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movements and collisions of the particles. In mathematics, it is related to Markov processes, such as
random walks, and applied in many other fields, such as materials science, information theory, and
biophysics. The present papers deals with the approximation of one and two dimensional multi-term
time fractional wave diffusion equations. In this work a numerical method which combines Laplace
transform with local radial basis functions method is presented. The Laplace transform eliminates the
time variable with which the classical time stepping procedure is avoided, because in time stepping
methods the accuracy is achieved at a very small step size, and these methods face sever stability
restrictions. For spatial discretization the local meshless method is employed to circumvent the issue
of shape parameter sensitivity and ill-conditioning of collocation matrices in global meshless methods.
The bounds of the stability for the differentiation matrix of our numerical scheme are derived. The
method is tested and validated against 1D and 2D wave diffusion equations. The 2D equations are
solved over rectangular, circular and complex domains. The computational results insures the stability,
accuracy, and efficiency of the method.
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1. Introduction and preliminaries

Recently, partial differential equations (PDEs) with fractional derivatives have gained significant
attention of the research community in applied sciences and engineering. Such equations are
encountered in various applications (continuum mechanics, gas dynamics, hydrodynamics, heat and
mass transfer, wave theory, acoustics, multiphase flows, chemical engineering, etc.). Numerous
phenomenon in Chemistry, Physics, Biology, Finance, Economics and other relevant fields can be
modelled using PDEs of fractional order [1–5]. In literature a significant theoretical work on the
explicit solution of fractional order differential equations can be found [6, 7] and there references.
Since the explicit solutions can be obtained for special cases and most of the time the exact/analytical
solutions are cumbersome for differential equations of non-integer order, therefore an alternative way
is to find the solutions numerically. Various computational methods have been developed for
approximation of differential equations of fractional order. The authors in [8], for example, have
analyzed the implicit finite difference method and proved its unconditional convergence and stability.
In [9] approximate solution of fractional diffusion equation is obtained via compact finite difference
scheme. Liu et al. [10] studied the sub-diffusion equation having non-linear source term using
analytical and numerical techniques. In [11] a numerical scheme for the solution of turbulent Riesz
type diffusion equation is presented. The authors in [12] have solved diffusion-wave equations of
fractional order using a compact finite difference method which is based on its equivalent
integro-differential form. Garg et al. [13] utilized the matrix method for approximation of space-time
wave-diffusion equation of non-integer order. In [14] the authors solved multi-term wave-diffusion
equation of fractional order via Galerkin spectral method and a high order difference scheme. Two
finite difference methods for approximating wave-diffusion equations are proposed in [15]. Bhrawy et
al. [16] utilized Jacobi operational matrix based spectral tau algorithm for numerical solution of
diffusion-wave equation of non-integer order. In [4] the authors proposed numerical schemes for
approximating the multi-term wave-diffusion equation. The Legendre wavelets scheme for diffusion
wave equations is proposed in [17]. The authors [18] presented a numerical scheme which is based on
alternating direction implicit method and compact difference method for 2-D wave-diffusion
equations. Similarly a compact difference scheme [19] is utilized for approximation of 1-D and 2-D
diffusion-wave equations. Yang et al. [20] proposed a fractional multi-step method for the
approximation of wave-diffusion equation of non-integer order. A spectral collocation method and its
convergence analysis are presented in [21] for fractional wave-diffusion equation.

Since all these methods are mesh dependent and in modern problems these methods have been
facing difficulties due to complicated geometries. Meshfree methods, as an alternative numerical
method have attracted the researchers. Some meshless methods have been devoloped such as
element-free Galerkin method(EFG) [22], reproducing kernel particle method (RKPM) [23], singular
boundary method [24],the boundary particle method [25], Local radial point interpolation method
(MLRPI) [26] and so on.

Numerous meshless methods have been developed for the approximation of fractional PDEs.
Dehghan et al. [27] analyzed a meshless scheme for approximation of diffusion-wave equation of
non-integer order and proved its stability and convergence. In [28] the authors presented an implicit
meshless scheme for approximation of anomalous sub-diffusion equation. Diffusion equations of
fractional orders are apprximated via RBF based implicit meshless method in [29]. Hosseini et
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al. [26] developed a local radial point interpolation meshless method based on the Galerkin weak
form for numerical solution of wave-diffusion equation of non integer order. In [30] the authors
approximated distributed order diffusion-wave equation of fractional order using meshless method.
The authors in [31] proposed a meshless point collocation method for approximation of 2 − D
multi-term wave-diffusion equations. In [32] the authors proposed a local meshless method for time
fractional diffusion-wave equation. Kansa method [33] is utilized for numerical solution of fractional
diffusion equations. Zhuang et al. [34] proposed an implicit MLS meshless method for time fractional
advection diffusion equation. The numerical solution of 2D wave-diffusion equation is studied in [35]
using implicit MLS meshless method. The mentioned methods are meshfree time stepping methods
and these methods faces stability restriction in time, and in these methods for convergence a very
small step size is required. To overcome the issue of time instability some transformations may be
used.

In literature some valuable work is available on resolving the problem of time instability. The
researchers have coupled the Laplace transform with other well known numerical methods. For
example the Laplace transform with Kansa method [33, 36], finite element method [37, 38], finite
difference method [39], RBF method on unit sphere [40] and the references therein. In the present
work we have coupled the Laplace transform with local meshless method for approximating the
solution of the multi-term diffusion wave equation of fractional order.

