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1. Introduction and preliminaries

A mapping f : U → V is called additive if f satisfies the Cauchy functional equation

f (x + y) = f (x) + f (y) (1.1)

for all x, y ∈ U. It is easy to see that the additive function f (x) = ax is a solution of the functional
equation (1.1) and every solution of the functional equation (1.1) is said to be an additive mapping. A
mapping f : U → V is called quadratic if f satisfies the quadratic functional equation

f (x + y) + f (x − y) = 2 f (x) + 2 f (y) (1.2)

for all x, y ∈ U. A mapping f : U → V is quadratic if and only if there exist a symmetric biadditive
mapping B : U2 → V such that f (x) = B(x, x) and this B is unique, refer (see [1, 10]). It is easy to see
that the quadratic function f (x) = ax2 is a solution of the functional equation (1.2) and every solution
of the functional equation (1.2) is said to be a quadratic mapping.
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Mixed type functional equation is an advanced development in the field of functional equations.
A single functional equation has more than one nature is known as mixed type functional equation.
Further, in the development of mixed type functional equations, atmost only few functional equations
have been obtained by many researchers (see [3, 6, 9, 11, 12, 16, 17, 22, 24]).

Let G be a group and H be a metric group with a metric d(., .). Given ε > 0 does there exists a δ > 0
such that if a function f : G → H satisfies d( f (xy), f (x) f (y)) < δ for all x, y ∈ G, then is there exist
a homomorphism a : G → H with d( f (x), a(x)) < ε for all x ∈ G? This problem for the stability of
functional equations was raised by Ulam [23] and answerd by Hyers [7]. Later, it was developed by
Rassias [20], Rassias [18, 21] and Gv̆uruta [5].

The probabilistic modular space was introduced by Nourouzi [14] in 2007. Later, it was developed
by K. Nourouzi [4, 15].

Definition 1.1. Let V be a real vector space. If µ : V → ∆ fulfills the following conditions

(i) µ(v)(0) = 0,
(ii) µ(v)(t) = 1 for all t > 0, if and only if v = γ (γ is the null vector in V),

(iii) µ(−v)(t) = µ(v)(t),
(iv) µ(au + bv)(r + t) ≥ µ(v)(r) ∧ µ(v)(t)

for all u, v ∈ V , a, b, r, t ∈ R+, a + b = 1, then a pair (V, µ) is called a probabilistic modular space and
(V, µ) is b-homogeneous if ρ(av)(t) = µ(v)( t

|a|b ) for all v ∈ V, t > 0, a ∈ R\{0}. Here ∆ is g : R → R+

the set of all nondecreasing functions with inft∈R g(t) = 0 and supt∈R g(t) = 1. Also, the function min is
denoted by ∧.

Example 1.2. Let V be a real vector space and µ be a modular on X. Then a pair (V, µ) is a probabilistic
modular space, where

µ(v)(t) =

{ t
t+ρ(x) , t > 0 , v ∈ V

0, t ≤ 0 , v ∈ V.

In 2002, Rassias [19] studied the Ulam stability of a mixed-type functional equation

g

 3∑
i=1

xi

 +

3∑
i=1

g(xi) =
∑

1≤i≤ j≤3

g(xi + x j).

Later, Nakmalachalasint [13] generalized the above functional equation and obtained an n-variable
mixed-type functional equation of the form

g

 n∑
i=1

xi

 + (n − 2)
n∑

i=1

g(xi) =
∑

1≤i≤ j≤n

g(xi + x j)

for n > 2 and investigated its Ulam stability.
In 2005, Jun and Kim [8] introduced a generalized AQ-functional equation of the form

g(x + ay) + ag(x − y) = g(x − ay) + ag(x + y)

for a , 0,±1.
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In 2013, Zolfaghari et al. [25] investigated the Ulam stability of a mixed type functional equation in
probabilistic modular spaces. In the same year, Cho et al. [2] introduced a fixed point method to prove
the Ulam stability of AQC-functional equations in β-homogeneous probabilistic modular spaces.

