ < 7, where
T=1- \/ 1 — u(2n — pk?). Then, the objective is to find x* € Q such that

{ ((uF — &P)x*, x — x*) > 0,Vx € Q, (1.15)

((UF — £S)x*,y —x*) 2 0,Vy € Q,

where Q = Fix(T) N ("), Fix(S;))NT # 0.

Motivated and inspired by the Moudafi and Mainge [7], Marino et al. [10], Ceng et al. [11] and
Kazmi and Rizvi [22], in this paper, we consider a multistep which difference from (1.5). It is proven
that under appropriate assumptions the proposed iterative method, the sequence {x,} converges strongly
to a unique solution to Problem 1.2 and which is solve THVI(1.7). Finally, we give some example and
numerical results to illustrate our main results.

2. Preliminaries

In this section, we collect some notations and lemmas. Let C be a nonempty closed convex subset
of a real Hilbert space H. We denote the strong convergence and the weak convergence of the sequence
{x,} to a point x € H by x, — x and x, — x, respectively. It is also well known [24] that the Hilbert
space H satisfies Opail’s condition, that is, for any sequence {x,} with x, — x, the inequality

lim sup ||x,, — x|| < lim sup ||x,, — yl| 2.1

n—o00 n—oo

holds for every y € H with y # x.
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In the sequel, given a sequence {z,}, we denote with w,(z,) the set of cluster points of {z,} with
respect to the weak topology, that is,

w,(z,) = {z € H : there exists n; — oo for which z,, — z}.

Analogously, we denote by w,(z,) the set of cluster points of {z,} with respect to the norm topology,
that is,
ws(z,) = {z € H : there exists ny — oo for which z,, — z}.

Lemma 2.1. In a real Hilbert space H, the following inequalities hold:

(1) llx = yIP = 1P = lIyl* = 2¢x = y, ), Vx,y € H;
(2) llx + Yl < 1P + 2{p, x + y),¥x,y € H;
(3) llax + (1 = DylP* = Al + (1 = DIYIP = A0 = Dllx = ylIP, VA € [0, 11, Vx,y € H;

An element x € C is called a fixed point of § if x € § x. The set of all fixed point of S is denoted
by Fix(S), thatis, Fix(S) ={xe C: x € Sx}.
Recall the following definitions. Moreover, S : H; — H, is called

(1) a nonexpansive mapping it
IS x =Syl < llx—=yll, Yx,y € H;. (2.2)

A nonexpansive mapping with k = 1 can be strengthened to a firmly nonexpansive mapping in H,
if the following holds:

ISx=Syl> <{(x-y,Sx-Sy), Vx,y € H;. (2.3)

We note that every nonexpansive operator S : H; — H, satisfies, for all (x,y) € H, X Hy, the
inequality

1
((x=8x)—(—58y),Sy—-58x)) < EII(SX - x) = (Sy-yIF (2.4)
and therefore, we obtain, for all (x,y) € H; X Fix(S),

1
(x=Sx,y-8x) < 5||Sx—x||2 (2.5)

(see, e.g., Theorem 3 in [16] and Theorem 1 in [17]).
(2) a contractive if there exists a constant a € (0, 1) such that

(ISx =Syl < allx—yll, Vx,y € H,. (2.6)
(3) an L-Lipschitzian if there exists a positive constant L such that
ISx = Syll < Lllx = yll, Yx,y € Hy. (2.7)
(4) an n-strongly monotone if there exists a positive constant 7 such that
(Sx—Sy,x—y)>nllx -yl Vx,y € H. (2.8)
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(5) an B-inverse strongly monotone (B — ism) if there exists a positive constant 5 such that
(Sx—Sy,x—y}Zﬁlle—Sy||2, Vx,y € Hy. (2.9)

(6) averaged if it can be expressed as the average of the identity mapping and a nonexpansive
mapping, i.e.,
S =0-a)l+aT, (2.10)

where a € (0, 1), I is the identity operator on H,; and T : H; — H, is nonexpansive.
It is easily seen that averaged mappings are nonexpansive. In the meantime, firmly nonexpansive
mappings are averaged.

(7) A linear operator D is said to be a strongly positive bounded linear operator on H if there exists
a positive constant 7 > 0 such that

(Dx, x) > 7||x||>, Vx € H. (2.11)

From the definition above, we easily find that a strongly positive bounded linear operator D is
7-strongly monotone and ||D||-Lipschitzian.
(8) A multivalued mapping M : D(M) C H, — 2 is called monotone if for all x,y € D(M),u € Mx
and v € My,
(x=y,u—v)y>0. (2.12)

A monotone mapping M is maximal if the Graph(M) is not properly contained in the graph of
any other monotone mapping. It is well known that a monotone mapping M is maximal if and
only if for x € D(M),u € Hy,{x —y,u —v) > 0 for each (y,v) € Graph(M), u € Mx.

(9) Let M : D(M) € H, — 2! be a multivalued maximal monotone mapping. Then, the resolvent
operator JY' : H; — D(M) is defined by

JVx =+ AM) ' (x),Vx € Hy, (2.13)

for VA > 0, where  stands for the identity operator on H,. We observe that J}' is single-valued,
nonexpansive, and firmly nonexpansive.