2. Laplace transform based local meshless method

In our numerical scheme we transform the multi-term time fractional wave-diffusion equation to a
time independent problem with Laplace transformation. The reduced problem is then approximated
using local meshless method in Laplace space. Finally the solution of the original problem is obtained
using contour integration. We apply the proposed method to multi-term fractional wave-diffusion
equation of the form [14]

Pα,α1,α2,...,αm(Dτ)U(χ, τ) = KLU(χ, τ) + f (χ, τ), for χ ∈ Ω, K ∈ R τ > 0, (2.1)

where

Pα,α1,α2,...,αm(Dτ) = Dα
τ +

m∑
j=1

d jD
α j
τ ,

1 < αm < ... < α1 < α < 2, and d j ≥ 0, j = 1, 2, ...,m, m ∈ N are constants. Dα j
τ is a Caputo derivative

of order α j defined by

Dα j
τ f (τ) =

1
Γ(n − α j)

∫ τ

a

f (n)(ν)dν
(τ − ν)α j+1−n , for n − 1 < α j < n, n ∈ N, (2.2)

also for n = 2, we have

Dα j
τ f (τ) =

1
Γ(n − α j)

∫ τ

a

∂2 f (ν)
∂ν2

dν
(τ − ν)α j−1 , for α j ∈ (1, 2). (2.3)
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The initial conditions for the above Eq (2.1) are

U(χ, 0) = U0(χ),
∂U(χ, 0)

∂τ
= U1(χ). (2.4)

and the boundary conditions are

BU(χ, τ) = q(χ, τ), χ ∈ ∂Ω, (2.5)

where L is the governing linear differential operator, and B is the boundary differential operator. By
applying the Laplace transformation to Eq (2.1), we get

Û(χ, s) = W(s;L)ĝ(χ, s), (2.6)

where
W(s;L) = (sαI + sα1 I + ... + sαm I − KL)−1,

and

ĝ(χ, s) = sα−1U0(χ) + sα−2U1(χ) + sα1−1U0(χ) + sα1−2U1(χ) + ... + sαm−1U0(χ) + sαm−2U1(χ) + f̂ (χ, s).

Similarly applying the Laplace transform to (2.5), we get

BÛ(χ, s) = q̂(χ, s), (2.7)

Hence, the system of time-independent equations is obtained as

Û(χ, s) = W(s;L)ĝ(χ, s), (2.8)

BÛ(χ, s) = q̂(χ, s), (2.9)

In our method first we represent the solution U(χ, τ) of the original problem (2.1) as a contour
integral

U(χ, τ) =
1

2πi

∫
Γ

esτÛ(χ, s)ds, (2.10)

where, for Res ≥ ω with ω appropriately large, and Γ is an initially appropriately chosen line Γ0

perpendicular to the real axis in the complex plane, with Ims → ±∞. The integral (2.10) is just the
inverse transform of Û(χ, τ), with the condition that Û(χ, τ) must be analytic to the right of Γ0. To
make sure the contour of integration remains in the domain of analyticity of Û(χ, τ), we select Γ as a
deformed contour in the set ΣΥ

φ = {s , 0 : |args| < φ} ∪ {0}, which behaves as a pair of asymptotes in
the left half plane, with Res → −∞ when Ims → ±∞, which force esτ to decay towards both ends of
Γ. In our work we have used two types of contours, the first contour is the hyperbolic contour Γ1 due
to [38] with parametric representation

s(ξ) = Υ + i(1 − sin(η − ιξ)), ξ ∈ R, (Γ1) (2.11)

where,
i > 0, 0 < η < φ −

π

2
, and Υ > 0. (2.12)
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By writing s = x + ιy, we observe that Γ1 is the left branch of the hyperbola(
x − Υ − i

i sin η

)2

−

(
y

i cos η

)2

= 1, (2.13)

the asymptotes for (2.13) are y = ±(x − Υ − i) cot η, and x-intercept at s = Υ + i(1 − sin η). The
condition (2.12) confirms that Γ1 lies in the sector ΣΥ

φ = Υ+Σφ ⊂ Σφ, and grows into the left half plane.
From (2.11) and (2.10), we have the following integral

U(χ, τ) =
1

2πi

∫ ∞

−∞

es(ξ)τÛ(χ, s(ξ))ś(ξ)dξ. (2.14)

Finally to approximate Eq (2.14), the trapezoidal rule with step k is used as

Uk(χ, τ) =
k

2πi

M∑
j=−M

es jτÛ(χ, s j)ś j, for ξ j = jk, s j = s(ξ j), s′j = s′(ξ j). (2.15)

The second contour employed in this work is the Talbot’s contour [41], though ignored by many
researchers, yet it is one of the best method for numerical inverting the Laplace transform [42]. The
authors in [43] have optimized the Talbot’s contour for approximating the solution of parabolic PDEs.
Other works on Talbot’s method can be found in [44, 45] and there references. In our work we have
employed the improved Talbot’s method [46] for numerical inversion of Laplace transform. The
Talbot’s contour has parametric representation of the form

s(ξ) =
M
τ
θ(ξ), θ(ξ) = −σ + µξ cot(γξ) + νιξ, − π ≤ ξ ≤ π, (Γ2) (2.16)

where the parameters σ, µ, ν, and γ are to be specified by the user. From (2.16) and (2.10) we have

U(χ, τ) =
1

2πi

∫ π

−π

es(ξ)τÛ(χ, s(ξ))ś(ξ)dξ. (2.17)

We use M-panel mid-point rule with uniform spacing k = 2π
M , to approximate the integral (2.17) as

Uk(χ, τ) =
1

Mi

M∑
j=1

es jτÛ(χ, s j)ś j, for ξ j = −π + ( j −
1
2

)k, s j = s(ξ j), s′j = s′(ξ j). (2.18)

To obtain the solution Uk(χ, τ), first we must solve system of 2M + 1 equations given in (2.8) and
(2.9) for quadrature points s j, | j| ≤ M. For this purpose the local meshless method is used to discretize
operators L, B.

2.1. Local meshless approximation

Given a set of points {χi}
N
i=1in Rd,where d ≥ 1 the approximate function for Û(χ) using local

meshless method has the form,
Û(χi) =

∑
χ j∈Ωi

λi
jφ(‖χi − χ

i
j‖), (2.19)
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where λi = {λi
j}

n
j=1 is the expansion coefficients vector, φ(r) is a kernel function,r = ‖χi − χ j‖ is the

distance between the centers χi and χ j. Ω, and Ωi are global domain and local domains respectively.
The sub-domain Ωi contains the center χi, and around it, its n neighboring centers. Thus we obtain
n × n linear systems

Û(χi
1)

Û(χi
2)

.

