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1. Introduction

In this paper, we consider the following nonlocal Hénon equation Asu = |x|αup, u > 0 x ∈ B1(0),
u = 0, on ∂B1(0)

(1.1)

with critical growth, where α > 0 is a positive constant, p = n+2s
n−2s , n ≥ 2+2s, 1

2 < s < 1, B1(0) is the unit
ball in Rn and As stands for the fractional Laplacian operator in B1(0) with zero Dirichlet boundary
values on ∂B1(0).

Here, to define the fractional Laplacian operator As in B1(0), let {λk, ϕk} be the eigenvalues and
corresponding eigenfunctions of the Laplacian operator −∆ in B1(0) with zero Dirichlet boundary
values on ∂B1(0), namely, {λk, ϕk} satisfies −∆ϕk = λkϕk, in B1(0),

ϕk = 0, on ∂B1(0)
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with ‖ϕk‖L2(B1(0)) = 1. Then we can define the fractional Laplacian operator As: H s
0(B1(0)) →

H−s
0 (B1(0)) as

Asu =

∞∑
k=1

λs
kckϕk,

where the fractional Sobolev space H s
0(B1(0))(0 < s < 1) is given by

H s
0(B1(0)) =

{
u =

∞∑
k=1

ckϕk ∈ L2(B1(0)) :
∞∑

k=1

λs
kc

2
k < ∞

}
and equipped with the following inner product〈 ∞∑

k=1

ckϕk,

∞∑
k=1

dkϕk

〉
Hs

0(B1(0))
=

∞∑
k=1

λs
kckdk.

Form the above definitions, it immediately follows that for any u, v ∈ H s
0(B1(0)),

〈u, v〉Hs
0(B1(0)) =

∫
B1(0)
A

1
2
s uA

1
2
s v =

∫
B1(0)
Asu · v.

It is well known that the nonlinear fractional equations appear in diverse areas including physics,
biological modeling and mathematical finances and have attracted the considerable attention in the
recent period. Also in recent years, there have been many investigations for the related fractional
problem Asu = f (u), where f : Rn → R is a certain function. But a complete review of the available
results in this context goes beyond the aim of this paper. Here we just mention some very recent papers
which study fractional equations involving the critical sobolev exponent (cf. [3, 7, 19, 20, 21]).

On the other hand, our main interest in the present paper is motivated by some works that have
appeared in recent years related to the classical local Hénon equation of this kind, −∆u = |x|αup, u > 0 x ∈ B1(0),

u = 0, on ∂B1(0).
(1.2)

Among pioneer works we mention Ni [13], where the author established a compactness result of
H1

0,rad(B1(0)) ↪→ Lp+1(B1(0)) and thus got the existence of one positive radial solution for (1.2) if
p ∈ (1, n+2+2α

n−2 ). Later, in [18], Smets, Su and Willem established some symmetry breaking phenomenon
and obtained the non-radial property of the ground state solution of (1.2) if 1 < p < n+2

n−2 and α is large
enough. When n ≥ 3 and p = n+2

n−2 − σ, Cao and Peng [1] verified that the ground state solutions of
(1.2) are non-radial and blow up as σ → 0. Meanwhile, when p = n+2

n−2 , Serra [17] showed that (1.2)
has a non-radial solution if n ≥ 4 and α is large enough. More recently, Wei and Yan [23] proved the
existence of infinitely many non-radial solutions for (1.2) for any α > 0. For other results related to the
Hénon problem (1.2), one can refer to [2, 11, 14, 15] and the references therein.

Up to our knowledge, not much is obtained for the existence of multiple solutions of equation (1.2)
with fractional operator. Motivated by [23] and [12], we want to exploit the finite dimensional reduction
method to investigate the existence of infinitely many non-radial solutions for (1.1). To achieve our
aim, we will study the following more general problem Asu = Φ(|x|)up, u > 0 x ∈ B1(0),

u = 0, on ∂B1(0),
(1.3)
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where Φ(r) is a bounded function defined in [0, 1]. It is easy to check that a necessary condition for the
existence of a solution of (1.3) is that Φ(r) is positive somewhere from Pohozaev identity (see[16]). At
this point we call attention to the recent work of [12], where we studied (1.3) in Rn and proved that if
n > 2 + 2s, 0 < s < 1 and Φ(|x|) satisfies

Φ(r) = Φ0 −
a
rm + O(

1
rm+θ

) as r ∈ (r0 − δ, r0 + δ) (1.4)

with max{2, n − 2s − 2 · (n−2s)2

n+2s } < m < n − 2s,Φ0 > 0, r0 > 0, θ > 0, δ > 0, then (1.3) has infinitely
many non-radial solutions. It is worth mentioning that from assumption (1.4), r0 is a local maximum
point of Φ(r) and then a critical point of Φ(r). Also the function rα achieves its maximum on [0, 1] at
r0 = 1 but r0 = 1 is not a critical point of rα. However we will verify that if Φ(r) is increasing near
r0 = 1, through r0 = 1 is not a critical point of Φ(r), the zero Dirichlet boundary condition makes it
possible to construct infinitely many solutions of (1.3). Now we state our main result as follows:

Theorem 1.1. Suppose that n ≥ 2 + 2s, 1
2 < s < 1. If Φ(1) > 0 and Φ′(1) > 0, then problem (1.3)

has infinitely many non-radial solutions. Particularly, the Hénon equation (1.1) has infinitely many
non-radial solutions.

