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1. Introduction

L. Carlitz ( [1]) introduced analogues of Bernoulli numbers for the rational function (finite) field
K = Fr(T ), which are called Bernoulli-Carlitz numbers now. Bernoulli-Carlitz numbers have been
studied since then (e.g., see [2–6]). According to the notations by Goss [7], Bernoulli-Carlitz numbers
BCn are defined by

x
eC(x)

=

∞∑
n=0

BCn

Π(n)
xn . (1.1)
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Here, eC(x) is the Carlitz exponential defined by

eC(x) =

∞∑
i=0

xri

Di
, (1.2)

where Di = [i][i − 1]r · · · [1]ri−1
(i ≥ 1) with D0 = 1, and [i] = T ri

− T . The Carlitz factorial Π(i) is
defined by

Π(i) =

m∏
j=0

Dc j

j (1.3)

for a non-negative integer i with r-ary expansion:

i =

m∑
j=0

c jr j (0 ≤ c j < r) . (1.4)

As analogues of the classical Cauchy numbers cn, Cauchy-Carlitz numbers CCn ( [8]) are introduced
as

x
logC(x)

=

∞∑
n=0

CCn

Π(n)
xn . (1.5)

Here, logC(x) is the Carlitz logarithm defined by

logC(x) =

∞∑
i=0

(−1)i xri

Li
, (1.6)

where Li = [i][i − 1] · · · [1] (i ≥ 1) with L0 = 1.
In [8], Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers are expressed explicitly by using the

Stirling-Carlitz numbers of the second kind and of the first kind, respectively. These properties are the
extensions that Bernoulli numbers and Cauchy numbers are expressed explicitly by using the Stirling
numbers of the second kind and of the first kind, respectively.

On the other hand, for N ≥ 1, hypergeometric Bernoulli numbers BN,n ( [9–12]) are defined by the
generating function

1

1F1(1; N + 1; x)
=

xN/N!
ex −

∑N−1
n=0 xn/n!

=

∞∑
n=0

BN,n
xn

n!
, (1.7)

where

1F1(a; b; z) =

∞∑
n=0

(a)(n)

(b)(n)

zn

n!

is the confluent hypergeometric function with (x)(n) = x(x + 1) · · · (x + n − 1) (n ≥ 1) and (x)(0) = 1.
When N = 1, Bn = B1,n are classical Bernoulli numbers defined by

x
ex − 1

=

∞∑
n=0

Bn
xn

n!
.
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In addition, hypergeometric Cauchy numbers cN,n (see [13]) are defined by

1

2F1(1,N; N + 1;−x)
=

(−1)N−1xN/N
log(1 + t) −

∑N−1
n=1 (−1)n−1xn/n

=

∞∑
n=0

cN,n
xn

n!
, (1.8)

where

2F1(a, b; c; z) =

∞∑
n=0

(a)(n)(b)(n)

(c)(n)

zn

n!

is the Gauss hypergeometric function. When N = 1, cn = c1,n are classical Cauchy numbers defined by

x
log(1 + x)

=

∞∑
n=0

cn
xn

n!
.

In [14], for N ≥ 0, the truncated Bernoulli-Carlitz numbers BCN,n and the truncated Cauchy-Carlitz
numbers CCN,n are defined by

xrN
/DN

eC(x) −
∑N−1

i=0 xri/Di
=

∞∑
n=0

BCN,n

Π(n)
xn (1.9)

and
(−1)N xrN

/LN

logC(x) −
∑N−1

i=0 (−1)ixri/Li
=

∞∑
n=0

CCN,n

Π(n)
xn , (1.10)

respectively. When N = 0, BCn = BC0,n and CCn = CC0,n are the original Bernoulli-Carlitz numbers
and Cauchy-Carlitz numbers, respectively. These numbers BCN,n and CCN,n in (1.9) and (1.10) in
function fields are analogues of hypergeometric Bernoulli numbers in (1.7) and hypergeometric Cauchy
numbers in (1.8) in complex numbers, respectively. In [15], the truncated Euler polynomials are
introduced and studied in complex numbers.