.

.

Û(χi
n)


=



φ(‖χi
1 − χ

i
1‖) φ(‖χi

1 − χ
i
2‖) . . . φ(‖χi

1 − χ
i
n‖)

φ(‖χi
2 − χ

i
1‖) φ(‖χi

2 − χ
i
2‖) . . . φ(‖χi

2 − χ
i
n‖)

. . . .

. . . .

. . . .

φ(‖χi
n − χ

i
1‖) φ(‖χi

n − χ
i
2‖) . . . φ(‖χi

n − χ
i
n‖)





λi
1
λi

2
.

.

.

λi
n


, i = 1, 2, ...,N, (2.20)

which can be written as,

Û
i
= Φiλi, 1 ≤ i ≤ N, (2.21)

the matrix Φi contains elements in the form bi
k j = φ(‖χi

k − χ
i
j‖), where χi

k,χ
i
j ∈ Ωi, the unknowns

λi = {λi
j : j = 1, ..., n} are obtained by solving each of the N systems in (2.21). For the differential

operator L we have the form,

LÛ(χi) =
∑
χ j∈Ωi

λi
jLφ(‖χi − χ

i
j‖), (2.22)

the above Eq (2.22) can be expressed as a dot product

LÛ(χi) = λi · νi, (2.23)

where νi is a n-row vector and λi is a n-column vector, entries of the n-column vector νi are given as

νi = Lφ(‖χi − χ
i
j‖), χ

i
j ∈ Ωi, (2.24)

eliminating the co efficient λi from (2.21), and (2.23) we have the following expression

LÛ(χi) = νi(Φi)−1
Û

i
= $i
Û

i
(2.25)

where,

$i = νi(Φi)−1, (2.26)

thus at each node χi the approximation of the operator L via local meshless method is given as

LÛ ≡ DÛ, (2.27)

In (2.27) D is a sparse differentiation matrix obtained via local meshless method as an approximation
to L. The matrix D has order N × N, it has n non-zero entries, and N − n zero entries, where N is
number of centers in global domain, and n is the number of centers in local domain. The boundary
operator B can be discretized in similar way.
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3. Convergence and accuracy

In order to solve the multi-term time fractional diffusion wave equation using our proposed method,
the local meshless method and Laplace transformation is used. In our numerical scheme first the
Laplace transform is applied to time dependent equation which eliminates the time variable, and this
process causes no error. Then the local meshless method is utilized for approximating time independent
equation. The error estimate for local meshless method is of order O(η

1
εh ),0 < η < 1, ε is the shape

parameter and h is the fill distance. In the process of approximating the integrals (2.14) and (2.17)
convergence is achieved at different rates depending on the paths Γ1, and Γ2. In approximating the
integrals (2.14) and (2.17) the convergence order rely upon on the step k of the quadrature rule and the
time domain [t0,T ] for Γ1. The proof for the order of quadrature error for the path Γ1 is given in the
next theorem.

Theorem 3.1 ( [38], Theorem 2.1). Let U(χ, τ) be the solution of (2.1) with f̂ (χ, τ) analytic in ΣΥ
φ .

Let Γ ⊂ Ωr ⊂ ΣΥ
φ , and define b > 0 by coshb = 1

θτ1 sin(η) , where τ1 = t0
T , 0 < τ0 < T, 0 < θ < 1.0 and let

i = θrM
bT . Then for Eq (2.15), with k = b

M ≤ r
log2 , we have

|U(χ, τ) − Uk(χ, τ)| ≤ CQeΥτ1l(ρr M)e−µM
(
‖U0‖ + ‖ f̂ (χ, τ)‖ΣΥ

φ

)
, for µ =

r(1−θ)
b ,

ρr =
θrτ1 sin(η−r1)

b ,r = 2πr1, r1 > 0, τ0 ≤ τ ≤ T, C = Cη,r1,β, and l(x) = max(1, log(1
x )). Hence the error

estimate for the proposed scheme is

errorest(Γ1) = |U(χ, τ) −Uk(χ, τ)| = O(l(ρr M)e−µM).

The authors in [46] derived the optimal values of the parameters for the Talbot’s contour (Γ2) defined
in (2.16) as given below

σ = 0.6122, µ = 0.5017, ν = 0.2645, and γ = 0.6407,

with corresponding error estimate as

errorest(Γ2) = |U(χ, τ) −Uk(χ, τ)| = O(e−1.358M).

4. Stability

To investigate the stability of the systems (2.8) and (2.9), we represent the system in discrete form
as

MÛ = b, (4.1)

the matrix MN×N is sparse matrix obtained using local meshless method. For the system (4.1) the
constant of stability is defined as

C = sup
Û,0

‖Û‖

‖MÛ‖
, (4.2)

for any discrete norm ‖.‖ defined on RN the constant C is finite . From (4.2) we may write

‖M‖−1 ≤
‖Û‖

‖MÛ‖
≤ C, (4.3)
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Similarly for the pseudoinverseM† ofM, we can write

‖M
†
‖ = sup

H,0

‖M
†
H‖

‖H‖
. (4.4)

Thus we have

‖M
†
‖ ≥ sup

H=MĤ,0

‖M
†
MÛ‖

‖MÛ‖
= sup
Û,0

‖Û‖

‖MÛ‖
= C. (4.5)

We can see that Eqs (4.3) and (4.5) confirms the bounds for the stability constant C. Calculating the
pseudoinverse for approximating the system (4.1) numerically be quite expansive computationally, but
it confirms the stability. The MATLAB’s function condest can be used to estimate ‖M−1

‖∞ in case of
square systems, thus we have

C =
condest(M′)
‖M‖∞

(4.6)

This work well with less number of computations for our sparse differentiation matrixM. Figure 1(a)
shows the bounds for the constant C of our system (2.8) and (2.9) for Problem 1 using the Talbot’s
contour Γ2. Selecting N = 80, M = 80, n = 15, and α = 1.8, α1 = 1.7, α2 = 1.6, c = 0.6 at τ = 1, we
have 1.00 ≤ C ≤ 4.5501. It is observed that the upper and lower bounds for the stability constant are
very small numbers, which guarantees that the proposed local meshless scheme is stable.