We recall some concepts and results that are needed in the sequel. A mapping Pc is said to be

a metric projection of H, onto C if for every point x € H, there exists a unique nearest point in C
denoted by Pcx such that

llx — Pexll < [lx = yll, VyeC. (2.14)

It is well known that P¢ is a nonexpansive mapping and is characterized by the following property:
IPcx = Peyl? < (x =y, Pcx = Pcy), Vx,y € Hi. (2.15)

Moreover, Pcx is characterized by the following properties:

(x = Pcx,y—Pcx) <0, Vxe Hy,y € C, (2.16)
llx = yII* > llx = Pexl® +lly — PexIP’, ¥Yx€ Hy,y€C, (2.17)

and
I(x = y) = (Pex = Pey)Il? = llx = ylI* = |Pcx = Peyll’, Vx,y € H. (2.18)
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Proposition 2.2. [20]

(1) If T = (1 —a)S +aV,where S : H — H, is averaged, V : Hy — H, is nonexpansive, and if
a € [0, 1], then T is averaged.

(2) The composite of finitely many averaged mappings is averaged.

(3) If the mappings {Tl-}fi | are averaged and have a nonempty common fixed point, then

N
ﬂ F(T) = F(T; 0o Tyo...0Ty). (2.19)

i=1

(4) If T is av —ism, then fory > 0,yT is a % —ism.
(5) T is averaged if and only if its complement I — T is a v — ism for some v > %

Proposition 2.3. [20] Let A > 0, h be an a — ism operator, and B be a maximal monotone operator. If
A € (0,2a), then it is easy to see that the operator J f (I — Ah) is averaged.

Proposition 2.4. [20] Let A > 0 and B, be a maximal monotone operator. Then,
x* solves (1.9) & x* = JP'(I = Af)x" and Ax" = J3(I = Af)Ax". (2.20)
Lemma 2.5. [23] Let {s,} be a sequence of nonnegative numbers satisfying the condition
Snet < (1 =Vu)Sp + Yubn,n 2 1,
where {y,},{0,} are the sequences of real numbers such that

(i) {y.} € [0,1] and i)/n = oo, or equivalently,

n=1
(1=, = lim I (1 - ) = 0;

(ii) lim supd, <0, or

n—oo

(iii) ), y.0, is convergent.

n=1

Then, lims, = 0.

n—0oo

Lemma 2.6. [23] Let A be a number (0, 1], and let u > 0. Let F : C — H be an operator on C
such that for some constant k,n > 0, F is k-Lipschitzian and n-strongly monotone. Associating with a
nonexpansive mapping T : C — C, we define the following the mapping T* : C — H by

T'x:=Tx — AuF(Tx), Vx e C. (2.21)
Then, T" is a contraction provided y < %, that is,

1T = Tyl < (1 = AD)llx = yll, Vx,y € C, (2.22)

where T =1 — /1 — u(2n — pk?) € (0, 1.
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Lemma 2.7. [25] Let {a,} be a sequence of nonnegative real numbers with lim supa, < oo and {8,}

n—oo

be a sequence of real numbers with lim supgB, < 0. Then, lim supa,3, < 0.

n—-o00 n—00

Lemma 2.8. [28] Assume that T is nonexpansive self-mapping of a closed convex subset C of a Hilbert
space Hy. If T has a fixed point, then I — T is demiclosed, i.e., whenever {x,} weakly converges to some
x and {(I — T)x,} converges strongly to y, it follows that (I — T)x = y. Here, I is the identity mapping
on Hy.

3. Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, and Q be a
nonempty closed convex subset of a real Hilbert space H,. Let A : Hy — H, be a bounded linear
operator, A* be the adjoint of A, and r be the spectral radius of the operator A*A. Let f : H, — H,
be a g-inverse strongly monotone operator, B, : C — 21, B, : H, — 2" be two multivalued maximal
monotone operators, and F : C — H; be k-Lipschitzian and n-strongly monotone. Let y : C — H; be
a p-contraction with a coefficient p € [0,1) and S;,S,T : C — C be nonexpansive mappings for all
i€f{l,...,N}). Let {4}, {an}, {Bui},i = 1,...,N be sequences in (0, 1) such that B,; — B; € (0,1) as
n—ooforallie{l,...,N},O0<pu< i—Z and 0 < ¢ < 1, wheret =1 — \/1 — u(2n — uk?). Then, the
sequence {x,} is generated from an arbitrary initial point x| € C by the following:

Uy = J3 X0 + YA U2 = of) = DAX, ],

Yn,1 :ﬁn,lslun + (1 _IBn,l)um (3 1)
Yni = ﬁn,iSiun + (1 _ﬁn,i)yn,i—lvi = 2’ ey N, '
Xn+1 = PC[/lnf(anw(xn) + (1 - a’n)an) + (I - /ln/JF)Tyn,N], nz 1

Assume that Problem 1.2 has a solution. Suppose that the following conditions are satisfied:

(CI) 0 < liminfa, < limsupa, < 1;

n—oo

(C2) limA, =0 and ¥, A, = oo;

n=1

[Se]
(C3) 3 lad, = @y duei| < 00 or lim l2etemtestleatl —
n=2

n—oo n

3 3 Mn_/lnf | —_ .
(C4) EQMn — Ayi] < 00 or lim ===l = Q)

(C5) n§2|,3n,i = Bu-1il < oo or AL%W =0forallie{l,...,N};
(C6) 4, >0,0< A, <26,0<y<1i
Then, {x,} converges strongly to a unique solution x* € Q of Problem 1.2.

Proof. Let {x,} be a sequence generated by scheme (4.1). First, note that 0 < £ < 7 and

=t & pup=1-1-puQn-uk?)
e V1-uQn-pk?)>1-pun
e 1 =2un+ Pk > 1 = 2un+ i’y
e K>
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s k>n.
Then, it follows from the p-contractiveness of ¢ that

((UF = &p)x — (UF — &)y, x —y) = (un — €p)llx — yIIP, ¥x,y € C.