It is known that any real number α can be expressed uniquely as the simple continued fraction
expansion:

α = a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

, (1.11)

where a0 is an integer and a1, a2, . . . are positive integers. Though the expression is not unique, there
exist general continued fraction expansions for real or complex numbers, and in general, analytic
functions f (x):

f (x) = a0(x) +
b1(x)

a1(x) +
b2(x)

a2(x) +
b3(x)

a3(x) + ...

, (1.12)

AIMS Mathematics Volume 5, Issue 6, 5939–5954.



5942

where a0(x), a1(x), . . . and b1(x), b2(x), . . . are polynomials in x. In [16, 17] several continued fraction
expansions for non-exponential Bernoulli numbers are given. For example,

∞∑
n=1

B2n(4x)n =
x

1 +
1
2

+
x

1
2

+
1
3

+
x

1
3

+
1
4

+
x
. . .

. (1.13)

More general continued fractions expansions for analytic functions are recorded, for example, in [18].
In this paper, we shall give expressions for truncated Bernoulli-Carlitz numbers and truncated Cauchy-
Carlitz numbers.

In [19], the hypergeometric Bernoulli numbers BN,n (N ≥ 1, n ≥ 1) can be expressed as

BN,n = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N!
(N+1)! 1 0

N!
(N+2)!

N!
(N+1)!

...
...

. . . 1 0
N!

(N+n−1)!
N!

(N+n−2)! · · ·
N!

(N+1)! 1
N!

(N+n)!
N!

(N+n−1)! · · ·
N!

(N+2)!
N!

(N+1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When N = 1, we have a determinant expression of Bernoulli numbers ( [20, p.53]). In addition,
relations between BN,n and BN−1,n are shown in [19].

In [21, 22], the hypergeometric Cauchy numbers cN,n (N ≥ 1, n ≥ 1) can be expressed as

cN,n = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N
N+1 1 0

N
N+2

N
N+1

...
...

. . . 1 0
N

N+n−1
N

N+n−2 · · · N
N+1 1

N
N+n

N
N+n−1 · · · N

N+2
N

N+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When N = 1, we have a determinant expression of Cauchy numbers ( [20, p.50]).
Recently, in ( [23]) the truncated Euler-Carlitz numbers ECN,n (N ≥ 0), introduced as

xq2N
/D2N

CoshC(x) −
∑N−1

i=0 xq2i/D2i
=

∞∑
n=0

ECN,n

Π(n)
xn ,

are shown to have some determinant expressions. When N = 0, ECn = EC0,n are the Euler-Carlitz
numbers, denoted by

x
CoshC(x)

=

∞∑
n=0

ECn

Π(n)
xn ,

where

CoshC(x) =

∞∑
i=0

xq2i

D2i
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is the Carlitz hyperbolic cosine. This reminds us that the hypergeometric Euler numbers EN,n ( [24]),
defined by

t2N/(2N)!
cosh t −

∑N−1
n=0 t2n/(2n)!

=

∞∑
n=0

EN,n
xn

n!
,

have a determinant expression [25, Theorem 2.3] for N ≥ 0 and n ≥ 1,

EN,2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2N)!
(2N+2)! 1 0

(2N)!
(2N+4)!

. . .
. . . 0

...
. . . 1

(2N)!
(2N+2n)! · · ·

(2N)!
(2N+4)!

(2N)!
(2N+2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When N = 0, we have a determinant expression of Euler numbers (cf. [20, p.52]). More general cases
are studied in [26].

In this paper, we also give similar determinant expressions of truncated Bernoulli-Carlitz numbers
and truncated Cauchy-Carlitz numbers as natural extensions of those of hypergeometric numbers.