0 10 20 30 40 50 60 70 80
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1.5
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20

40

60

80

(b)

Figure 1. In (a) the plot shows the constant of stability of our proposed method for the matrix
M corresponding to Problem 1, using the Talbot’s contour Γ2. In (b) the Talbot’s contour is
shown.

5. Numerical results and discussion

The numerical examples are given to validate our proposed Laplace transform based local
meshless scheme. In our computations we have considered different 1 −D and 2 −D linear multi term
wave-diffusion equations. In our numerical examples we have utilized the multi-quadrics(MQ) kernel
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function φ(r, ε) = (1 + (εr)2)
1
2 . We have used the uncertainty principal due to [47] for optimization of

the shape parameter. The accuracy of the method is measured using L∞ error defined by

L∞ = ‖U(χ, τ) −Uk(χ, τ)‖∞ = max
1≤ j≤N

(|U(χ, τ) −Uk(χ, τ)|)

is used. HereUk andU are the numerical and exact solutions respectively.

5.1. Problem 1

In the first test problem we consider the following linear fractional equation

Dα
τU(χ, τ) + Dα1

τ U(χ, τ) + Dα2
τ U(χ, τ) − D2

χU(χ, τ) = f (χ, τ), (5.1)

where

f (χ, τ) =

(
6τ3−α

Γ(4 − α)
+

6τ3−α1

Γ(4 − α1)
+

6τ3−α2

Γ(4 − α2)

)
1

cosh(χ − c)

−

(
2τ3

cosech(c − χ)2 cosh(c − χ)3 −
τ3

cosh(c − χ)

)
.

The exact solution of the problem is

U(χ, τ) =
τ3

cosh(χ − c)
, c ∈ R.

The boundary and initial conditions are

U(−10, τ) =
τ3

cosh(−10 − c)
, U(10, τ) =

τ3

cosh(10 − c)
, (5.2)

and
U0(χ) = U1(χ) = 0. (5.3)

The points along the hyperbolic contour Γ1 are calculated using the statement ξ = −M : k : M,
and along Talbot’s contour Γ2 using the relation ξ j = −π + ( j − 1

2 )k, where j = 1 : M, and k = 2π
M .

The parameters used in our computations for the contour Γ1 are θ = 0.10, η = 0.15410, τ1 = t0
T , r1 =

0.13870, r̄ = 2r1π, Υ = 2.0 The results obtained for the parameters α, α1, α2, and c along the
contour Γ1 are displayed in Table 1, and along Γ2 are displayed in Table 2. The exact and numerical
spacetime solutions for the given problem is depicted in Figure 2(a) and in Figure 2(b) respectively.
The absolute error and error estimate are displayed in Figure 3(a). Figure 3(b) shows error functions
for various values of α j. The results confirms that our numerical scheme is accurate, stable and can
solve multi-term time fractional wave-diffusion equations with less computation time.
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Table 1. Numerical solution in the domain [0, 1] and τ = 1 obtained using hyperbolic contour
Γ1.

α = 1.5, α1 = 1.4, α2 = 1.3, c = 0.5
N n M L∞ c κ errorest(Γ1) C.TIME(sec)
80 20 35 7.77×10−5 10.0 1.13×10+12 3.14×10−1 0.343148

55 7.61×10−5 10.0 1.13×10+12 3.64×10−2 1.222487
75 7.61×10−5 10.0 1.13×10+12 4.2 ×10−3 5.000861
95 7.61×10−5 10.0 1.13×10+12 4.75×10−4 12.067666

110 7.61×10−5 10.0 1.13×10+12 9.30×10−5 22.244950
40 15 80 5.76×10−5 4.5 1.37×10+12 2.4 ×10−3 2.034147
50 4.70×10−5 5.7 1.17×10+12 2.4 ×10−3 3.430185
60 4.32×10−5 6.9 1.05×10+12 2.4 ×10−3 4.307865
70 9.09×10−5 8.0 1.24×10+12 2.4 ×10−3 5.308744
80 4.82×10−5 9.2 1.14×10+12 2.4 ×10−3 6.327198
70 12 90 2.33×10−5 7.3 1.02×10+12 8.18×10−4 8.646889

15 9.09×10−5 8.0 1.24×10+12 8.18×10−4 8.534781
18 8.80×10−5 8.5 1.17×10+12 8.18×10−4 8.898832
21 4.10×10−5 8.8 1.20×10+12 8.18×10−4 8.901062
24 9.30×10−5 9.0 1.26×10+12 8.18×10−4 8.835825

[14] 4.79×10−6

Table 2. Numerical solution in the domain [0, 1] and τ = 1 obtained using Talbot’s contour
Γ2.

α = 1.8, α1 = 1.7, α2 = 1.6, c = 0.5
N n M L∞ c κ errorest(Γ2) C.TIME(sec)
70 12 10 3.51×10−1 7.3 1.02×10+12 2.02×10−6 0.201190

12 3.98×10−2 7.3 1.02×10+12 1.47×10−7 0.202626
14 4.20×10−3 7.3 1.02×10+12 1.06×10−8 0.213661
16 4.16×10−4 7.3 1.02×10+12 7.76×10−10 0.203777
18 4.99×10−5 7.3 1.02×10+12 5.64×10−11 0.204327

30 15 20 2.97×10−5 3.4 1.00×10+12 4.10×10−12 0.203400
40 5.99×10−5 4.5 1.37×10+12 4.10×10−12 0.212062
50 4.82×10−5 5.7 1.17×10+12 4.10×10−12 0.210793
70 9.41×10−5 8.0 1.24×10+12 4.10×10−12 0.222508
90 8.14×10−5 10.4 1.07×10+12 4.10×10−12 0.217812
80 12 20 7.56×10−5 8.3 1.15×10+12 4.10×10−12 0.211422