Hence, from ép < & < 7 < un, we deduce that uF — &Y is (un — £p)-strongly monotone. Since it is clear
that uF' — &y is Lipshitz continuous, there exists a unique solution to the VIP:

find x* € Q such that ((uF — &Y)x*, x — x*) > 0,Vx € Q.

Additionally, since Problem 1.2 has a solution, it is easy to see that Problem 1.2 has a unique solution.
In addition, taking into account condition (C1), without loss of generality, we may assume that {a,,} C
[a, b] for some a, b € (0, 1).

LetU := Jf; (I — A, f); the iterative scheme (4.1) can be rewritten as

Uy = J5' Xy + YA* (U — DAx,],

Yn1 = ﬁn,lslun + (1 _lgn,l)um (3 2)
yn,i :ﬁn,iSiun + (1 _ﬁn,i)yn,i—lvi = 2"-'aN, '
Xn+l = PC[/lné‘:(anw(xn) + (1 - a/n)an) + (I - /ln/JF)Tyn,N]’ nz 1

The rest of the proof is divided into several steps.

Step 1. We show that the sequences {x,}, {v,;} for all i, {u,,} are bounded.

Indeed, take a point p € Q arbitrarily. Then, Jfll p = p, U(Ap) = Ap, and it is easily seen that
Wp = p, where W := I + yA*(U — I)A. From the definition of firm nonexpansion and Proposition 2.3,
we have that Jfl‘ and U are averaged. Likewise, W is also averaged because it is a * — ism for some
v > 1. Actually, by Proposition 2.2 (5), we know that I — U is a v — ism with v > 1. Hence, we have

(A"(I —UHAx - A" — U)Ay, x — y) (I -UAx -1 -U)Ay,Ax — Ay)
It = U)Ax = (I = U)AY|*

;llA*(I — U)Ax — A*(I - U)AY|P

\%

\%

Thus, yA*(I — U)A is a ylr — ism. Due to the condition 0 < y < }, the complement I — yA* (I — U)A
is averaged, as well as M := Jfl‘ [l + yA*(U — I)A]. Therefore, Jfl‘,(Ll, W, and M are nonexpansive
mappings.

From (3.2), we estimate

193! [0 + YA" (U = DAx, ] = T3 pIP
< I, + YA (U — DAx, — p||*
X, = pIP + Y?IIA"(U = DAx,I? + 2y(x, — p, A"(U — DAx,). (3.3)

2
llun = pll

A

Thus, we obtain
lu, = plI* < llx, — pIIP + YU — DAx,, AA*(U — DAx,) + 2y(x, — p, A"(U — DAx,). (3.4)
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Next, setting ¥ := y*((U — I)Ax,, AA*(U — I)Ax,), we estimate

9 YH(U = DAx,, AA* (U — DAx,)
ry (U — DAx,, (U — )Ax,)

rY?IU = DAx, .

IA

Setting ¢, := 2y{(x, — p, A*(U — I)Ax,), we obtain from (2.5) the following:

th = 29{x, — p,A"(U - DAx,)
= 2¥{A(x, — p), (U — DAx,)
= 29{(A(x, — p) + (U - DAx, — (U — DAx,, (U — ])Ax,)
= 2y((UAx, — Ap, (U — DAx,) — (U — DAx,|I*)
1
< ZV(EII((U — DAx,|IP = (U - I)Ax,,||2)

YU = DAx,|.

IA

In view of (3.4)-(3.6), we have
llun = pI> < N1, = pI® +y(ry = DICU = DAx,|I.

From 0 < y < 1, we obtain
lletw — pll < llx, — pll.
Thus, we have from (3.2) and (3.8) that

a1 = Pl < BuallS 1un = pll + (1 = BuDlluy = pll < Nl = pll < llx, = plI.
For all i from i = 2 to i = N, by induction, one proves that
yni =PIl < Buillun = pll + (1 = Budllyni-1 = pll < |l = pll < llx, = plI.
Hence, we obtain that for all i € {1, ..., N},
Yni = Pll < Mt = pll < llx, = pII.
In addition, utilizing Lemma 2.6 and (3.2), we have

X1 = Pl
IPclAng(anp(x,) + (1 = @n)S x,) + (I = AuF)Tynn] = Pepll

< pé(an(x) + (1 — a)S x,) + (I = AuF)Ty,n — pli
= [ué(anp(x) + (1 — @n)S x,) = A,uFTp

+(I = A )Ty, n — (I = 2,uF)T |
< pé(an(xn) + (1 — @)S x,) — ,uFTpl|

N = A )Ty n — (I = A,uF)T pl|
= Allan(EP(x,) — uFp) + (1 — a,)(ES x, — uFp)l|

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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HI( = )Ty, n — (I = ,uF)T pl|

Al alléy(x,) — uFpll + (1 — a,)IIES x, — uF pll]

+(1 = 2,0)llyan — Pl

Al (€Y (xn) = EY(PIl + ligY(p) — wFpll)

+(1 = @)(IES x, — ES pll + IES p — uF plD]

+(1 = 4, Dllyan — Pl

Aalanépllx, — pll + auliEY(p) — pFpll + (1 = @,)éllx, — pli

+(1 = @)IIES p — pFplll + (1 = 4,7)llx, — pll

< L6 = a(1 = p)llx, — pll + max{|iEy(p) — uFpll, IES p — uF pli}]

+(1 = 2,7)llx, — pll

(1 = 2éa,(1 = p)lIx, = pll + A, max{||Ey(p) — uF pll, [IES p — uF pll}
< (1= Aéa(l = p)lix, — pll + 4, max{[|§y(p) — pF pll, [IES p — uFpll},

IA

IA

IA

IA

due to 0 < ¢ < 7. Thus, calling

M=max{||x1_ o1, J69P) — Pl 1168 p — 1 p||}’

fa(l-p) ~ é&a(l-p)

by induction, we derive ||x,, — p|| < M for all n > 1. We thus obtain the claim.
Step 2. We show that lim||x,,; — x,|| = 0.