2. Continued fraction expansions of truncated Bernoulli-Carlitz and Cauchy-Carlitz numbers

Let the n-th convergent of the continued fraction expansion of (1.12) be

Pn(x)
Qn(x)

= a0(x) +
b1(x)

a1(x) +
b2(x)

a2(x) + ...
+

bn(x)

an(x)

. (2.1)

There exist the fundamental recurrence formulas:

Pn(x) = an(x)Pn−1(x) + bn(x)Pn−2(x) (n ≥ 1),
Qn(x) = an(x)Qn−1(x) + bn(x)Qn−2(x) (n ≥ 1), (2.2)

with P−1(x) = 1, Q−1(x) = 0, P0(x) = a0(x) and Q0(x) = 1.
From the definition in (1.9), truncated Bernoulli-Carlitz numbers satisfy the relationDN

∞∑
i=0

xrN+i−rN

DN+i

  ∞∑
n=0

BCN,n

Π(n)
xn

 = 1 .

Thus,

Pm(x) =
DN+m

DN
, Qm(x) = DN+m

m∑
i=0

xrN+i−rN

DN+i

yield that

Qm(x)
∞∑

n=0

BCN,n

Π(n)
xn ∼ Pm(x) (m→ ∞) .
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Notice that the n-th convergent pn/qn of the simple continued fraction (1.11) of a real number α yields
the approximation property

|qnα − pn| <
1

qn+1
.

Now,
P0(x)
Q0(x)

= 1 =
1
1
,

P1(x)
Q1(x)

= 1 −
xrN+1−rN

DN+1/DN + xrN+1−rN

and Pn(x) and Qn(x) (n ≥ 2) satisfy the recurrence relations

Pn(x) =

(
DN+n

DN+n−1
+ xrN+n−rN+n−1

)
Pn−1(x) −

DN+n−1

DN+n−2
xrN+n−rN+n−1

Pn−2(x)

Qn(x) =

(
DN+n

DN+n−1
+ xrN+n−rN+n−1

)
Qn−1(x) −

DN+n−1

DN+n−2
xrN+n−rN+n−1

Qn−2(x)

(They are proved by induction). Since by (2.2) for n ≥ 2

an(x) =
DN+n

DN+n−1
+ xrN+n−rN+n−1

and bn(x) = −
DN+n−1

DN+n−2
xrN+n−rN+n−1

,

we have the following continued fraction expansion.

Theorem 1.

∞∑
n=0

BCN,n

Π(n)
xn = 1 −

xrN+1−rN

DN+1
DN

+ xrN+1−rN
−

DN+1
DN

xrN+2−rN+1

DN+2
DN+1

+ xrN+2−rN+1
−

DN+2
DN+1

xrN+3−rN+2

DN+3
DN+2

+ xrN+3−rN+2
− ...

.

Put N = 0 in Theorem 1 to illustrate a simpler case. Then, we have a continued fraction expansion
concerning the original Bernoulli-Carlitz numbers.

Corollary 1.
∞∑

n=0

BCn

Π(n)
xn = 1 −

xr−1

D1 + xr−1 −
D1xr2−r

D2
D1

+ xr2−r −

D2
D1

xr3−r2

D3
D2

+ xr3−r2
− ...

.

From the definition in (1.10), truncated Cauchy-Carlitz numbers satisfy the relationLN

∞∑
i=0

(−1)ixrN+i−rN

LN+i

  ∞∑
n=0

CCN,n

Π(n)
xn

 = 1 .
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Thus,

Pm(x) =
LN+m

LN
, Qm(x) = LN+m

m∑
i=0

(−1)ixrN+i−rN

LN+i

yield that

Qm(x)
∞∑

n=0

CCN,n

Π(n)
xn ∼ Pm(x) (m→ ∞) .

Now,
P0(x)
Q0(x)

= 1 =
1
1
,

P1(x)
Q1(x)

= 1 +
xrN+1−rN

LN+1/LN − xrN+1−rN

and Pn(x) and Qn(x) (n ≥ 2) satisfy the recurrence relations

Pn(x) =

(
LN+n

LN+n−1
− xrN+n−rN+n−1

)
Pn−1(x) +

LN+n−1

LN+n−2
xrN+n−rN+n−1

Pn−2(x)

Qn(x) =

(
LN+n

LN+n−1
− xrN+n−rN+n−1

)
Qn−1(x) +

LN+n−1

LN+n−2
xrN+n−rN+n−1

Qn−2(x) .