In the end of this part, let us outline the main idea in the proof of Theorem 1.1.
Given any ε > 0 and y0 ∈ Rn, let

Uε,y0(x) = σn,s

( ε

ε2 + |x − y0|2

) n−2s
2

for x ∈ Rn and σn,s = 2
n−2s

2

(
Γ( n+2s

2 )
Γ( n−2s

2 )

) n−2s
4s
. In 1983, Lieb [10] (also see [6, 7, 8, 9]) proved that Uε,y0(x)

solves the following critical fractional equation

Asu = up, lim
|x|→∞

u(x) = 0, u > 0 in Rn. (1.5)

Also, very recently, J. DÁvila, M. del Pino and Y. Sire [5] obtained the non-degeneracy of Uε,y0(x).
More precisely, if we define the corresponding functional of (1.5) as

I0(u) =
1
2

∫
Rn
|A

1
2
s u|2 −

1
p

∫
Rn
|u|p,

then I0 possesses a finite-dimensional manifold Z of least energy critical points, given by

Z = {Uε,y0 : ε > 0, y0 ∈ Rn}

and

kerI′′0 (u) = spanR

{
∂Uε,y0

∂y0
1

, · · · ,
∂Uε,y0

∂y0
n
,
∂Uε,y0

∂ε

}
, ∀ Uε,y0 ∈ Z.

Now let us fix a positive integer k ≥ k0, where k0 is large, which is to be determined later and set

ν = k
n−2s+1

n−2s ,
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to be the scaling parameter. Using the transformation u(x) 7→ ν−
n−2s

2 u( x
ν
), (1.3) becomes Asu = Φ( |x|

ν
)up, u > 0 x ∈ Bν(0),

u = 0, on ∂Bν(0).
(1.6)

Since Uε,y0 is not zero on ∂Bν(0), we define PUε,y0 as the solution of the following problem

AsPUε,y0 = AsUε,y0 in Bν(0), PUε,y0 = 0 on ∂Bν(0), (1.7)

and we will use the solution PUε,y0 to build up the approximate solutions for (1.6).
For x = (x′, x′′) ∈ R2 × Rn−2, we define

Hk =
{
u : u ∈ H s

0(Bν(0)), u is even in x j, j = 2, · · · , n,

u(r cos θ, r sin θ, x′′) = u(r cos(θ +
2iπ
k

), r sin(θ +
2iπ
k

), x′′)
}
.

Also, we denote

Uε,r(x) =

k∑
i=1

PUε,xi(x),

where
xi =

(
r cos

2(i − 1)π
k

, r sin
2(i − 1)π

k
, 0

)
, i = 1, · · · , k

with 0 is the zero vector in Rn−2. And throughout this paper, we always assume that r ∈
[
ν(1− r0

k ), ν(1−
r1
k )

]
, ε0 ≤ ε ≤ ε1 for some constants r1 > r0 > 0 and ε1 > ε0 > 0.
To prove Theorem 1.1, it suffices to verify the following result:

Theorem 1.2. Under the assumption of Theorem 1.1 , there is an integer k0 > 0, such that for any
integer k ≥ k0, (1.6) has a solution uk of the form

uk = Uε,rk(x) + ωk

where ωk ∈ Hk, and as k → +∞, ‖ωk‖L∞(Bν(0)) → 0, rk ∈
[
ν(1 − r0

k ), ν(1 − r1
k )

]
, ε0 ≤ ε ≤ ε1.

We want to point out that compared with [23], due to the fact that the fractional Laplacian operator
is nonlocal and very few things on this topic are known about the fractional Laplacian, we have to face
much difficulties in the reduction process and need some more delicate estimates in the proof of our
results.

The rest of the paper is organized as follows. In Section 2, we will carry out a reduction procedure
and we prove our main result in Section 3. Finally, in Appendix, some basic estimates and an energy
expansion for the functional corresponding to problem (1.6) will be established.

2. Finite-dimension reduction

In this section, we perform a finite-dimensional reduction. Let

‖u‖∗ = sup
x∈Bν(0)

( k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

)−1
|u(x)| (2.1)
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and

‖ f ‖∗∗ = sup
x∈Bν(0)

( n∑
i=1

1

(1 + |x − xi|)
n+2s

2 +τ

)−1
| f (x)|, (2.2)

where τ = n−2s
n−2s+1 . For this choice of τ, we find that

k∑
i=2

1
|xi − x1|τ

≤
Ckτ

ντ

k∑
i=2

1
iτ
≤ C.

Let

Zi,1 =
∂PUε,xi

∂r
, Zi,2 =

∂PUε,xi

∂ε
.

Now we consider
Asϕk − pΦ

( |x|
ν

)
U p−1
ε,r ϕk = gk +

2∑
l=1

cl

k∑
i=1

U p−1
ε,xi Zi,l, in Bν(0),

ϕk ∈ Hk,〈
U p−1
ε,xi Zi,l, ϕk

〉
= 0, i = 1, ..., k, l = 1, 2

(2.3)

for some numbers cl, where 〈u, v〉 =
∫

Bν(0)
uv. Then we have

Lemma 2.1. Suppose that ϕk solves (2.3) for g = gk. If ‖gk‖∗∗ goes to zero as k goes to infinity, so does
‖ϕk‖∗.