Motivated from the notion of probabilistic modular spaces and by the mixed type functional
equations, we introduce a new mixed type functional equation satisfied by the solution f (x) = x + x2

of the form
n−1∑

i=1, j=i+1

(
f (2xi + x j)

)
+ f (2xn + x1) (1.3)

− 2

 n−1∑
i=1, j=i+1

(
f (xi + x j)

)
+ f (xn + x1)

 =

n∑
i=1

f (−xi),

for n ∈ N and investigate its Ulam stability in probabilistic modular spaces.
This paper is organized as follows: In Section 1, we provide a necessary introduction of this paper.

In Sections 2 and 3, we obtain the general solution of the functional equation (1.3) in even case and in
odd case, respectively. In Sections 4 and 5, we investigate the Ulam stability of (1.3) in probabilistic
modular space by using fixed point theory for even and odd cases, respectively and the conclusion is
given in Section 6.

2. General solution of a mixed type functional equation for even case

Let U and V be real vector spaces. In this section, we obtain the general solution of a mixed type
functional equation (1.3) for even case of the form

n−1∑
i=1, j=i+1

(
f (2xi + x j)

)
+ f (2xn + x1) (2.1)

− 2

 n−1∑
i=1, j=i+1

(
f (xi + x j)

)
+ f (xn + x1)

 =

n∑
i=1

f (xi)

for n ∈ N.

Theorem 2.1. Let f : U → V satisfy the functional equation (2.1). If f is an even mapping, then f is
quadratic.

Proof. Assume that f : U → V is even and satisfies the functional equation (2.1). Replacing
(x1, x2, . . . , xn) by (0, 0, . . . , 0) and by (x1, 0, . . . , 0) in (2.1), we obtain f (0) = 0 and

f (2x1) = 4 f (x1) (2.2)

for all x1 ∈ U, respectively. Again, replacing (x1, x2, x3, . . . , xn) by (x1, x1, 0, . . . , 0) in (2.1), we have

f (3x1) = 9 f (x1) (2.3)

for all x1 ∈ U. Now, from (2.2) and (2.3), we get

f (nx1) = n2 f (x1),
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for all x1 ∈ U. Replacing (x1, x2, x3, x4, . . . , xn) by (x1, x2, x2, 0, . . . , 0) in (2.1), we obtain

f (2x1 + x2) + f (x1 + 2x2) = 4 f (x1 + x2) + f (x1) + f (x2) (2.4)

for all x1, x2 ∈ U. Replacing (x1, x2, x3, x4, . . . , xn) by (x1, x2, 0, 0, . . . , 0) in (2.1), we get

f (2x1 + x2) + f (x2) = 2 f (x1 + x2) + 2 f (x1) (2.5)

for all x1, x2 ∈ U. Replacing x2 by −x2 in (2.5), using the evenness of f and again adding the resultant
to (2.5), we get

f (2x1 + x2) + f (2x1 − x2) + 2 f (x2) = 2 f (x1 + x2) + 2 f (x1 − x2) + 4 f (x1) (2.6)

for all x1, x2 ∈ U. Replacing (x1, x2) by (x1 + x2, x1 − x2) in (2.6), we get

f (3x1 + x2) + f (x1 + 3x2) = 4 f (x1 + x2) − 2 f (x1 − x2) + 8 f (x1) + 8 f (x2) (2.7)

for all x1, x2 ∈ U. Letting (x1, x2) by (x1, x1 + x2) in (2.5), we get

f (3x1 + x2) + f (x1 + x2) = 2 f (2x1 + x2) + 2 f (x1) (2.8)

for all x1, x2 ∈ U. Replacing x1 by x2 and x2 by x1 in (2.8), we have

f (x1 + 3x2) + f (x1 + x2) = 2 f (x1 + 2x2) + 2 f (x2) (2.9)

for all x1, x2 ∈ U. Now, adding (2.8) and (2.9), we obtain

f (3x1 + x2) + f (x1 + 3x2) + 2 f (x1 + x2) (2.10)
= 2 f (2x1 + x2) + 2 f (x1 + 2x2) + 2 f (x1) + 2 f (x2)

for all x1, x2 ∈ U. Using (2.4), (2.7) and (2.10), we obtain (1.2). Hence the mapping f is quadratic. �

3. General solution of a mixed type functional equation for odd case

Let U and V be real vector spaces. In this section, we obtain the general solution of a mixed type
functional equation (1.3) for even case of the form

n−1∑
i=1, j=i+1

(
f (2xi + x j)

)
+ f (2xn + x1) (3.1)

− 2

 n−1∑
i=1, j=i+1

(
f (xi + x j)

)
+ f (xn + x1)

 = −

n∑
i=1

f (xi)

for n ∈ N.

Theorem 3.1. Let f : U → V satisfy the functional equation (3.1). If f is an odd mapping, then f is
additive.
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Proof. Assume that f is odd and satisfies the functional equation (3.1). Replacing (x1, x2, . . . , xn) by
(0, 0, . . . , 0) and (x1, 0, . . . , 0) in (3.1), we obtain f (0) = 0 and

f (2x1) = 2 f (x1) (3.2)

for all x1 ∈ U, respectively. Again, replacing (x1, x2, x3, . . . , xn) by (x1, x1, 0, . . . , 0) in (3.1), we have

f (3x1) = 9 f (x1) (3.3)

for all x1 ∈ U. Now, from (3.2) and (3.3), we get

f (nx1) = n f (x1)

for all x1 ∈ U. Replacing (x1, x2, x3, x4, . . . , xn) by (x1, x2, 0, 0, · · · , 0) in (3.1), we get

f (2x1 + x2) − 2 f (x1 + x2) = − f (x2) (3.4)

for all x1, x2 ∈ U. Replacing x2 by −x2 in (3.4), using the oddness of g and again adding the resultant
to (3.4), we get

f (2x1 + x2) + f (2x1 − x2) = 2 f (x1 + x2) + 2 f (x1 − x2) (3.5)

for all x1, x2 ∈ U. Replacing (x1, x2) by (x1 + x2, x1 − x2) in (3.5), we get

f (3x1 + x2) + f (x1 + 3x2) = 4 f (x1) + 4 f (x2) (3.6)

for all x1, x2 ∈ U. Replacing x1 by x2 and x2 by x1 in (3.4), we have

f (2x1 + x2) + f (x1 + 2x2) = 4 f (x1 + x2) − f (x1) − f (x2) (3.7)

for all x1, x2 ∈ U. Replacing (x1, x2) by (x1, x1 + x2) in (3.4), we get

f (3x1 + x2) − 2 f (2x1 + x2) = − f (x1 + x2) (3.8)

for all x1, x2 ∈ U. Replacing x1 by x2 and x2 by x1 in (3.8) and adding the resultant equation to (3.8),
we obtain

f (3x1 + x2) + f (x1 + 3x2) − 2 f (2x1 + x2) − 2 f (x1 + 2x2) = −2 f (x1 + x2) (3.9)

for all x1, x2 ∈ U. Using (3.6), (3.7) and (3.9), we obtain (1.1). Hence the mapping f is additive. �

4. Stability of a mixed type functional equation for even case

In this section, we prove the Ulam stability of the n-variablel mixed type functional equation (1.3)
for even case in probabilistic modular spaces (PM-spaces) by using fixed point technique.