Indeed, for each n > 1, we set
= {0 0) + (1= @)S %) + (I = AP Ty,

Then, we observe that

Zn— 1 = GAEW(x) — Y(x-D] + 4,(1 — @,)E(S x, — S xp-1)
+[( = A F)Ty,ny — (I = 4uF)Ty,-1 4]
H@pdy = @1 Ay )EWY(X5-1) = S X1 ]
+(Ay = A)(ES Xy — uFTy, 1 n).

Let My > 0 be a constant such that

sup{éll) = Sl + IES ¥, = F Tyl < Mo,

n>1

It follows from (3.2) and (3.13) that

||xn+1 - xn”
= ||Pczyn — Pczp-ll
1zn = Zn-1ll

VAN VAN

@ Apéll(xn) = Y (XDl + (1 = @)EllS X, = S X1l
(I = A )T yun — I = At F)T Y1 |

(3.12)

(3.13)
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+|a'n/ln - a’n—l/ln—llflll/’(xn—l) - an—l”
+|/ln - /ln—l |||§:an—1 - ﬂFTyn—l,N”

< @ Anépllxn — Xl + Au(1 = @)éllx, = X1l
+(1 = 4, Dyan = Yu-1all
Hapdy = 1 A1l Mo + |4, — Au-1|Mo

= (1 — an(1 = p))éllxy = xpill + (1 = DYy = Yn-1.¥]l
Hllandn = n1 -1l + [ — A1 [1Mo

< 801 —a(l = p)llxy = X1l + (1 = 4 Dyun = Y1l

+[|an/ln - a’n—l/ln—ll + |/ln - /ln—ll]MO-
By the definition of y, ;, we obtain that forall i = N, ...,2,

1yni = yn-rill < Builltn — tnall + IS ittt — Yu-1,i=11l1Bni — Bn-1,il
+(1 _IBn,i)”yn,i—l _yn—l,i—1||~

In this case i = 1, we have

IA

ﬁn,l”l'tn - un—l”
IS 11n—1 = Un—1lllBn1 = Bu-1.1] + (1 = Bu)ltty, — tt—1|
”un - un—l” + ”Slun—l - un—l“'ﬁn,l _ﬁn—l,ll-

||yn,1 - yn—l,lll

Substituting (3.16) in all (3.15)-type inequalities, we find that fori = 2,..., N,

N
i = Yucrdll < ity = il + Y 1Skttt = Yot a1 lBke = -1l
k=2
+||S1un—1 - un—l”lﬁn,l _ﬁn—l,ll-

Thus, we conclude that

(12641 = Xall

A,E(1 = a(1 = p)llxy = xp-1ll + (1 = 3, DYuny = Ya-1.4]]

Hlandn — @p-1 1| + 14, = -1 ll1Mo

,E(1 = a(l = p))lx, = X1l + [l@ndn = @1 1| + |4 = 21 |1Mo

IA

IA

N
#(0 = 4Oty = el + Y 1S b = Yo acalBi = Bl
k=2

IS 1un—1 — Up—1llIBn1 — Br-1.1l-

Since Jfll [/ + yA*(U — I)A] is nonexpansive, we obtain

1T+ yA™ (U = DALx, = I3 [ + yA* (U = DALx, |

”xn - Xn—l”-

”un - un—l”

IA

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Substituting (3.18) into (3.17), we have

||xn+1 - xn”

< ﬁn‘f(l - Cl(l _p))”xn - xn—l” + [la’nﬂn - an—l/ln—ll + |/ln - /ln—ll]MO

N
#(1 = A0l = Xl + ) ISkttt = YaricalBus = Bl

k=2

+IS 1tn-1 — un—1lllBn,1 — Br-1.1l-

If we call M, := max {Mo,

sup IS iun-1 — Yu-1,i-1ll, supllS 1u—1 — un_lll}, we have

n>2,i=2,..,.N n>2

X1 = xall - < (1 = Au€a(l = p))l|Xn = X1l

+M1 [lanﬂn - a’n—l/ln—ll + |/ln - /ln—ll

N
+Z 1B — ,Bn—l,k|],
k=2

due to 0 < ¢ < 7. By condition (C2) — (C5) and Lemma 2.5, we obtain that

lim [x,41 — X[l = 0.
n—oo

Step 3. We show that lim||x, — u,|| = 0.
From (3.2) and (3.7), we have

2
X1 = Pl

AIMS Mathematics

<

IA

IA

IA

IA

IA

(@ (x,) + (1 = @)S x,) + (I = LuF) Ty, n — plP
& p(x,) + (1 — @,)S x,) — AuFTp

+(I = AuF)Ty,n — (I = 4,uF)Tpl

{l€(ap(x,) + (1 — @,)S x,) — L,uFTpl|

H|( = A F) Ty, — (I = uF)T pllY

{Anllan (€ (xn) = puFp) + (1 — @n)(ES X, — puF p)|
+(1 = 2,D)llyny = plIY?