Proof. We will argue by an indirect method. Suppose by contradiction that there exist k → +∞, g =

gk, εk ∈ [ε0, ε1], rk ∈
[
ν(1 − r0

k ), ν(1 − r1
k )

]
and ϕk solving (2.3) for g = gk, ε = εk, r = rk with ‖gk‖∗∗ → 0

and ‖ϕk‖∗ ≥ c > 0. We may assume that ‖ϕk‖∗ = 1. Also for simplicity, we drop the subscript k.
Note that we can rewrite (2.3) as

ϕ(x) = p
∫

Bν(0)

1
|y − x|n−2s Φ

( |y|
ν

)
U p−1
ε,r (y)ϕ(y)dy

+

∫
Bν(0)

1
|y − x|n−2s

(
g(y) +

2∑
l=1

cl

k∑
i=1

U p−1
xi,ε

(y)Zi,l(y)
)
dy.

(2.4)

Now we estimate each terms in (2.4). Analogous to Lemma A.3, we have∣∣∣∣∣∣
∫

Bν(0)

1
|y − x|n−2s Φ

( |y|
ν

)
U p−1
ε,r (y)ϕ(y)dy

∣∣∣∣∣∣
≤ C‖ϕ‖∗

∫
Bν(0)

1
|y − x|n−2s U p−1

ε,r (y)
k∑

i=1

1

(1 + |y − xi|)
n−2s

2 +τ
dy

≤ C‖ϕ‖∗
k∑

i=1

1

(1 + |x − xi|)
n−2s

2 +τ+ε
.

(2.5)
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Meanwhile, by Lemma A.2, we get∣∣∣∣∣∣
∫

Bν(0)

1
|x − y|n−2s g(y)dy

∣∣∣∣∣∣ ≤ C‖g‖∗∗

∫
Bν(0)

1
|x − y|n−2s

k∑
i=1

1

(1 + |y − xi|)
n+2s

2 +τ
dy

≤ C‖g‖∗∗
k∑

i=1

1

(1 + |x − xi|)
n−2s

2 +τ

(2.6)

and ∣∣∣∣∣∣∣
∫

Bν(0)

1
|x − y|n−2s

k∑
i=1

U p−1
ε,xi (y)Zi,l(y)dy

∣∣∣∣∣∣∣
≤ C

∫
Bν(0)

1
|x − y|n−2s

k∑
i=1

U p
ε,xi(y)dy

≤ C
∫

Bν(0)

1
|x − y|n−2s

k∑
i=1

1
(1 + |y − xi|)n+2s dy

≤ C
k∑

i=1

1

(1 + |x − xi|)
n−2s

2 +τ
.

(2.7)

Next, we estimate cl, l = 1, 2. Multiplying (2.3) by Z1,t(t = 1, 2) and integrating, we see that cl

satisfies
2∑

l=1

cl

k∑
i=1

〈
U p−1
ε,xi Zi,l,Z1,t

〉
=

〈
Asϕ − pΦ

( |y|
ν

)
U p−1
ε,r ϕ,Z1,t

〉
−

〈
g,Z1,t

〉
. (2.8)

First, it follows from Lemma A.1 that

|
〈
g,Z1,t

〉
| ≤ C‖g‖∗∗

∫
Bν(0)

1
(1 + |y − x1|)n−2s

k∑
i=1

1

(1 + |y − xi|)
n+2s

2 +τ

≤ C‖g‖∗∗.

On the other hand,〈
Asϕ − pΦ

( |y|
ν

)
U p−1
ε,r ϕ,Z1,t

〉
=

〈
AsZ1,t − pΦ

( |y|
ν

)
U p−1
ε,r Z1,t, ϕ

〉
=

〈
pU p−1

x1,ε
Z1,t − pΦ

( |y|
ν

)
U p−1
ε,r Z1,t, ϕ

〉
≤ C‖ϕ‖∗

∫
Bν(0)

∣∣∣∣Φ( |y|
ν

)
− 1

∣∣∣∣( k∑
i=1

1
(1 + |y − xi|)n−2s

)p−1 1
(1 + |y − x1|)n−2s

·

k∑
i=1

1

(1 + |y − xi|)
n−2s

2 +τ
=: J0.

(2.9)

Define

Ωi =
{
x = (x′, x′′) ∈ Bν(0) : 〈

x′

|x′|
,

(xi)′

|(xi)′|
〉 ≥ cos

π

k

}
, i = 1, 2, · · · , k.
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Observe that for y ∈ Ω1, |y − xi| ≥ |y − x1| and then

k∑
i=2

1
(1 + |y − xi|)n−2s ≤ C

1

(1 + |y − x1|)
n−2s

2

k∑
i=2

1

(1 + |y − xi|)
n−2s

2

≤ C
1

(1 + |y − x1|)n−2s−τ

k∑
i=2

1
|x1 − xi|τ

≤ C
(k
ν

)τ 1
(1 + |y − x1|)n−2s−τ ,

which implies

( k∑
i=1

1
(1 + |y − xi|)n−2s

) 4s
n−2s
≤ C

1

(1 + |y − x1|)4s− 4sτ
n−2s

and
k∑

i=1

1

(1 + |y − xi|)
n−2s

2 +τ
≤ C

1

(1 + |y − x1|)
n−2s

2

.