Since by (2.2) for n ≥ 2

an(x) =
LN+n

LN+n−1
− xrN+n+rN+n−1

and bn(x) =
LN+n−1

LN+n−2
xrN+n−rN+n−1

,

we have the following continued fraction expansion.

Theorem 2.

∞∑
n=0

CCN,n

Π(n)
xn = 1 +

xrN+1−rN

LN+1
LN
− xrN+1−rN

+

LN+1
LN

xrN+2−rN+1

LN+2
LN+1
− xrN+2−rN+1

+

LN+2
LN+1

xrN+3−rN+2

LN+3
LN+2
− xrN+3−rN+2

+ ...

.

3. A determinant expression of truncated Cauchy-Carlitz numbers

In [14], some expressions of truncated Cauchy-Carlitz numbers have been shown. One of them is
for integers N ≥ 0 and n ≥ 1,

CCN,n = Π(n)
n∑

k=1

(−LN)k
∑

i1 ,...,ik≥1

rN+i1 +···+rN+ik =n+krN

(−1)i1+···+ik

LN+i1 · · · LN+ik
(3.1)

[14, Theorem 2].
Now, we give a determinant expression of truncated Cauchy-Carlitz numbers.
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Theorem 3. For integers N ≥ 0 and n ≥ 1,

CCN,n = Π(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1 1 0

a2 −a1
. . .

...
. . .

. . . 0
... −a1 1

(−1)nan · · · · · · a2 −a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

al =
(−1)iLNδ

∗
l

LN+i
(l ≥ 1)

with

δ∗l =

1 if l = rN+i − rN (i = 0, 1, . . . );
0 otherwise.

(3.2)

We need the following Lemma in [27] in order to prove Theorem 3.

Lemma 1. Let {αn}n≥0 be a sequence with α0 = 1, and R( j) be a function independent of n. Then

αn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(1) 1 0
R(2) R(1)
...

...
. . . 1 0

R(n − 1) R(n − 2) · · · R(1) 1
R(n) R(n − 1) · · · R(2) R(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.3)

if and only if

αn =

n∑
j=1

(−1) j−1R( j)αn− j (n ≥ 1) (3.4)

with α0 = 1.

Proof of Theorem 3. By the definition (1.10) with (1.6), we have

1 =

 ∞∑
i=0

(−1)i LN

LN+i

 xrN+i−rN

 ∞∑
m=0

CCm

Π(m)
xm


=

 ∞∑
l=0

alxl

  ∞∑
m=0

CCm

Π(m)
xm


=

∞∑
n=0

∞∑
l=0

al
CCn−l

Π(n − l)
xn .

Thus, for n ≥ 1, we get
∞∑

l=0

al
CCn−l

Π(n − l)
= 0 .
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By Lemma 1, we have

CCn

Π(n)
= −

n∑
l=1

al
CCn−l

Π(n − l)

=

n∑
l=1

(−1)l−1(−1)lal
CCn−l

Π(n − l)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1 1 0

a2 −a1
. . .

...
. . .

. . . 0
... −a1 1

(−1)nan · · · · · · a2 −a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

�

Examples. When n = rN+1 − rN ,

CCrN+1−rN

Π(rN+1 − rN)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 1
...

. . .

0 1
(−1)rN+1−rN

arN+1−rN 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)rN+1−rN+1(−1)rN+1−rN (−1)2N+1LN

LN+1

=
LN

LN+1
.

Let n = rN+2 − rN . For simplicity, put

ā = (−1)rN+1−rN
(−1)2N+1 LN

LN+1
,

â = (−1)rN+2−rN
(−1)2N+2 LN

LN+2
.

Then by expanding at the first column, we have

CCrN+1−rN

Π(rN+1 − rN)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0
...

. . .

0
ā

0 . . .
...

0 . . .

â 0 · · · 0︸               ︷︷               ︸
rN+2−rN+1

ā

. . . 0
1

0 · · · 0︸        ︷︷        ︸
rN+1−rN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
AIMS Mathematics Volume 5, Issue 6, 5939–5954.
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= (−1)rN+1−rN+1ā

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
. . .