14 7.53×10−5 9.0 1.04×10+12 4.10×10−12 0.218499
16 6.68×10−5 9.4 1.17×10+12 4.10×10−12 0.224207
18 4.87×10−5 9.8 1.02×10+12 4.10×10−12 0.226878
20 4.67×10−5 10.0 1.13×10+12 4.10×10−12 0.239581

[14] 5.69×10−5
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(a) (b)

Figure 2. In (a) the spacetime plot shows the exact solutions, in (b) the spacetime plot shows
the numerical solution , the parameters used are α = 1.5, α1 = 1.4, α2 = 1.3, c = 0.5, N =

70, n = 12, and M = 90, along the hyperbolic contour Γ1.
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Figure 3. In (a) the Absolute error and error est(Γ1) are shown corresponding to problem
1 using N = 40, n = 15, α = 1.8, α1 = 1.7, α2 = 1.6, c = 0.5, the results confirms a good
agreement between them. In (b) the error functions for different α, and α j on [0, 1] are shown
using the hyperbolic contour Γ1.

5.2. Problem 2

As a second test problem we consider the following linear fractional equation

Dα
τU(χ, τ) + Dα1

τ U(χ, τ) − D2
χU(χ, τ) = f (χ, τ), (5.4)
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where

f (χ, τ) =

(
6τ3−α

Γ(4 − α)
+

6τ3−α1

Γ(4 − α1)
+ π2τ3

)
sin(πχ).

The exact solution of the problem is

U(χ, τ) = sin(πχ)τ3.

This equation is considered on [0, 1] with boundary conditions

U(0, τ) = U(1, τ) = 0 (5.5)

and initial conditions
U0(χ) = U1(χ) = 0. (5.6)

In this experiment we have utilized both the contours with the same set of optimal parameters. The
numerical experiments are performed with different nodes N in the global domain n in the sub-domain.
The results obtained for fractional orders α, and α1. are displayed in Table 3 along the path Γ1, and
in Table 4 along the path Γ2. The approximate and exact spacetime solutions are displayed in Figures
4(a) and Figure 4(b). The plot of absolute error and error estimate is displayed in Figure 5(a). Figure
5(b) shows the plot of error functions for various values of α, and α1. The results verifies the accuracy,
stability and efficiency of the proposed local meshless scheme for multi-term time fractional wave-
diffusion equations.

Table 3. Numerical solution in the domain [0, 1] and τ = 1 hyperbolic contour Γ1.

α = 1.9, α1 = 1.3
N n M L∞ c κ errorest(Γ1) C.TIME(sec)
60 22 40 8.44×10−5 7.6 1.18×10+12 1.83×10−1 0.667872

60 6.62×10−5 7.6 1.18×10+12 2.12×10−2 1.580686
80 8.62×10−5 7.6 1.18×10+12 2.4 ×10−3 7.362587
90 8.62×10−5 7.6 1.18×10+12 8.18×10−4 10.843996

100 8.62×10−5 7.6 1.18×10+12 2.76×10−4 15.784191
70 10 100 5.52×10−5 6.4 1.15×10+12 2.76×10−4 17.932164

12 2.74×10−5 7.3 1.02×10+12 2.76×10−4 17.859075
14 3.44×10−5 7.8 1.21×10+12 2.76×10−4 18.129870
18 5.21×10−5 8.5 1.17×10+12 2.76×10−4 18.278882
22 7.64×10−5 8.9 1.15×10+12 2.76×10−3 18.479720

50 25 90 9.85×10−5 6.5 1.01×10+12 8.18×10−4 8.730629
60 1.03×10−4 7.8 1.09×10+12 8.18×10−4 11.049126
70 5.40×10−5 9.1 1.14×10+12 8.18×10−4 13.349187
80 6.57×10−5 10.4 1.19×10+12 8.18×10−4 15.124607
90 6.17×10−5 11.8 1.02×10+12 8.18×10−4 17.134190

[14] 7.0080×10−4
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Table 4. Numerical solution in the domain [0, 1] and τ = 1 obtained using Talbot’s contour
Γ2.

α = 1.7, α1 = 1.2
N n M L∞ c κ errorest(Γ2) C.TIME(sec)
70 12 10 2.56×10−1 7.3 1.02×10+12 2.02×10−6 0.202184

12 2.91×10−2 7.3 1.02×10+12 1.47×10−7 0.197720
14 3.10×10−3 7.3 1.02×10+12 1.06×10−8 0.200589
16 3.25×10−4 7.3 1.02×10+12 7.76×10−10 0.202710
18 5.65×10−5 7.3 1.02×10+12 5.64×10−11 0.194221

30 15 20 3.74×10−5 3.4 1.00×10+12 4.10×10−12 0.202098
40 6.97×10−5 4.5 1.37×10+12 4.10×10−12 0.201783
50 6.68×10−5 5.7 1.17×10+12 4.10×10−12 0.204199
70 1.00×10−4 8.0 1.24×10+12 4.10×10−12 0.205864
90 1.36×10−4 10.4 1.07×10+12 4.10×10−12 0.216570
80 12 20 9.70×10−5 8.3 1.15×10+12 4.10×10−12 0.207446

14 4.34×10−5 9.0 1.04×10+12 4.10×10−12 0.206234
16 8.47×10−5 9.4 1.17×10+12 4.10×10−12 0.216176
18 4.76×10−5 9.8 1.02×10+12 4.10×10−12 0.215397
20 5.66×10−5 10.0 1.13×10+12 4.10×10−12 0.244942

[14] 1.39×10−4

(a) (b)

Figure 4. In (a) The spacetime plot shows the exact solution. In (b) the spacetime plot shows
the numerical solution, the parameters used are α = 1.9, α1 = 1.7, N = 70, n = 12, M = 90
on [−5, 5], using the hyperbolic contour Γ1.
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Figure 5. In (a) Absolute error and error est for problem 2 are presented using N = 50, n =

10, α = 1.7, α1 = 1.2, the results confirms a good agreement between them. In (b) Error
functions for different α, and α j on [0, 1], are shown using the hyperbolic contour Γ1. The
figure shows that the error decreases with increasing the values of fractional orders α, and
α1.