As a result, from (2.9), we have

J0 ≤ Ck‖ϕ‖∗

∫
Bν(0)

∣∣∣∣Φ( |y|
ν

)
− 1

∣∣∣∣ 1

(1 + |y − x1|)
3n
2 +s− 4s

n−2s

. (2.10)

Using the same argument used for proving (A.7), it follows from (2.9) and (2.10) that

〈
Asϕ − pΦ

( |y|
ν

)
U p−1
ε,r ϕ,Z1,t

〉
= o(‖ϕ‖∗). (2.11)

Finally, we have

k∑
i=1

〈
U p−1
ε,xi Zi,l,Z1,t

〉
≤ C

k∑
i=1

∫
Bν(0)

( 1
(1 + |x − xi|)n−2s

)p 1
(1 + |x − x1|)n−2s dx

≤ C.

Hence using (2.8), we get
cl = o(‖ϕ‖∗) + O(‖g‖∗∗). (2.12)

So, combining (2.4)-(2.7) and (2.12), one has

‖ϕ‖∗ ≤
(
‖g‖∗∗ +

k∑
i=1

1

(1+|y−xi |)
n−2s

2 +τ+ε

k∑
i=1

1

(1+|y−xi |)
n−2s

2 +τ

)
. (2.13)
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Being ‖ϕ‖∗ = 1, we obtain from (2.13) that there is R > 0 such that

‖ϕ(x)‖
L∞

(
BR(xi)

) ≥ a > 0, (2.14)

for some i. But, by using (2.3), ϕ̃(x) = ϕ(x − xi) converges, uniformly in any compact set, to a solution
φ of the following equation

Asφ − pU p−1
ε,0 φ = 0, in Rn

for some ε ∈ [ε0, ε1]. Due to the non-degeneracy of Uε,0, we can infer that φ = 0, which yields a
contradiction with (2.14) and then this proof has been proved. �

From Lemma 2.1, arguing as proving Proposition 4.1 in [6] or Proposition 2.2 in [12], we can show
the following result.

Proposition 2.2. There exists k0 > 0 and a constant C > 0, independent of k, such that for all k ≥ k0,

and g ∈ L∞(Rn), problem (2.3) has a unique solution ϕ = Lk(g). Also

‖Lk(g)‖∗ ≤ C‖g‖∗∗

and
|cl| ≤ C‖g‖∗∗.

To prove our results, we consider
As(Uε,r + ϕ) = Φ

( |x|
ν

)
(Uε,r + ϕ)p +

2∑
l=1

cl

k∑
i=1

U p−1
ε,xi Zi,l, in Bν(0),

ϕ ∈ Hk,〈
U p−1
ε,xi Zi,l, ϕ

〉
= 0, i = 1, ..., k, l = 1, 2.

(2.15)

In order to use the contraction mapping theorem to prove that (2.15) is uniquely solvable in the set
that ‖ϕ‖∗ is small, we rewrite (2.15) as

Asϕ − pΦ
( |x|
ν

)
U p−1
ε,r ϕ = N(ϕ) + lk +

2∑
l=1

cl

k∑
i=1

U p−1
ε,xi Zi,l, in Bν(0),

ϕ ∈ Hk,〈
U p−1
ε,xi Zi,l, ϕ

〉
= 0, i = 1, ..., k, l = 1, 2,

(2.16)

where
N(ϕ) = Φ

( |x|
ν

)((
Uε,r + ϕ

)p
− U p

ε,r − pU p−1
ε,r ϕ

)
and

lk = Φ
( |x|
ν

)
U p
ε,r −

k∑
i=1

U p
ε,xi .

Lemma 2.3. There holds
‖N(ϕ)‖∗∗ ≤ C‖ϕ‖min{p,2}

∗ .
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Proof. Firstly, we deal with the case p ≤ 2. By Hölder inequality, we find

|N(ϕ)| ≤ C‖ϕ‖p
∗

( k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

)p

≤ C‖ϕ‖p
∗

k∑
i=1

1

(1 + |x − xi|)
n+2s

2 +τ

( k∑
i=1

1
(1 + |x − xi|)τ

) 4s
n−2s

≤ C‖ϕ‖p
∗

k∑
i=1

1

(1 + |y − xi|)
n+2s

2 +τ
.

Using the same argument as above, if p > 2, we also have

|N(ϕ)| ≤ C‖ϕ‖2∗
( k∑

i=1

1
(1 + |x − xi|)n−2s

)p−2( k∑
j=1

1

(1 + |x − x j|)
n−2s

2 +τ

)2

+‖ϕ‖p
∗

( k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

)p

≤ C(‖ϕ‖p
∗ + ‖ϕ‖2∗)

( k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

)p

≤ C‖ϕ‖2∗
k∑

i=1

1

(1 + |x − xi|)
n+2s

2 +τ
,

which completes our proof. �

Lemma 2.4. Assume that r ∈
[
ν(1 − r0

k ), ν(1 − r1
k )

]
. Then there is a small ε > 0, such that

‖lk‖∗∗ ≤ C
(1
ν

) 1
2 +ε
.

Proof. Recall that

Ωi =
{
x = (x′, x′′) ∈ Bν(0) : 〈

x′

|x′|
,

(xi)′

|(xi)′|
〉 ≥ cos

π

k

}
and

lk = Φ
( |x|
ν

)(
U p
ε,r −

k∑
i=1

(PUε,xi)p
)

+Φ
( |x|
ν

)( k∑
i=1

(PUε,xi)p −

k∑
i=1

U p
ε,xi

)
+

k∑
i=1

U p
ε,xi

(
Φ
( |x|
ν

)
− 1

)
=: J1 + J2 + J3.