1
ā

. . .
. . .

︸          ︷︷          ︸
rN+1−rN−1

0 1
. . .

. . .

ā︸     ︷︷     ︸
2

. . . 1
· · · 0︸      ︷︷      ︸

rN+1−rN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)rN+2−rN+1â

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0
. . .

ā
. . .

. . .
. . . 0

ā 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The second term is equal to

(−1)rN+2−rN+1(−1)rN+2−rN LN

LN+2
= −

LN

LN+2
.

The first term is

(−1)rN+1−rN+1ā

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1

ā
. . .

. . .

︸          ︷︷          ︸
rN+2−2rN+1+rN

ā
1
0︸  ︷︷  ︸

rN+1−rN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
AIMS Mathematics Volume 5, Issue 6, 5939–5954.
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= (−1)2(rN+1−rN+1)ā2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
. . .

1
ā

. . .
. . .

︸          ︷︷          ︸
rN+1−rN−1

0 1
. . .

. . .

ā︸     ︷︷     ︸
2

. . . 1
· · · 0︸      ︷︷      ︸

rN+1−rN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)r(rN+1−rN+1)ār

∣∣∣∣∣∣∣∣∣∣∣∣
0 1
...

. . .

0 1
ā 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣︸              ︷︷              ︸
rN+1−rN

= (−1)(r+1)(rN+1−rN+1)ār+1

= (−1)(r+1)(rN+1−rN+1)(−1)(rN+1−rN )(r+1)(−1)r+1 Lr+1
N

Lr+1
N+1

=
Lr+1

N

Lr+1
N+1

.

Therefore,

CCrN+1−rN

Π(rN+1 − rN)
=

Lr+1
N

Lr+1
N+1

−
LN

LN+2
.

From this procedure, it is also clear that CCN,n = 0 if rN+1 − rN - n, since all the elements of one
column (or row) become zero.

4. A determinant expression of truncated Bernoulli-Carlitz numbers

In [14], some expressions of truncated Bernoulli-Carlitz numbers have been shown. One of them is
for integers N ≥ 0 and n ≥ 1,

BCN,n = Π(n)
n∑

k=1

(−DN)k
∑

i1 ,...,ik≥1

rN+i1 +···+rN+ik =n+krN

1
DN+i1 · · ·DN+ik

(4.1)

[14, Theorem 1].
Now, we give a determinant expression of truncated Bernoulli-Carlitz numbers.
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Theorem 4. For integers N ≥ 0 and n ≥ 1,

BCN,n = Π(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d1 1 0

d2 −d1
. . .

...
. . .

. . . 0
... −d1 1

(−1)ndn · · · · · · d2 −d1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

dl =
DNδ

∗
l

DN+i
(l ≥ 1)

with δ∗l as in (3.2).

Proof. The proof is similar to that of Theorem 3, using (1.9) and (1.2). �

Example. Let n = 2(rN+1 − rN). For convenience, put

d̄ =
DN

DN+1
.

Then, we have

BCN,2(rN+1−rN )

Π
(
2(rN+1 − rN)

) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1
...

0
d̄

. . .

d̄︸        ︷︷        ︸
rN+1−rN+1

1
0 · · · 0︸        ︷︷        ︸

rN+1−rN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)rN+1−rN+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
. . .

1
d̄

. . .
. . .

︸          ︷︷          ︸
rN+1−rN−1

0

d̄

1
. . .

1
0︸        ︷︷        ︸

rN+1−rN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)rN+1−rN+1d̄

∣∣∣∣∣∣∣∣∣∣∣∣
0 1

. . .

1
d̄ 0

∣∣∣∣∣∣∣∣∣∣∣∣︸              ︷︷              ︸
rN+1−rN
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= (−1)2(rN+1−rN+1)d̄2

∣∣∣∣∣∣∣∣∣
1

. . .

1

∣∣∣∣∣∣∣∣∣
=

D2
N

D2
N+1

.

It is also clear that BCN,n = 0 if rN+1 − rN - n.