5.3. Problem 3

We consider the following fractional equation

Dα
τU(χ, τ) + Dα1

τ U(χ, τ) − D2
χU(χ, τ) = f (χ, τ), (5.7)

where

f (χ, τ) =

(
2τ2−α

cos(χ)Γ(3 − α)
+

2τ2−α1

cos(χ)Γ(3 − α1)

)
−

(
τ2

cos(χ)
+

2τ2

cosec(χ)2 cos(χ)3

)
.

The exact solution of the problem is

U(χ, τ) =
τ2

cos(χ)
.

This equation is considered on [0, 1] with boundary conditions

U(0, τ) = τ2, U(1, τ) =
τ2

cos(1)
(5.8)

and initial conditions
U0(χ) = 0, U1(χ) = 0. (5.9)

The results obtained for third test problem with fractional orders α, and α1 along the hyperbolic
contour Γ1 are displayed in Tables 5, and along the Talbots contour are displayed in Table 6. From the
Tables it can be seen the method has good results in accuracy. Figures 6(a) shows the exact spacetime
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solution and Figure 6(b) shows the numerical spacetime solution. Figure 7(a), and Figure 7(b) absolute
error and error estimate for the contour Γ1 and Γ2 respectively .

Table 5. Numerical solution in the domain [0, 1] and τ = 1 hyperbolic contour Γ1.

α = 1.9, α1 = 1.8,
N n M L∞ c κ errorest(Γ1) C.TIME(sec)
80 25 50 4.20×10−5 10.4 1.19×10+12 6.25×10−2 2.249386

60 3.85×10−5 10.4 1.19×10+12 2.12×10−2 4.114330
70 3.86×10−5 10.4 1.19×10+12 7.2 ×10−3 7.301508
90 3.86×10−5 10.4 1.19×10+12 8.18×10−4 15.044453

100 3.86×10−5 10.4 1.19×10+12 2.76×10−4 21.588645
60 27 90 9.51×10−5 7.9 1.06×10+12 8.18×10−4 11.338375
70 8.41×10−5 9.2 1.16×10+12 8.18×10−4 13.565846
80 1.15×10−4 10.6 1.01×10+12 8.18×10−4 15.034979
90 9.66×10−5 11.9 1.10×10+12 8.18×10−4 17.556509

100 7.93×10−5 13.2 1.16×10+12 8.18×10−4 21.605433
85 20 95 8.45×10−5 10.6 1.21×10+12 4.75×10−4 18.828414

22 5.73×10−5 10.9 1.01×10+12 4.75×10−4 19.612251
24 1.68×10−4 11.0 1.16×10+12 4.75×10−4 19.670357
27 4.26×10−5 11.2 1.16×10+12 4.75×10−4 19.563284
30 5.36×10−5 11.4 1.09×10+12 4.75×10−4 20.041057

[14] 8.81×10−5

Table 6. Numerical solution in the domain [0, 1] and τ = 1 obtained using Talbot’s contour
Γ2.

α = 1.9, α1 = 1.8,
N n M L∞ c κ errorest(Γ2) C.TIME(sec)
70 12 10 3.54×10−2 7.3 1.02×10+12 2.02×10−6 0.142848

12 3.40×10−3 7.3 1.02×10+12 1.47×10−7 0.133224
14 2.83×10−4 7.3 1.02×10+12 1.06×10−8 0.134380
16 4.64×10−5 7.3 1.02×10+12 7.76×10−10 0.133445
18 5.19×10−5 7.3 1.02×10+12 5.64×10−11 0.136420

30 15 20 1.15×10−4 3.4 1.00×10+12 4.10×10−12 0.135380
40 5.10×10−5 4.5 1.37×10+12 4.10×10−12 0.142579
50 1.07×10−4 5.7 1.17×10+12 4.10×10−12 0.137483
70 1.44×10−4 8.0 1.24×10+12 4.10×10−12 0.145392
90 1.49×10−4 10.4 1.07×10+12 4.10×10−12 0.151340
80 12 20 1.29×10−4 8.3 1.15×10+12 4.10×10−12 0.144167

14 1.22×10−4 9.0 1.04×10+12 4.10×10−12 0.139500
16 8.31×10−5 9.4 1.17×10+12 4.10×10−12 0.148407
18 4.78×10−5 9.8 1.02×10+12 4.10×10−12 0.156982
20 9.51×10−5 10.0 1.13×10+12 4.10×10−12 0.166119

[14] 8.81×10−5
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(a) (b)

Figure 6. In (a) The spacetime plot shows the exact solution. In (b) The spacetime plot shows
the numerical solution, the parameters used are α = 1.9, α1 = 1.8, N = 70, n = 15, M = 80
on [0, 1], using the hyperbolic contour Γ1.
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Figure 7. In (a) absolute error and errorest(Γ1) are shown corresponding to problem 3 using
N = 50, n = 10, α = 1.9, α1 = 1.8, the results confirms a good agreement between them. In
(b) absolute error and errorest(Γ2) are shown for the parameter values α = 1.9, α1 = 1.8, N =

70, n = 12 on [0, 1].

5.4. Problem 4

We consider the two dimensional multi-term time fractional wave-diffusion equation

Dα
τU(χ, ϑ, τ) + Dα1

τ U(χ, ϑ, τ) − ∆U(χ, ϑ, τ) = f (χ, ϑ, τ), (5.10)
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subject to zero initial conditions and the boundary conditions are generated from the exact solution

U(χ, ϑ, τ) = eχ+ϑτ2+α+α1

the given 2D test problem is solved with regular nodal points in rectangular, circular and complex
domains.