For a mapping f : M → (V, µ), consider

S e(x, y) =

n−1∑
i=1, j=i+1

(
f (2xi + x j)

)
+ f (2xn + x1)

− 2

 n−1∑
i=1, j=i+1

(
f (xi + x j)

)
+ f (xn + x1)

 − n∑
i=1

f (xi)

for n ∈ N.
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Theorem 4.1. Let M be a linear space and (V, µ) be a µ-complete b-homogeneous PM-space. Suppose
that a mapping f : M → (V, µ) satisfies an inequality

µ(S e(x1, x2, . . . , xn)) ≥ ρ(x1, x2, . . . , xn)(t) (4.1)

for all x1, x2, . . . , xn ∈ M and a given mapping ρ : M × M → ∆ such that

ρ(2ax, 0, . . . , 0)(22baNt) ≥ ρ(x, 0, . . . , 0)(t) (4.2)

for all x ∈ M and

ρ(2amx1, 2amx2, . . . , 2amxn)(22bamt) = 1 (4.3)

for all x1, x2, . . . , xn ∈ M and a constant 0 < N < 1
2b . Then there exists a unique quadratic mapping

T : M → (V, µ) satisfying (2.1) and

µ(T (x) − f (x))
(

t

22bN
a−1

2 (1 − 2bN)

)
≥ ρ(x, 0, . . . , 0)(t) (4.4)

for all x ∈ M.

Proof. Replacing (x1, x2, . . . , xn) by (x, 0, . . . , 0) in (4.1), we obtain

µ( f (2x) − 22 f (x))(t) ≥ ρ(x, 0, . . . , 0)(t) (4.5)

for all x ∈ M. This implies

µ

(
f (2x)

22 − f (x)
)

(t) = µ
(

f (2x) − 22 f (x)
)

(22bt) (4.6)

≥ ρ(x, 0, . . . , 0)(22bt)

for all x ∈ M. Replacing x by 2−1x in (4.6), we obtain

µ

(
f (2−1x)

2−2 − f (x)
)

(t) = µ

(
f (x)
22 − f (2−1x)

) ( t
22b

)
(4.7)

≥ ρ(2−1x, 0, . . . , 0)
(
22bN−1 Nt

22b

)
≥ ρ(x, 0, . . . , 0)

(
22bN−1t

)
.

From (4.6) and (4.7), we obtain

µ

(
f (2ax)

22a − f (x)
)

(t) ≥ Ψ(x)(t) := ρ(x, 0, . . . , 0)
(
22bN

a−1
2 t

)
(4.8)

for all x ∈ M.
Consider P := { f : M → (U, µ)| f (0) = 0} and define η on P as follows:

η( f ) = inf{l > 0 : µ( f (x))(lt) ≥ Ψ(x)(t),∀x ∈ M}.
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It is simple to prove that η is modular on N and indulges the ∆2-condition with 2b = κ and Fatou
property. Also, N is η-complete (see [25]). Consider the mapping Q : Pη → Pη defined by QT (x) :=
T (2a x)

22a for all T ∈ Pη.
Let f , j ∈ Pη and l > 0 be an arbitrary constant with η( f − j) ≤ l. From the definition of η, we get

µ( f (x) − j(x))(lt) ≥ Ψ(x)(t)

for all x ∈ M. This implies

µ (Q f (x) − Q j(x)) (Nlt)

= µ
(
2−2a f (2ax) − 2−2a j(2ax)

)
(Nlt)

= µ ( f (2ax) − j(2ax))
(
22baNlt

)
≥ Ψ(2ax)(22baNt)
≥ Ψ(x)(t)

for all x ∈ M. Hence η(Q f − Q j) ≤ Nη( f − j) for all f , j ∈ Pη, which means that Q is an η-strict
contraction. Replacing x by 2ax in (4.8), we have

µ

(
f (22ax)

22a − f (2ax)
)

(t) ≥ Ψ(2ax)(t) (4.9)

for all x ∈ M and therefore

µ
(
2−2(2a) f (22ax) − 2−2a f (2ax)

)
(Nt) (4.10)

= µ
(
2−2a f (22ax) − f (2ax)

)
(22baNt)

≥ Ψ(2ax)(22baNt) ≥ Ψ(x)(t)

for all x ∈ E. Now

µ

(
f (22ax)
22(2a) − f (x)

) (
2b(Nt + t)

)
(4.11)

≥ µ

(
f (22ax)
22(2a) −

f (2ax)
22a

)
(Nt) ∧ µ

(
f (2ax)

22a − f (x)
)