By symmetry, we can suppose that x ∈ Ω1 and for any x ∈ Ω1,

|x − xi| ≥ |x − x1|.
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Thus

|J1| ≤ C
1

(1 + |x − x1|)4s

k∑
i=2

1
(1 + |x − xi|)n−2s + C

( k∑
i=2

1
(1 + |x − xi|)n−2s

)p
. (2.17)

By Lemma A.1, taking any 1 < θ ≤ n+2s
2 , we obtain that for any x ∈ Ω1,

1
(1 + |x − x1|)4s

k∑
i=2

1
(1 + |x − xi|)n−2s ≤

1

(1 + |x − x1|)
n+2s

2

k∑
i=2

1

(1 + |x − xi|)
n+2s

2

≤ C
k∑

i=2

[
1

(1 + |x − x1|)n+2s−θ +
1

(1 + |x − xi|)n+2s−θ

]
1

|xi − x1|θ

≤ C
1

(1 + |x − x1|)n+2s−θ

k∑
i=2

1
|xi − x1|θ

≤
C

(1 + |x − xi|)n+2s−θ

(k
ν

)θ
.

Choosing θ > n−2s+1
2 with n + 2s − θ ≥ n+2s

2 + τ, we have

1
(1 + |x − x1|)4s

k∑
i=2

1
(1 + |x − xi|)n−2s ≤

C

(1 + |x − x1|)
n+2s

2 +τ

(
1
ν

) 1
2 +ε

. (2.18)

On the other hand, for x ∈ Ω1, by Lemma A.1 again, we get

1
(1 + |x − xi|)n−2s

≤
1

(1 + |x − x1|)
n−2s

2

1

(1 + |x − xi|)
n−2s

2

≤
C

|xi − x1|
n−2s

2 −
n−2s
n+2s τ

( 1

(1 + |x − x1|)
n−2s

2 + n−2s
n+2s τ

+
1

(1 + |x − xi|)
n−2s

2 + n−2s
n+2s τ

)
≤

C

|xi − x1|
n−2s

2 −
n−2s
n+2s τ

1

(1 + |x − x1|)
n−2s

2 + n−2s
n+2s τ

.

So
k∑

i=2

1
(1 + |x − xi|)n−2s ≤ C

(k
ν

) n−2s
2 −

n−2s
n+2s τ 1

(1 + |x − x1|)
n−2s

2 + n−2s
n+2s τ

,

which gives ( k∑
i=2

1
(1 + |x − xi|)n−2s

)p
≤ C

(k
ν

) n+2s
2 −τ 1

(1 + |x − x1|)
n+2s

2 +τ
. (2.19)

Combining (2.17)-(2.19), we have

‖J1‖∗∗ ≤ C
(1
ν

) 1
2 +ε
.
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Now, we estimate J2. Let H(x, y) be the regular part of the Green function forAs in B1(0) with the
Dirichlet boundary condition (see the definition in Appendix) and let x̄i

∗ be the reflection point of x̄i

with respect to ∂B1(0), where x̄i = xi

ν
. Then

H(x̄, x̄i)
νn−2s =

C
νn−2s|x̄ − x̄i

∗|
n−2s ≤

C
(1 + |x − xi|)n−2s .

Take κ = 1 − θ with θ > 0 small. By (A.1), we have

|J2| ≤

k∑
i=1

C
(1 + |x − xi|)4s

H(x̄, x̄i)
νn−2s

≤

k∑
i=1

C
(1 + |x − xi|)4s+κ(n−2s)

(H(x̄, x̄i)
νn−2s

)κ
≤ C

( 1
ν`

)κ(n−2s)
k∑

i=1

1
(1 + |x − xi|)4s+κ(n−2s)

≤ C
(1
ν

) 1
2 +ε

k∑
i=1

1
(1 + |x − xi|)4s+κ(n−2s)

≤ C
(1
ν

) 1
2 +ε

k∑
i=1

1

(1 + |x − xi|)
n+2s

2 +τ
,

since θ n−2s
n−2s+1 >

1
2 for n ≥ 2 + 2s.

Finally, we estimate J3. For any x ∈ Ω1 and i = 2, · · · , k, applying Lemma A.1, we get

U p
ε,xi(x) ≤ C

1

(1 + |x − x1|)
n+2s

2

1

(1 + |x − xi|)
n+2s

2

≤ C
( 1

(1 + |x − x1|)
n+2s

2 +τ
+

1

(1 + |x − xi|)
n+2s

2 +τ

) 1

|xi − x1|
n+2s

2 −τ

≤ C
1

(1 + |x − x1|)
n+2s

2 +τ

1

|xi − x1|
n+2s

2 −τ
,

which gives that ∣∣∣∣∣∣∣
k∑

i=2

(
Φ
( |x|
ν

)
− 1

)
U p
ε,xi

∣∣∣∣∣∣∣ ≤ C 1

(1+|x−xi |)
n+2s

2 +τ

k∑
i=1

1

|xi − x1|
n+2s

2 −τ

≤ C
1

(1 + |x − x1|)
n+2s

2 +τ

(k
ν

) n+2s
2 −τ

≤ C
(1
ν

) 1
2 +ε 1

(1 + |x − x1|)
n+2s

2 +τ
.