5.4.1. Rectangular domain

The rectangular domain [0, 1]2 is descretized with N uniformly distributed points. For this problem
also we have used the hyperbolic contour Γ1 and Talbot’s contour Γ2 with the same set of optimal
parameters used for Problem 1. The uniform nodes distribution with boundary stencil red and interior
stencil green are shown in Figure 8. The graphs of exact and approximate solutions for the parameters
α = 1.3, α1 = 1.1, at τ = 1 are shown in the Figure 9(a) and Figure 9(b). The results obtained for
various values of N, n, and M along the path Γ1 and Γ2 are depicted in Table 7 and Table 8 respectively.
From the results one can see that with large number of nodes the proposed method produced accurate
results.
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Figure 8. The regular nodes distribution in rectangular domain with boundary stencil red
and interior stencil green.

(a) (b)

Figure 9. In (a) The plot shows the exact solution. In (b) the plot shows the numerical
solution, the parameters used are α = 1.3, α1 = 1.1.
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Table 7. Numerical solution in the rectangular domain [0, 1]2 for α = 1.3, α1 = 1.1, and
τ = 1 obtained using hyperbolic contour Γ1.

α = 1.3, α1 = 1.1
N n M L∞ c κ errorest(Γ1) C.TIME(sec)

900 14 70 4.26×10−2 1.1 1.22×10+14 7.20×10−3 755.137804
16 1.12×10−2 1.7 3.71×10+12 7.20×10−3 756.918480
18 5.00×10−3 1.9 1.26×10+12 7.20×10−3 751.184383
20 9.22×10−4 2.4 1.48×10+12 7.20×10−3 748.664343

576 20 90 5.15×10−4 1.9 1.51×10+12 8.18×10−4 286.863124
676 5.08×10−4 2.0 2.19×10+12 8.18×10−4 421.440624
784 8.58×10−4 2.2 1.77×10+12 8.18×10−4 608.764593
900 9.22×10−4 2.4 1.48×10+12 8.18×10−4 861.916452
729 20 20 1.10×10−3 2.1 1.96×10+12 1.55×10+0 22.119245

30 7.80×10−4 2.1 1.96×10+12 5.73×10−1 48.770754
50 7.57×10−4 2.1 1.96×10+12 6.25×10−2 138.310373
80 7.57×10−4 2.1 1.96×10+12 2.40×10−3 386.725304

Table 8. Numerical solution in the rectangular domain [0, 1]2 for α = 1.3, α1 = 1.1, and
τ = 1 obtained using Talbot’s contour Γ2.

α = 1.3, α1 = 1.1
N n M L∞ c κ errorest(Γ2) C.TIME(sec)

900 20 16 1.98×10−1 2.4 1.48×10+12 7.76×10−6 9.513650
18 2.15×10−2 2.4 1.48×10+12 5.64×10−11 10.640051
20 2.00×10−3 2.4 1.48×10+12 4.10×10−12 11.661281
22 8.40×10−4 2.4 1.48×10+12 2.97×10−13 12.824995
24 9.12×10−4 2.4 1.48×10+12 2.16×10−14 13.560164

900 14 24 4.28×10−2 1.1 1.22×10+14 2.16×10−14 13.026362
16 1.12×10−2 1.7 3.31×10+12 2.16×10−14 13.463156
18 5.00×10−3 1.9 1.26×10+12 2.16×10−14 13.591828
20 9.12×10−4 2.4 1.48×10+12 2.16×10−14 13.601463

576 20 22 5.11×10−4 1.9 1.51×10+12 2.97×10−13 4.451590
676 5.17×10−4 2.0 2.19×10+12 2.97×10−13 6.401350
784 8.14×10−4 2.2 1.77×10+12 2.97×10−13 9.076440
900 8.40×10−4 2.4 1.48×10+12 2.97×10−13 12.560123
961 8.06×10−4 2.4 2.19×10+12 2.97×10−13 14.919706

5.4.2. Circular Domain

Here we solve the given problem in unit circle with center at (χ, ϑ) = (0.5, 0.5). The domain is
descretized with N uniform nodes. The computational results for different values of N, n, and M along
Γ1 and Γ2 are depicted in Table 9 and Table 10 respectively. Figure 10(a) shows the uniform nodes in
circular domain, whereas Figure 10(b) shows the absolute error computed along the hyperbolic path.
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The exact and approximate solutions are presented in Figures 11(a) and Figure 11(b). The proposed
method produced results with good accuracy in circular domain.
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Figure 10. In (a) The regular nodes distribution in circular domain are shown. In (b) the plot
shows the absolute error for the parameters values α = 1.7, α1 = 1.5,N = 900, n = 50, and
M = 90 along the hyperbolic contour Γ1.
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Figure 11. In (a) The plot shows the exact solution. In (b) the plot shows the numerical
solution, the parameters used are α = 1.5, α1 = 1.3.
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Table 9. Numerical solution in the circular domain for α = 1.3, α1 = 1.1, and τ = 1 obtained
using hyperbolic contour Γ1.

α = 1.3, α1 = 1.1
N n M L∞ c κ errorest(Γ1) C.TIME(sec)

950 60 15 8.30×10−3 4.3 3.11×10+12 2.63×10+0 38.116660
20 1.20×10−3 4.3 3.11×10+12 1.55×10+0 62.890208
30 9.23×10−4 4.3 3.11×10+12 5.37×10−1 133.694751
40 9.17×10−4 4.3 3.11×10+12 1.83×10−2 369.149122

900 30 50 1.30×10−3 3.1 2.82×10+12 6.25×10−2 361.783503
40 2.10×10−3 3.5 5.12×10+12 6.25×10−2 366.883195
50 2.20×10−3 4.1 2.43×10+12 6.25×10−2 363.312789
60 9.17×10−4 4.3 3.11×10+12 6.25×10−2 367.839901

300 59 60 9.77×10−4 4.3 3.06×10+12 2.12×10−2 553.852222
550 9.77×10−4 4.3 3.06×10+12 2.12×10−2 447.562447
800 9.77×10−4 4.3 3.06×10+12 2.12×10−2 531.883062

1100 9.77×10−4 4.3 3.06×10+12 2.12×10−2 531.921143

Table 10. Numerical solution in the circular domain for α = 1.5, α1 = 1.3, and τ = 1
obtained using Talbot’s contour Γ2.