(t)

≥ Ψ(x)(t)

for all x ∈ M. In (4.11), replacing x by 2ax and 2b(Nt + t) by 22βa2b(N2t + Nt), we obtain

µ

(
f (23ax)
22(2a) − f (2ax)

) (
22ba2b(N2t + Nt)

)
(4.12)

≥ Ψ(2ax)(22b jNt) ≥ Ψ(x)(t)

for all x ∈ M. Therefore,

µ

(
f (23ax)
23(2a) −

f (2ax)
22a

) (
2b(N2t + Nt)

)
≥ Ψ(x)(t) (4.13)
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for all x ∈ M. This implies

µ

(
f (23ax)
23(2a) − f (x)

) (
2b(2b(N2t + Nt) + t)

)
(4.14)

≥ µ

(
f (23ax)
23(2a) −

f (2ax)
22a

) (
2b(N2t + Nt)

)
∧ µ

(
f (2ax)

22a − f (x)
)

(t)

≥ Ψ(x)(t)

for all x ∈ M. Generalizing the above inequality, we get

µ

(
f (2amx)
22(am) − f (x)

) (2bN)m−1t + 2b
m−1∑
i=1

(2bN)i−1t

 ≥ Ψ(x)(t) (4.15)

for all x ∈ M and a positive integer m. Hence we have

η(Qm f − f ) ≤ (2bN)m−1 + 2b
m−1∑
i=1

(2bN)i−1 (4.16)

≤ 2b
m∑

i=1

(2bN)i−1 ≤
2b

1 − 2bN
.

Now, one can easily prove that {Qm( f )} is η−converges to T ∈ Pη (see [25]). Thus (4.16) becomes

η(T − f ) ≤
2b

1 − 2bN
, (4.17)

which implies

µ (T (x) − f (x))
(

2b

1 − 2bN
t
)
≥ Ψ(x)(t) = ρ(x, 0, . . . , 0)

(
2b22bN

a−1
2 t

)
(4.18)

for all x ∈ M and hence we have

µ (T (x) − f (x))
(

t

22bN
a−1

2 (1 − 2bN)

)
≥ ρ(x, 0, . . . , 0)(t) (4.19)

for all x ∈ M and hence the inequality (4.4) holds. One can easily prove the uniqueness of T (see [25]).
�

5. Stability of a mixed type functional equation for odd case

In this section, we prove the Ulam stability of the n-variable mixed type functional equation (1.3)
for odd case in probabilistic modular spaces (PM-spaces) by using fixed point technique.

For a mapping f : M → (U, µ), consider

S o(x1, x2, . . . , xn) =

n−1∑
i=1, j=i+1

(
f (2xi + x j)

)
+ f (2xn + x1)

AIMS Mathematics Volume 5, Issue 6, 5903–5915.
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− 2

 n−1∑
i=1, j=i+1

(
f (xi + x j)

)
+ f (xn + x1)

 +

n∑
i=1

f (xi)

for n ∈ N.

Theorem 5.1. Let M be a linear space and (V, µ) be a µ-complete b-homogeneous PM-space. Suppose
that a mapping f : M → (V, µ) satisfies an inequality

µ(S o(x1, x2, . . . , xn)) ≥ ρ(x1, x2, . . . , xn)(t) (5.1)

for all x1, x2, . . . , xn ∈ M and a given mapping ρ : M × M → ∆ such that

ρ(2ax, 0, . . . , 0)(2baNt) ≥ ρ(x, 0, . . . , 0)(t) (5.2)

for all x ∈ M and

ρ(2amx1, 2amx2, . . . , 2amxn)(2bamt) = 1 (5.3)

for all x1, x2, . . . , xn ∈ M and a constant 0 < N < 1
2b . Then there exists a unique additive mapping

A : M → (V, µ) satisfying (3.1) and

µ(A(x) − f (x))
(

t

2bN
a−1

2 (1 − 2bN)

)
≥ ρ(x, 0, . . . , 0)(t) (5.4)

for all x ∈ M.