5. Applications by the Trudi’s formula

We shall use Trudi’s formula to obtain different explicit expressions and inversion relations for the
numbers CCN,n and BCN,n.

Lemma 2. For a positive integer n, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · ·

a2 a1
. . .

...
...

...
. . .

. . . 0
an−1 · · · a1 a0

an an−1 · · · a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−a0)n−t1−···−tnat1

1 at2
2 · · · a

tn
n ,

where
(

t1+···+tn
t1,...,tn

)
=

(t1+···+tn)!
t1!···tn! are the multinomial coefficients.

This relation is known as Trudi’s formula [28, Vol.3, p.214], [29] and the case a0 = 1 of this formula
is known as Brioschi’s formula [30], [28, Vol.3, pp.208–209].

In addition, there exists the following inversion formula (see, e.g. [27]), which is based upon the
relation

n∑
k=0

(−1)n−kαkD(n − k) = 0 (n ≥ 1) .

Lemma 3. If {αn}n≥0 is a sequence defined by α0 = 1 and

αn =

∣∣∣∣∣∣∣∣∣∣∣∣∣
D(1) 1 0

D(2) . . .
. . . 0

...
. . .

. . . 1
D(n) · · · D(2) D(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, then D(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
α1 1 0

α2
. . .

. . . 0
...

. . .
. . . 1

αn · · · α2 α1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From Trudi’s formula, it is possible to give the combinatorial expression

αn =
∑

t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−1)n−t1−···−tn D(1)t1 D(2)t2 · · ·D(n)tn .

By applying these lemmata to Theorem 3 and Theorem 4, we obtain an explicit expression for the
truncated Cauchy-Carlitz numbers and the truncated Bernoulli-Carlitz numbers.
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Theorem 5. For integers N ≥ 0 and n ≥ 1, we have

CCN,n = Π(n)
∑

t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−1)n−t2−t4−···−t2bn/2cat1

1 · · · a
tn
n ,

where an are given in Theorem 3.

Theorem 6. For integers N ≥ 0 and n ≥ 1, we have

BCN,n = Π(n)
∑

t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−1)n−t2−t4−···−t2bn/2cdt1

1 · · · d
tn
n ,

where dn are given in Theorem 4.

By applying the inversion relation in Lemma 3 to Theorem 3 and Theorem 4, we have the following.

Theorem 7. For integers N ≥ 0 and n ≥ 1, we have

an = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

CCN,1

Π(1) 1 0
CCN,2

Π(2)
CCN,1

Π(1)
...

...
. . . 1 0

CCN,n−1

Π(n−1)
CCN,n−2

Π(n−2) · · ·
CCN,1

Π(1) 1
CCN,n

Π(n)
CCN,n−1

Π(n−1) · · ·
CCN,2

Π(2)
CCN,1

Π(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where an is given in Theorem 3.

Theorem 8. For integers N ≥ 0 and n ≥ 1, we have

dn = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BCN,1

Π(1) 1 0
BCN,2

Π(2)
BCN,1

Π(1)
...

...
. . . 1 0

BCN,n−1

Π(n−1)
BCN,n−2

Π(n−2) · · ·
BCN,1

Π(1) 1
BCN,n

Π(n)
BCN,n−1

Π(n−1) · · ·
BCN,2

Π(2)
BCN,1

Π(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where dn is given in Theorem 4.
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Ovidius Constanţa., 26 (2018), 143–170.

28. T. Muir, The theory of determinants in the historical order of development, Dover Publications,
1960.

29. N. Trudi, Intorno ad alcune formole di sviluppo, Rendic. dell’ Accad. Napoli, 1862, 135–143.

30. F. Brioschi, Sulle funzioni Bernoulliane ed Euleriane, Ann. Mat. Pur. Appl., 1 (1858), 260–263.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 6, 5939–5954.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Continued fraction expansions of truncated Bernoulli-Carlitz and Cauchy-Carlitz numbers
	A determinant expression of truncated Cauchy-Carlitz numbers
	A determinant expression of truncated Bernoulli-Carlitz numbers
	Applications by the Trudi's formula