ATl (x) = pll + (1 = S 3~ wF pl

+(1 = ,Dllyun — pI

At U — E P+ 1ES ¥, ~ W I

(1= 4,0ty - plP

Au=T0E0(5) = aF pl + 165 %, ~ pF I

+(1 = 2,00 = pIP + ¥y = DICU = DA, )
A0 () = aF pl + €5 x, ~ pF I

(1= 2,0l = plP =71 = (1 = 20U — DAx, P,

(3.19)

(3.20)

(3.21)

(3.22)
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which implies that

(1 = 4,0)y(1 = rI(U = DAx, |

1
< /ln;[”é:'//(xn) — HFpll+ IS x, = uFpll> + (1 = 4,01, = pIP* = [1x1 = plI°
1
< A lIg(xn) — uF pll + 1165 x, = pF I + b, = plP = bxuer = pl?
1
< /ln;[”é:'!/(xn) — UFpll +11€S %5 = F Pl + 10041 = Xall(l1x = pIl + 1051 1D (3.23)

Since y(1 — ry) > 0, [|x,41 — X/l = 0,4, — 0 as n — oo, and by the boundedness of {x,}, we conclude
that
lim||(U — DAx,|| = 0. (3.24)

In addition, by the firm nonexpansion of J Bl' ,(3.3),(3.7), and y € (O, %), we estimate

ity = pl? = 15 [, + YA (U ~ DAx,] - I p|P?

< (P [x + YA (U - DAX,] = T3 p. x, + YA (U — DAx, — p)

= (u, — p,x, + yA*(U — DAx, — p)
1 )

= E(”un = pIP + llx, + YA*(U - DAx, — pII?
—|l(un, — p) =[x, + YA* (U = DAx, — plII*)
1

< E[”un = pIP + lIx, — pI* + y(ry = DI(U — DAx, |
_”un —Xp — YA*((L[ - I)Axn||2]
1 )

< E[”un = pIP + lIx, = pIP = lluy — x, — YA (U = DAx,|I’]
1 )

= E[”un = pI? + 1%, = pIP = Ny — xII* = YA (U — DAx,|I?
+27<un - xn,A*(‘LI - I)A-xn>]
1 )

< E[”un - P||2 + ”-xn - P”z - ”un - xn”2 + 27<un - xnaA (w - I)Axn>]
1

= E[”un = pIP + 11X, = pIP = llun = x,lIP + 29(A(u, — x,), (U — DAx,,)]
1

< E[”un = pIP + 1%, = pIP = Nl — xall* + 2¥1A G — XU — DAX|I],

and hence,
lun = pII* < 11, = pIF = Nty = xall” + 2¥11A Gt — x)IIU = DA, . (3.25)

In view of (3.22) and (3.25),

%51 = pIP
1
< /ln;[”fl//(xn) _#Fp” + ||§an —,UFP”]2
+(1 = 4,0llu, — plI*
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< AW ~ HE P + 1S 5~ wEpl

(1= 2,050 = pIP ~ llty = 5alP + 274Gty — 5L — DA,
= A (o)  HFpll + 15 x, ~ pE P

(1= 4,005, = pIP = (1 = 4Dl = 5l + 251 = DA, — ) — DA, (3.26)

which implies that

(1 - /lnT)Hun - anZ

IA

IA

1
An—llgwh () = pEpll + IS x, = HFpl1?
+(1 = 2,0)lx, = I + 2y(1 = A DIA@, = x)IIU = DAx| = 116011 = pII?

1
AnZ LIy (xn) = pEpll + 18 2 — HFpIT

+2y(1 = 4,DNAW, = x)IIU = DAx|| + 116, = pIP* = 1xa11 = pIP

IA

1
AnZ LIy (xn) = pEpll + 18 2 — HFpIT
+2y(1 = 4, DA, — x)IIU = DAX + N1X01 = XallCllx, = I+ X041 = PID.

(3.27)

Since ||x,41 — xul| = O0,||(U — DDAx,|| = 0, and 4, — 0 as n — oo, and owing to the boundedness of
{x,}, we conclude that

lim||x, — u,|| = 0.
n—oo

Step 4. We show that lim||S;u, — u,|| = 0fori e {1,...,N}.
Take a point p € Q arbitrarily. When i = N, utilizing Lemma 2.8 and (3.2), we have

AIMS Mathematics

2
X1 = Pl

IA

IA

IA

IA

IA

”/lné:(a'nw(xn) + (1 - a’n)S xn) + (I - /lmuF)TynN - P”2
||/ln'f(a'nw(xn) + (1 - a’n)S xn) - /ln,UFTp
+(I = 2iF) Ty, = (I = AutF)T pl?