(2.20)

On the other hand, if x ∈ Ω1 and ||x| − ν| ≥ δν, where δ > 0 is a fixed constant, then

||x| − |x1|| ≥ ||x| − ν| − ||x1| − ν| ≥
1
2
δν
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and thus ∣∣∣∣(Φ(
|x|
ν

) − 1
)
U p
ε,x1

∣∣∣∣ ≤ C

ν
n+2s

2 −τ

1

(1 + |x − x1|)
n+2s

2 +τ
. (2.21)

If x ∈ Ω1 and ||x| − ν| ≤ δν, we find∣∣∣∣Φ( |x|
ν

) − 1
∣∣∣∣ ≤ C

∣∣∣∣ |x|ν − 1
∣∣∣∣ ≤ C

ν

(
(|x| − |x1|) + (|x1| − ν)

)
≤

C
ν

(|x| − |x1|) +
C
k

≤
C
ν

(|x| − |x1|) +
C

ν
1
2 +ε

(2.22)

and ||x| − |x1|| ≤ ||x| − ν| + |ν − |x1|| ≤ 2δν. Thus,

|x| − |x1|

ν

1
(1 + |x − x1|)n+2s ≤

C

ν
1
2 +ε

||x| − |x1||
1
2−ε

(1 + |x − x1|)n+2s

≤ C
(1
ν

) 1
2 +ε 1

(1 + |x − x1|)
n+2s

2 +τ
,

which, together with (2.20)-(2.22), yields that

‖J3‖∗∗ ≤ C
(1
ν

) 1
2 +ε
.

This finished this proof.
�

Proposition 2.5. There is an integer k0 > 0, such that for each k ≥ k0, ε0 ≤ ε ≤ ε1, r ∈
[
ν(1− r0

k ), ν(1−
r1
k )

]
, (2.16) has a unique solution ϕ = ϕ(r, ε) satisfying

‖ϕ‖∗ ≤ C
(1
ν

) 1
2 +ε
, |cl| ≤ C

(1
ν

) 1
2 +ε
,

where ε > 0 is a small constant.

Proof. Recall that ν = k
n−2s+1

n−2s and set

N =

{
w : w ∈ Cα0(Bν(0)) ∩ Hk, ‖w‖∗ ≤

C

ν
1
2

,

∫
Bν(0)

U p−1
ε,xi Zi,lw = 0

}
,

where 0 < α0 < s and i = 1, 2, ..., k, l = 1, 2. From Proposition 2.2, solving (2.16) is equivalent to
solving

ϕ = B(ϕ) := Lk(N(ϕ)) + Lk(lk),

where Lk is defined in Proposition 2.2.
Firstly, we find

‖B(ϕ)‖∗ ≤ C‖N(ϕ)‖∗∗ + C‖lk‖∗∗ ≤ C‖ϕ‖min{p,2}
∗ + C

(1
ν

) 1
2 +ε

≤ C
(1
ν

) 1
2 (min{p,2})

+ C
(1
ν

) 1
2 +ε

≤ C
(1
ν

) 1
2 +ε
≤

C

ν
1
2

,
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which tells that B maps N to N .
On the other hand, since

|N′(t)| ≤ C|t|min{p−1,1},

we get

|Lk(N(ϕ1)) − Lk(N(ϕ2))|
≤ C(|ϕ1|

min{p−1,1} + |ϕ2|
min{p−1,1})|ϕ1 − ϕ2|

≤ C(‖ϕ1‖
min{p−1,1}
∗ + ‖ϕ2‖

min{p−1,1}
∗ )‖ϕ1 − ϕ2‖∗

( k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

)min{p,2}
.

Taking into account that( k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

)min{p,2}
≤

k∑
i=1

C

(1 + |x − xi|)
n+2s

2 +τ
,

we have

‖B(ϕ1) − B(ϕ2)‖∗ ≤ C‖N(ϕ1) − N(ϕ2)‖∗∗
≤ C(‖ϕ1‖

min{p−1,1}
∗ + ‖ϕ2‖

min{p−1,1}
∗ )|ϕ1 − ϕ2|∗

≤
1
2
‖ϕ1 − ϕ2‖∗.

Thus B is a contraction map.
Therefore, Applying the contraction mapping theorem, we can find a unique ϕ = ϕ(r, ε) ∈ N such

that
ϕ = B(ϕ)

and
‖ϕ‖∗ ≤ C

(1
ν

) 1
2 +ε
.

Moreover, we get the estimate of cl from (2.12).
�

3. Proof of Theorem 1.2

Let F(`, ε) = I(Uε,r +ϕ), where r = |x1|, ` = 1− r
ν
, ϕ is the function obtained in Proposition 2.5, and

I(u) =
1
2

∫
Bν(0)
|A

1
2
s u|2 −

1
p + 1

∫
Bν(0)

Φ
( |x|
ν

)
|u|p+1.

Proposition 3.1. We have

F(`, ε) = I(Uε,r) + O
(

k
ν1+ε

)
= k

(
A +

A1H(x̄1, x̄1)
εn−2sνn−2s + A2Φ

′(1)` −
k∑

i=2

A1G(x̄i, x̄1)
εn−2sνn−2s + O

( 1
ν1+ε

))
where A, A1, A2 are some positive constants, ε > 0 is a small constant.
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Proof. Since
〈I′(Uε,r + ϕ), ϕ〉 = 0, ∀ϕ ∈ N ,

there is t ∈ (0, 1) such that

F(`, ε) = I(Uε,r + ϕ)

= I(Uε,r) −
1
2

D2I(Uε,r + tϕ)(ϕ, ϕ)

= I(Uε,r) −
1
2

∫
Bν(0)

(∣∣∣A 1
2
s ϕ

∣∣∣2 − pΦ
( |x|
ν

)
(Uε,r + tϕ)p−1ϕ2

)
= I(Uε,r) −

1
2

∫
Bν(0)

(N(ϕ) + lk)ϕ

+
p
2

∫
Bν(0)

Φ
( |x|
ν

)(
(Uε,r + tϕ)p−1 − U p−1

ε,r
)
ϕ2

= I(Uε,r) + O
( ∫

Bν(0)

(
|ϕ|p+1 + |N(ϕ)||ϕ| + |lk||ϕ|

))
.