Proof. Replacing (x1, x2, . . . , xn) by (x, 0, . . . , 0) in (5.1), we obtain

µ( f (2x) − 2 f (x))(t) ≥ ρ(x, 0, . . . , 0)(t) (5.5)

for all x ∈ M. This implies

µ

(
f (2x)

2
− f (x)

)
(t) = µ ( f (2x) − 2 f (x)) (2bt) (5.6)

≥ ρ(x, 0, . . . , 0)(2bt)

for all x ∈ M. Replacing x by 2−1x in (5.6), we obtain

µ

(
f (2−1x)

2−1 − f (x)
)

(t) = µ

(
f (x)
2
− f (2−1x)

) ( t
2b

)
(5.7)

≥ ρ(2−1x, 0, . . . , 0)
(
2bN−1 Nt

2b

)
≥ ρ(x, 0, . . . , 0)

(
2bN−1t

)
.

From (5.6) and (5.7), we obtain

µ

(
f (2ax)

2a − f (x)
)

(t) ≥ Ψ(x)(t) := ρ(x, 0, . . . , 0)
(
2bN

a−1
2 t

)
(5.8)
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for all x ∈ M.
Consider P := { f : M → (U, µ)| f (0) = 0} and define η on P as follows:

η( f ) = inf{l > 0 : µ( f (x))(lt) ≥ Ψ(x)(t),∀x ∈ M}.

It is simple to prove that η is modular on N and indulges the ∆2-condition with 2b = κ and Fatou
property. Also, N is η-complete (see [25]). Consider a mapping Q : Pη → Pη defined by QA(x) :=
A(2a x)

2a for all A ∈ Pη.
Let f , j ∈ Pη and l > 0 be an arbitrary constant with η( f − j) ≤ l. From the definition of η, we get

µ( f (x) − j(x))(lt) ≥ Ψ(x)(t)

for all x ∈ M. This implies

µ (Q f (x) − Q j(x)) (Nlt)
= µ

(
2−a f (2ax) − 2−a j(2ax)

)
(Nlt)

= µ ( f (2ax) − j(2ax))
(
2baNlt

)
≥ Ψ(2ax)(2baNt)
≥ Ψ(x)(t)

for all x ∈ M. Hence η(Q f − Q j) ≤ Nη( f − j) for all f , j ∈ Pη, which means that Q is an η-strict
contraction. Replacing x by 2ax in (5.8), we get

µ

(
f (22ax)

2a − f (2ax)
)

(t) ≥ Ψ(2ax)(t) (5.9)

for all x ∈ M and thus

µ
(
2−2a f (22ax) − 2−a f (2ax)

)
(Nt) (5.10)

= µ
(
2−a f (22ax) − f (2ax)

)
(2baNt)

≥ Ψ(2ax)(2baNt) ≥ Ψ(x)(t),

for all x ∈ E. Now

µ

(
f (22ax)

22a − f (x)
) (

2b(Nt + t)
)

(5.11)

≥ µ

(
f (22ax)

22a −
f (2ax)

2a

)
(Nt) ∧ µ

(
f (2ax)

2a − f (x)
)

(t)

≥ Ψ(x)(t)

for all x ∈ M. In (5.11), replacing x by 2ax and 2b(Nt + t) by 2ba2b(N2t + Nt), we obtain

µ

(
f (23ax)

22a − f (2ax)
) (

2ba2b(N2t + Nt)
)

(5.12)

≥ Ψ(2ax)(2b jNt) ≥ Ψ(x)(t)
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5913

for all x ∈ M. Therefore,

µ

(
f (23ax)

23a −
f (2ax)

2a

) (
2b(N2t + Nt)

)
≥ Ψ(x)(t) (5.13)

for all x ∈ M. This implies

µ

(
f (23ax)

23a − f (x)
) (

2b(2b(N2t + Nt) + t)
)

(5.14)

≥ µ

(
f (23ax)

23a −
f (2ax)

2a

) (
2b(N2t + Nt)