{lE(a(x,) + (1 — @,)S x,) — L,uFTpl|
+|(I = AuF)Ty,n — (I = LuF)T pll}*

{Anllen (€Y (xn) = uFp) + (1 = @u)(ES x, — uF p)|
+(1 = 2,0y = plIY

1
An = LY Cxn) = pFpll + 1185 6, = pFplI?
+(1 = 4,Dllynn = pIP

1
An = LY Cxn) = pEpll + 1185 2, = pFplI?

+(1 = 4, 0)BuNIS yuy — P||2
+(1 = 4,01 = Buw)llyun-1 — pII°
—(1-24,7n1 —,Bn,N)ﬁn,NHSNMn - yn,N—l||2

1
An—lllg () = pEpll + 118 x, = pFplI?

(3.28)
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+(1 = 4,0l = pl?
~(1 = ,0)(1 = Buw)BunllS witn = yun1ll®
1
ﬂn;[llgkb(xn) — Pl + 11€S x, — pFpll1* + Ilx,, — pl?
~(1 = ,0)(1 = Buw)BanlIS witn = yun-1ll*. (3.29)

IA

Thus, we have

(1 = 4,01 = Bun)BunlIS wity = V-1l
1
/ln;[llflﬁ(xn) — HF Il + IS x, = F pllI + 1%, = pI° = lxuer = pIP

IA

IA

1
An = UIYCxn) = pEpll + 1S i — HE P + %1 = 5l = pll+ lesr = pl). - (3.30)

Since B, v — By € (0,1),]|x,41 — x4/l = 0 and 4, — 0 as n — oo, by the boundedness of {x,}, we
conclude that
r}i_)rgHSNun = Yan-1ll = 0. (3.31)

Takei € {1,..., N — 1} arbitrarily. Then, we obtain

2
%41 = Pl

1
AnZ LY Cxn) = pEpll + IS 0 — pFIT + (1 = 4,0)llyun = pIP

IA

IA

A0 )~ F Pl + 168 %, ~ I

(1= LDBunlIS ity = pIP + (1 = Bus)ymwor — piP]

A0 ) — Fl + 168 %, ~ I

(1= DBl = I + (1= 4,201 = Bun s — pIP
A0 () = F pl + 165 5, = pEPIT + (1 = B, —
(1= 4,000 = BBl vt = pIF + (1 = Busllynnoz — pIP]
A0 ) = Fpl + 1ES %, ~ I

(1= 4,0 Bun + (= Bu)Bun Dl — plP

IA

IA

IA

N
+(1 = 4,7) H (1 = Bullynn-2 = pIP. (3.32)

k=N-1

Hence, after (N — i + 1)-iterations,

2
lXns1 = Pl

1
< AullIgy(xn) = pFpll + 1168 x, = HF Pl

+(1 = A1) B + D (ﬁ(l ~Bus i1

J=i+2 p=j
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N
Xl = pIP + (1= 4,0 [ [0 = Budllyns = pIP

k=i+1

1
An—lllg () = pEpll + 118 x, = pFplI?

+(1 = B + D (ﬁ(l ~Bar) i)

j=i+2 p=j

IA

N
xley = pI? + (1= 4,0 [ | (=B

k=i+1
X[BnillS ittn — pIIF + (1 = Budllyniz1 — pII*
—Boi(1 = BuIIS it = Ynic1l’]

1
An— LY Cxn) = pEpll + 115 X — pFplIP? + (1 = 4,0)llx, = pl?

IA

N
“Bui(l = 40| [ = BulS it =yl (3.33)
k=i

Again, we obtain

N
Bl = 40| [ = BullS sty = yiicall?
k=i

IA

1
AnZ g Cxn) = pFpll + 115 x, = pF I + b, = pIP = 1xuer = plP?

IA

1
/ln;[llftﬁ(xn) — UFpll +11€S %, = uF Pl + 16001 = %all(bx, = pll + 1 = pl). (3.34)

Since for all k € {1,...,N},Bux — Br € (0,1),]lxy41 — x4/l — O and 4, — 0 as n — oo, by the
boundedness of {x,}, we conclude that

lim||S 1, — yni-1ll = 0. (3.35)
Obviously, for i = 1, we have lim||S u,, — u,|| = 0. To conclude, we have that

”SZMn - un” < ”SZun - yn,l” + “yn,l - un” = ”SZMn - yn,l” +ﬁn,l||Slun - unH, (336)

which implies that lim||S ,u, — u,|| = 0. Consequently, by induction, we obtain

Iim||S;u, —u,||=0 foralli=2,...,N. (3.37)
It is enough to observe that
”Siun - un” < ”Siun - yn,i—lll + “yn,i—l - Si—lun” + ”Si—lun - un”
< NSty = Yzl + (1 = Bric OIS izt = Yool + IS im1 2, — 1yl (3.38)

Step 5. We show that lim|[y,y — x,|| = lim||x, — Tx,|| = 0 and w,(x,) C Q.
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Indeed, since ||x,, — u,|| = 0 as n — oo, we have w,(x,) = w,(u,) and w,(x,) = w,(u,). Now, we
observe that
160 = Yol < |12 = sl + 1yt — stall = N2 = wall + B IS 104 — ]| (3.39)

By Step 4, ||S1u, — u,|| = 0 as n — oo. Hence, we obtain
lim||x, — yn1ll = 0. (3.40)

This implies that w,,(x,) = W, (y,.1) and w(x,) = W(Vn1).
Take a point g € w,,(x,) arbitrarily. Since g € w,,(u,), by Step 4 and the demiclosedness principle,
we have g € Fix(S;) foralli € {1,..., N}, that is, g € NFix(S;). Moreover, note that

N N
Dy = Xall < ke = Yol + s = %all = > BuiliS sty = Yl + llyns = 2l (3.41)
k=2 k=2
hence,
X2 = T,
< 1btw = Gl + 61 = Tynll + 1Ty = T
< 1o = Xl + M) + (1= @)S %) + (I = LF) Ty = Tyl
Hlyny = 5l
= Iotn = Xl + Al GUx) = LFTyun) + (1 = @)(ES %y = LE Ty, )l
Hlyny = %l
< 1o = Xl + A[IEYCer) = HF Tyl + €S %0 = PF Ty il + Ly = %l
< loen = el + A€W Ce) = LTyl + €S %, = F Ty nl]