Firstly, ∫
Bν(0)

(|N(ϕ)||ϕ| + |lk||ϕ|)

≤ C(‖N(ϕ)‖∗∗ + ‖lk‖∗∗)‖ϕ‖∗

∫
Bν(0)

k∑
i=1

1

(1 + |x − xi|)
n+2s

2 +τ

k∑
j=1

1

(1 + |x − x j|)
n−2s

2 +τ
.

From
k∑

i=2

1
|xi−x1 |τ

≤ C and Lemma A.1, we obtain

k∑
i=1

1

(1 + |x − xi|)
n+2s

2 +τ

k∑
j=1

1

(1 + |x − x j|)
n−2s

2 +τ

=

k∑
i=1

1
(1 + |x − xi|)n+2τ +

k∑
j=1

∑
j,i

1

(1 + |x − xi|)
n+2s

2 +τ

1

(1 + |x − x j|)
n−2s

2 +τ

≤

k∑
i=1

1
(1 + |x − xi|)n+2τ + C

k∑
i=1

1
(1 + |x − xi|)n+τ

k∑
j=2

1
|x j − x1|τ

≤ C
k∑

i=1

1
(1 + |x − xi|)n+τ

.

Therefore, we see∫
Bν(0)

(|N(ϕ)||ϕ| + |lk||ϕ|) ≤ C(‖N(ϕ)‖∗∗ + ‖lk‖∗∗)‖ϕ‖∗

∫
Bν(0)

k∑
i=1

1
(1 + |x − xi|)n+τ

≤ Ck(‖N(ϕ)‖∗∗ + ‖lk‖∗∗)‖ϕ‖∗ ≤ Ck
( 1
ν1+ε

)
.
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On the other hand, by Hölder inequality, we have∫
Bν(0)
|ϕ|p+1 ≤ C‖ϕ‖p+1

∗

∫
Bν(0)

( k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

)p+1

≤ C‖ϕ‖p+1
∗

∫
Bν(0)

( k∑
i=1

1
(1 + |x − xi|)n+τ

)( k∑
i=1

1
(1 + |x − xi|)τ

)p

≤ C‖ϕ‖p+1
∗

∫
Bν(0)

k∑
i=1

1
(1 + |x − xi|)n+τ

≤ Ck‖ϕ‖p+1
∗ ≤ Ck

( 1
ν1+ε

)
.

Combining the estimates above and applying Proposition A.5, we have proved

F(`, ε) = k
(
A +

A1H(x̄1, x̄1)
εn−2sνn−2s + A2Φ

′(1)` −
k∑

i=2

A1G(x̄i, x̄1)
εn−2sνn−2s + O

( 1
ν1+ε

))
.

�

Proposition 3.2. We have

∂F(`, ε)
∂ε

=k(n − 2s)A1

(
−

H(x̄1, x̄1)
εn+1−2sνn−2s +

k∑
i=2

G(x̄i, x̄1)
εn+1−2sνn−2s + O

( 1
ν1+ε

))
,

and

∂F(`, ε)
∂`

=k
(
A1

∂H(x̄1,x̄1)
∂`

εn−2sνn−2s + A2Φ
′(1) − A1

k∑
i=2

∂G(x̄i,x̄1)
∂`

εn−2sνn−2s + O
( 1
νε

))
,

where A1, A2 are the same constants as in Proposition 3.1, and ε > 0 is a small constant.

Proof. Note that

∂F(`, ε)
∂ε

=
〈
I′(Uε,r + ϕ),

∂Uε,r

∂ε
+
∂ϕ

∂ε

〉
=

〈
I′(Uε,r + ϕ),

∂Uε,r

∂ε

〉
+

2∑
l=1

k∑
i=1

cl

〈
U p−1
ε,xi Zi,l,

∂ϕ

∂ε

〉
=
∂I(Uε,r)
∂ε

−

∫
Bν(0)

Φ
( |x|
ν

)[
(Uε,r + ϕ)p − U p

ε,r
]∂Uε,r

∂ε

+

2∑
l=1

k∑
i=1

cl

〈
U p−1
ε,xi Zi,l,

∂ϕ

∂ε

〉
.

Considering 〈
U p−1
ε,xi Zi,l,

∂ϕ

∂ε

〉
= −

〈∂(U p−1
ε,xi Zi,l

)
∂ε

, ϕ
〉
,
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and from Proposition 2.5, we can get

∣∣∣∣ k∑
i=1

cl

〈
U p−1
ε,xi Zi,l,

∂ϕ

∂ε

〉∣∣∣∣
≤ C|cl|‖ϕ‖∗

∫
Bν(0)

k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ

k∑
j=1

1
(1 + |x − x j|)n+2s

≤ C
k
ν1+ε

.