)
∧ µ

(
f (2ax)

2a − f (x)
)

(t)

≥ Ψ(x)(t)

for all x ∈ M. Generalizing the above inequality, we have

µ

(
f (2amx)

2am − f (x)
) (2bN)m−1t + 2b

m−1∑
i=1

(2bN)i−1t

 ≥ Ψ(x)(t) (5.15)

for all x ∈ M and a positive integer m. Hence we have

η(Qm f − f ) ≤ (2bN)m−1 + 2b
m−1∑
i=1

(2bN)i−1 (5.16)

≤ 2b
m∑

i=1

(2bN)i−1 ≤
2b

1 − 2bN
.

Now, one can easily prove that {Qm( f )} is η-convergent to A ∈ Pη (see [25]). Thus (4.16) becomes

η(A − f ) ≤
2b

1 − 2bN
, (5.17)

which leads

µ (A(x) − f (x))
(

2b

1 − 2bN
t
)
≥ Ψ(x)(t) = ρ(x, 0, . . . , 0)

(
2b2bN

a−1
2 t

)
(5.18)

for all x ∈ M and hence we have

µ (A(x) − f (x))
(

t

2bN
a−1

2 (1 − 2bN)

)
≥ ρ(x, 0, . . . , 0)(t) (5.19)

for all x ∈ M and hence the inequality (5.4) holds. One can easily prove the uniqueness of A (see [25]).
�

6. Conclusion

In this paper, we introduced a new n-variable mixed type functional equation satisfied by the
solution f (x) = ax+bx2. Mainly, we obtained its general solution and investigated its Ulam stability in
PM-spaces by using fixed point theory and we hope that this research work is a further improvement
in the field of functional equations.
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Euler-Lagrange-Rassias functional equation, Int. J. Math. Math. Sci., 2007 (2007), 63239.

AIMS Mathematics Volume 5, Issue 6, 5903–5915.



5915

14. K. Nourouzi, Probabilistic modular spaces, Proceedings of the 6th International ISAAC Congress,
Ankara, Turkey, 2007.

15. K. Nourouzi, Probabilistic modular spaces, WSPC Proceedings, (2009), 814–818.

16. C. Park, S. Jang, J. Lee, et al. On the stability of an AQCQ-functional equation in radom normed
spaces, J. Inequal. Appl., 2011 (2011), 34.

17. M. Ramdoss, J. M. Rassias and D. Pachaiyappan, Stability of generalized AQCQ-functional
equation in modular space, J. Eng. Appl. Sci., 15 (2020), 1148–1157.

18. J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct.
Anal., 46 (1982), 126–130.

19. J. M. Rassias, On the Ulam stability of the mixed type mappings on restricted domains, J. Math.
Anal. Appl., 276 (2002), 747–762.

20. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc.,
72 (1978), 297–300.

21. K. Ravi, M. Arunkumar and J. M. Rassias, On the Ulam stability for the orthogonally general
Euler-Lagrange type functional equation, Int. J. Math. Sci., 3 (2008), 36–47.

22. K. Ravi, J. M. Rassias, M. Arunkumar, et al. Stability of a generalized mixed type additive,
quadratic, cubic and quartic functional equational equation, J. Inequal. Pure Appl. Math., 10
(2009), 1–29.

23. S. M. Ulam, Problems in Modern Mathematics, Science Ed., Wiley, New York, 1940.

24. T. Z. Xu, J. M. Rassias and W. X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQ-
functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math., 3
(2010), 1032–1047.

25. S. Zolfaghari, A. Ebadian, S. Ostadbashi, et al. A fixed point approach to the Hyers-Ulam stability
of an AQ functional equation in probabilistic modular spaces, Int. J. Nonlinear Anal. Appl., 4
(2013), 89–101.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 6, 5903–5915.

http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	General solution of a mixed type functional equation for even case
	General solution of a mixed type functional equation for odd case
	Stability of a mixed type functional equation for even case
	Stability of a mixed type functional equation for odd case
	Conclusion