N
+ § ﬁn,kllskun - yn,k—lll + ”yn,l - -xn” (342)
k=2

Since ||x, = Xp41ll = 0,4, = 0, [|ly,1 — x4l = 0,8,k — Br and ||S xu, — yus-1ll = Oforall k € {1,..., N},
we obtain
lim|[y,n — x|l = lim||x, — Tx,|| = 0. (3.43)

Thus, by the demiclosedness principle, we have g € Fix(T).
In addition, we rewrite u,, = Jfl [xn, + YA* (U — )Ax,,] as

Xp, = Uy, + YA (U — DAx,,
A

Biu,. (3.44)

Taking k — oo in (3.44) and using (3.24), (3.28) and the fact that the graph of a maximal monotone
operator is weakly strongly closed, we have 0 € Bq, i.e., ¢ € SOLVIP(B;). Furthermore, since x,
and u, have the same asymptotical behavior, Ax, weakly converges to Ag. It follows from (3.24),
the nonexpansion of U, and Lemma 2.8 that (/ — U)Aqg = 0. Thus, by Proposition 2.4, we have
0 € f(Ag) + Bx(Ag), i.e., Aq € SOLVIP(B,). As aresult, g € I'. This shows that g € Q. Therefore, we
obtain the claim.
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Step 6. We show that {x,} converges strongly to a unique solution x* to Problem 1.2.
Indeed, according to [[x,+1 — x|l = 0, we can take a subsequence {x,,} of {x,} satisfying

lim sup{(§y — uF)x", Xpy1 = X7) lim sup((§y — uF)x", x, — x7)

n—00 n—,oo

Lm{(§y — uF)x*, x,, — x°). (3.45)
Jj—ooo

Without loss of generality, we may further assume that x,, — X; then, X € €, as we have just proved.
Since x* is a solution to Problem 1.2, we obtain

lim sup{(§y — uF)x", xps1 — X7) = (¢ — uF)x", ¥ —x7) < 0. (3.46)

n—oo

Repeating the same argument as that of (3.46), we have

lim sup{(¢S — uF)x*, x,0 — x*) < 0. (3.47)

n—oo

From (3.2) and (3.9), it follows (noticing that x,,; = Pcz, and 0 < ¢ < 1) that

2
X1 — X7

<Zn - X*7-xn+l - X*> + <PCZn - ZnaPCZn - X*>

< Az =X Xy — X7)
= (I = uF)Ty,n — I = ,uF)X", Xy — X7)
+ U AnEW(X,) = Y(X7), X1 = X°) + (1 = @)E(S x,, = S X7, Xy — X°)
+a’n/ln<(‘§:w - l’tF)x*’ Xn+l — X*> + /ln(l - a’n)((é:S - l’tF)x*’ Xn+l — X*>
< 1= 7+ @pdnép + A,(1 = @,)éNl1x, — X[ Xnr1 — X7
+ @, (€Y — uF)X", Xps1 — X7 + (1 = @ )(ES — uF)X", Xpi1 — X°)
< 1= a6 = p)]llx, = X[l — 7]
+a/n/ln<(§'70 - IUF)X*’ Xn+l — X*> + ﬂn(l - a’n)((é:S - IUF)X*’ Xn+l — X*>
1
< 1 = a,d,é(1 = p)]i(llxn — X+ X — x|
+a, (G — pF)X", X1 — XY + (1 = @ )((ES — uF)X", X0 — X7). (3.48)
It turns out that
1,41 — x*|?
1 - an/lnf(l —P) %112 * *
< n— nAn —uF)X, X1 —
S Traedl _p)llx x|+ T+ a L e _p)[a (&Y — uF)X", Xy — X7)
+/ln(1 - a’n)((‘f’g - /JF).X*, Xn+1 — xx>]
2
< (1= &1 = p)lllx, — X117 + [ A, {(EY — uF)X, Xpsy — X7)

I+ a'n/ln‘f(l _p)
+/ln(1 - a’n)<(§S - IUF)-X*» Xn+l — X*>]

2
= 1= a1 = )l — 1P + anu(1 p){

£ - p)[1 + a,,4(1 = p)]
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X{(EY — uF)X", Xpay — X7)
2(1 — )

Tt =L + et - p)

(€S = P 501 - x*>}. (3.49)

Put s, = ||x, — x*|[*, &, = @,4,E(1 — p) and

2 * *
o = A - p)[l + a,1,6(1 _p)]<(§'// — U)X, x,0 — X7)
2(1 _a/n)

T =l + ané(l _p)]<(§S — U)X, Xy — X°).

Then, (3.49) can be rewritten as
Sn+1 < (1 - yn)sn + fnén-

From conditions (C1) and (C2), we conclude from 0 < 1 —p < 1 that

(&} c [0, 1] and Zgn = o,
n=1

Note that
2 2

E1—pll+ e —p)] ~ &1-p)

and
2(1 —a,) 2

af(L P+ el —p)] ~ at( —p)’

Consequently, utilizing Lemma 2.5, we find that

. . 2 * *
imsupn < S T T + a1 = py] ¥~ I o =)
) 2(1 — ay) . .
P T — P+ a1 —p)] &V TR =
< 0.

Thus, this, together with Lemma 2.5, leads to lim||x, — x*|| = 0. The proof is complete.