α = 1.5, α1 = 1.3
N n M L∞ c κ errorest(Γ2) C.TIME(sec)

950 50 18 5.87×10−2 4.1 2.43×10+12 5.64×10−11 9.258343
20 7.60×10−3 4.1 2.43×10+12 4.10×10−12 9.959348
22 2.40×10−3 4.1 2.43×10+12 2.97×10−13 10.597861
24 1.90×10−3 4.1 2.43×10+12 2.16×10−14 11.241704

1050 10 26 9.43×10−2 1.2 7.70×10+13 1.57×10−15 9.389988
30 1.20×10−3 3.1 2.82×10+12 1.57×10−15 10.100778
50 1.90×10−3 4.1 2.43×10+12 1.57×10−15 11.882140
60 8.84×10−4 4.3 3.11×10+12 1.57×10−15 13.157724

750 59 28 9.36×10−4 4.3 3.06×10+12 1.14×10−16 13.662250
1150 9.36×10−4 4.3 3.06×10+12 1.14×10−16 13.759729
1250 9.36×10−4 4.3 3.06×10+12 1.14×10−16 13.572409

5.4.3. Complex Shape Domain

In the last test problem we have considered the complex shape domain. The domain is generated by
rd = 1

d [1+2d +d2− (d +1) cos(dθ)], d = 4. In this experiment also we have used the contours Γ1 and Γ2

with the same set of optimal parameters used in Problem 1. The results obtained for fractional orders
α = 1.5, α1 = 1.3, and various nodes N in the global domain and n in the local domain and quadrature
points along the contour Γ1 and Γ2 are shown in Table 11 and Table 12 respectively. The regular nodes
distribution in the complex domain are shown in Figure 12(a), whereas the approximate and exact
solutions are presented in Figures 12(b). Figure 13 shows the absolute error obtained using the Talbots
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contour. It can be seen that the proposed numerical method produced very accurate and stable results
in the complex domain, this confirms the efficiency of the method for such type of equations.

Table 11. Numerical solution in the circular domain for α = 1.5, α1 = 1.3, and τ = 1
obtained using hyperbolic contour Γ1.

α = 1.5, α1 = 1.3
N n M L∞ c κ errorest(Γ1) C.TIME(sec)

851 50 40 4.70×10−3 4.0 1.13×10+12 1.83×10−1 50.524737
50 6.75×10−4 4.0 1.13×10+12 6.25×10−2 79.388630
60 6.74×10−4 4.0 1.13×10+12 2.12×10−2 116.511151
80 6.74×10−4 4.0 1.13×10+12 2.40×10−3 227.719695

852 30 70 1.30×10−3 2.9 6.40×10+12 7.20×10−3 147.655977
40 1.20×10−3 3.4 5.83×10+12 7.20×10−3 158.960295
50 9.34×10−4 3.9 1.82×10+12 7.20×10−3 219.043351
60 9.47×10−4 4.2 1.92×10+12 7.20×10−3 268.501711

457 60 60 6.97×10−4 3.0 3.07×10+12 2.12×10−2 68.420275
542 4.39×10−4 3.3 1.62×10+12 2.12×10−2 89.095051
643 4.86×10−4 3.6 1.79×10+12 2.12×10−2 117.459116
851 7.29×10−4 4.2 1.90×10+12 2.12×10−2 184.241136

Table 12. Numerical solution in the circular domain for α = 1.5, α1 = 1.3, and τ = 1
obtained using Talbot’s contour Γ2.

α = 1.5, α1 = 1.3
N n M L∞ c κ errorest(Γ2) C.TIME(sec)

752 30 24 1.10×10−3 2.7 3.89×10+12 2.16×10−14 3.188624
850 1.80×10−3 2.9 7.98×10+12 2.16×10−14 3.613122
921 1.50×10−3 3.0 2.48×10+13 2.16×10−14 4.028301
974 9.61×10−4 3.2 5.64×10+12 2.16×10−14 4.297978

1020 28 22 2.90×10−3 2.9 3.79×10+13 2.97×10−13 4.261794
40 1.90×10−3 3.7 2.62×10+13 2.97×10−13 5.485432
50 1.00×10−3 4.2 1.13×10+13 2.97×10−13 6.750489
60 9.32×10−4 4.6 6.25×10+12 2.97×10−13 8.366275

1095 70 18 6.47×10−2 5.1 2.15×10+12 5.64×10−11 10.452683
20 6.60×10−3 5.1 2.15×10+12 4.10×10−12 10.778798
22 9.01×10−4 5.1 2.15×10+12 2.97×10−13 11.238818
24 9.97×10−4 5.1 2.15×10+12 2.16×10−14 11.540931
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Figure 12. In (a) The regular nodes distribution in complex domain is shown. In (b) the plot
shows the numerical solution and exact solutions, the parameters used are α = 1.5, α1 = 1.3.

Figure 13. The plot shows absolute error obtained using Talbot’s contour Γ2 for the
parameter values N = 993, n = 30, M = 24, α = 1.5, and α1 = 1.3, at τ = 1.

6. Conclusion

In this work, a local meshless method based on Laplace transform has been utilized for the
approximation of the numerical solution of 1D and 2D multi-term time fractional wave diffusion
equations. We resolved the issue of time-instability which is the common short coming of
time-stepping methods using the Laplace transformation, and the issues of ill-conditioning due to
dense differentiation matrices and shape parameter sensitivity with localized meshless method. The
stability and convergence of the method are discussed. To verify the theoretical results some test
problem in 1D and a test problem in 2D are considered. For the two dimensional problem we have
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considered rectangular, circular, and complex domains. For numerical inversion of Laplace transform
we have utilized two types of contours the hyperbolic and the improved Talbot’s contour. The results
obtained using these two contours were accurate and stable. However, the results show that the
Talbot’s contour is more efficient computationally. The benefit of this method is that it can
approximate such type equations very efficiently and accurately with less computation time, and
without any time instability. The obtained results proves the simplicity in implementation, efficiency,
accuracy, and stability of the proposed method.
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