In Theorem 3.1, if 4y = A, = A and f = 0, the we obtain the following corollary immediately.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H; and Q be a
nonempty closed convex subset of a real Hilbert space H,. Let A : Hy — H, be a bounded linear
operator, A* be the adjoint of A, and r be the spectral radius of the operator A*A. Let By : C — 21 B, :
H, — 2 pe two multivalued maximal monotone operators, and F : C — H, be k-Lipschitzian
and n-strongly monotone. Let  : C — H, be a p-contraction with a coefficient p € [0,1) and
S,8,T : C — C be nonexpansive mappings for all i € {1,...,N}. Let {A,},{a,},{Bni},i = 1,...,N
be sequences in (0, 1) such that 8,; — B; € (0,1)asn — oo foralli € {1,...,N}, 0 < u < % and
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O0<é<Tt, wheret=1- \/ 1 — u(2n — uk?). Then, the sequence {x,} is generated from an arbitrary
initial point x, € C by the following:

U, = I [x, + YA (J2 = DAx,],

Yn1 = ﬁn,lSlun + (1 _,Bn,l)una

Yni = BuiSitty + (1 =By i)yni-1,i =2,...,N,

X1 = Pel,E(ap(x,) + (1 — a)S x,) + (I = A,uF)Ty, ], n > 1.

(3.50)

Suppose that the following conditions are satisfied:

(CI) 0 < liminfa, < limsupa, < 1;

n—oo

(C2) limA, =0and A, = oo;
n—eo n=1

(CS) Z |a'n1n - a’n—l/ln—ll < oo or hmw = O;
n=2 n—o0 n

(C4) Z |/1n - /ln_ll < o0 or hm% — O,'

n=2 n—eo

(C5) 3 \Bui = Bu-ril < 00 or lim &Pl = 0 for ail i € {1,..., N,
n=2 n—oo n
(C6) 0 <y <1

Then, {x,} converges strongly to a unique solution x* € Fix(T) N (("; Fix(S;)) N SVIP.
4. Numerical illustration and application

Here as a numerical illustration, we consider a split common fixed points of a family of
nonexpansive mappings, which is a particular case of problem 1.2. To that end, we have the following,
which is an equivalent formulation of Theorem 3.1.

Let C be a nonempty closed convex subset of a real Hilbert space H, and Q be a nonempty closed
convex subset of a real Hilbert space H,. Let A : H; — H, be a bounded linear operator, A* be the
adjoint of A, and r be the spectral radius of the operator A*A. Let f : H, — H, be a g-inverse strongly
monotone operator, and F : C — H; be k-Lipschitzian and 7-strongly monotone. Let  : C — H; be
a p-contraction with a coefficient p € [0,1) and §;, 5,7 : C — C be nonexpansive mappings for all
i €{l,...,N}. Let {4,},{e,}, {Bni},i = 1,..., N be sequences in (0, 1) such that 8,; — B; € (0,1) as
n—ooforallie{l,...,N},0<u< % and 0 < ¢ < 7, where 7 = 1 — /1 — u(2n — uk?). Then, the
sequence {x,} is generated from an arbitrary initial point x; € C by the following:

u, = x, +yA*(I — 1, f)Ax,,
Yn1 = ﬁn,lSlun + (1 _ﬁn,l)un’

Yni = ﬁn,iSiun + (1 _ﬁn,i)yn,i—lvi =2,..., N, (41)
Xn+1 = PC[/lné:(anw(xn) + (1 - Cl’n)an) + (I - /ln,uF)Tyn,N]a nz I.
Assume that the problem
(uF —&Y)x", x—x") 20,Vx € Q, 4.2)

has a solution. Suppose that the following conditions are satisfied:
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(C1) 0 < liminfe, < limsupea, < 1;

n—oo

(C2) limA, =0and > A, = oo;

n=1

(C3) Zland, = ap1dy| < 0o or limww =0;
n=2 n—00 n
(o) . A=At _ )
(C4) ngzl/l" — Ap-q| < o0 or 31_210/1_1 =0;
(C5) 2 1Bni = Bu-1il < 0 or limw —Oforallie(l,....N}:
n=2 n—oo n

(C6) 4, >0,0<A <26,0<y<1.

Then, {x,} converges strongly to a unique solution x* € Q of Problem (4.2). Suppose H = C = R, for
each x € R the mappings S; and T; are defined as follows

ST
and
X, X € (_009 0)’
Ti(x) = 4.3)
2x, x€]0,00).

25, @, = > and A, = —=>. Also define y(x) = £ and Ax = 2x with ||A|| = 2. Therefore it can be seen

that the sequences satisfy the conditions in the (C1) - (C6).

Observe that §; for i > 1 are nonexpansive and T is %—demicontractive mapping [29]. Take §,; =

o
e A e e T e R T e e el e e
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
Il

6 I I I I
0 50 100 150 200 250

lterations

Figure 1. Plot of the iterative sequence after 200 iterations.

It can be observed from Figurel, that the sequence {x,} generated converges to 0, which is the only
element of the solution set, i.e = {0}.
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5. Conclusion

In this paper, we first propose triple hierarchical variational inequality problem (4.1) in Theorem
3.1 and then we prove some strong convergence of the sequence {x,} generated by (4.1) to a common
solution of variational inequality problem, split monotone variational inclusion problem and fixed point
problems. We divide the proof into 6 steps and our theorem is extends and improves the corresponding
results of Jitsupa et al. [1] and Kazmi and Rizvi [22].
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