On the other hand, being ϕ ∈ N , we have∫
Bν(0)

Φ
( |x|
ν

)
[(Uε,r + ϕ)p − U p

ε,r]
∂Uε,r

∂ε

=

∫
Bν(0)

pΦ
( |x|
ν

)
U p−1
ε,r

∂Uε,r

∂ε
ϕ + O

( ∫
Bν(0)
|ϕ|2

)
=

∫
Bν(0)

pΦ
( |x|
ν

)(
U p−1
ε,r

∂Uε,r

∂ε
ϕ −

k∑
i=1

Uε,xi
∂Uε,xi

∂ε

)
ϕ

+p
k∑

i=1

∫
Bν(0)

(
Φ
( |x|
ν

)
− 1

)
U p−1
ε,xi

∂Uε,xi

∂ε
ϕ + O

( ∫
Bν(0)
|ϕ|2

)
= k

∫
Ω1

pΦ
( |x|
ν

)(
U p−1
ε,r

∂Uε,r

∂ε
ϕ −

k∑
i=1

Uε,xi
∂Uε,xi

∂ε

)
ϕ

+k
∫

Bν(0)
p
(
Φ
( |x|
ν

)
− 1

)
U p−1
ε,x1

∂Uε,x1

∂ε
ϕ + O

( ∫
Bν(0)
|ϕ|2

)
,

∣∣∣∣ ∫
Ω1

Φ
( |x|
ν

)(
U p−1
ε,r

∂Uε,r

∂ε
ϕ −

k∑
i=1

Uε,xi
∂Uε,xi

∂ε

)
ϕ
∣∣∣∣

≤ C
∫

Ω1

(
U p−1
ε,r (Uε,x1 − PUε,x1) + U p−1

ε,x1

k∑
i=2

Uε,xi +

k∑
i=2

U p
ε,xi

)
|ϕ|

≤
C
ν1+ε

and ∣∣∣∣ ∫
Bν(0)

(
Φ
( |x|
ν

)
− 1

)
U p−1
ε,x1

∂Uε,x1

∂ε
ϕ
∣∣∣∣

≤

∣∣∣∣ ∫∣∣∣|x|−ν∣∣∣≤√ν +

∫∣∣∣|x|−ν∣∣∣≥√ν (Φ( |x|
ν

)
− 1

)
U p−1
ε,x1

∂Uε,x1

∂ε
ϕ
∣∣∣∣

≤
C
ν1+ε

.
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Thus, using the estimates above,

∂F(`, ε)
∂ε

=
∂I(Uε,r)
∂ε

+ O
( k
ν1+ε

)
,

from which and Proposition A.6, the conclusion follows.
Finally, noting that ∂

∂`
= −ν ∂

∂r and arguing as before, we can get the estimate ∂F(`,ε)
∂`

. �

To prove Theorem 1.2, now we estimate H(x̄1, x̄1) and G(x̄i, x̄1), i ≥ 2. Let x̄1
∗ =

( 1
|x̄1 |
, 0, · · · , 0

)
be

the reflection of x̄1 with respect to the unit sphere. Then

H(x̄1, x̄1) =
C

|x̄1 − x̄1
∗ |

n−2s =
C

2n−2s`n−2s

for some constant C > 0.
On the other hand,

|x̄i − x̄1
∗ | =

√
|x̄i − x̄1|2 + 4`2 − 4`|x̄i − x̄1|cosθi,

where θi is the angle between x̄i − x̄1 and (1, 0, · · · , 0) and then θi = π
2 +

(i−1)π
k . Thus

G(x̄i, x̄1) =
C

|x̄i − x̄1|n−2s −
C

|x̄i − x̄1
∗ |

n−2s

=
C

|x̄i − x̄1|n−2s

(
1 −

1

1 +
4`2+4`|x̄i−x̄1 |sin (i−1)π

k
|x̄i−x̄1 |2

) n−2s
2
.

As
|x1 − xi| = 2|x1|sin

(i − 1)π
k

, i = 2, · · · , k,

`k → c > 0 and

0 < c <
sin (i−1)π

k
(i−1)π

k

≤ c′, i = 2, · · · , [
k
2

],

we find
c1

i2 ≤
4`2 + 4`|x̄i − x̄1|sin (i−1)π

k

|x̄i − x̄1|2
≤

c2

i2

for some constants c2 ≥ c1 > 0.
So, there exists a constant A3 > 0 such that

k∑
i=2

G(x̄i, x̄1) =

k∑
i=2

C
|x̄i − x̄1|n−2s

(
1 + O

( 1
(1 + c

i2 )n−2s

))
=

k∑
i=2

C
|x̄i − x̄1|n−2s

(
c̃ + O(

1
i2 )

)
= A3kn−2s + O(

1
k

).

Therefore, it follows from Propositions 3.1 and 3.2 that there are constants B1, B2, B3 such that

F(`, ε) = k
(
A +

B1

εn−2sνn−2s`n−2s + B2` −
B3kn−2s

εn−2sνn−2s + O
( 1
ν1+ε

))
, (3.1)

AIMS Mathematics Volume 5, Issue 6, 5743–5767.



5760

∂F(`, ε)
∂ε

=k
(
−

B1(n − 2s)
εn+1−2sνn−2s`n−2s +

B3(n − 2s)kn−2s

εn+1−2sνn−2s + O
( 1
ν1+ε

)) (3.2)

and

∂F(`, ε)
∂`

=k
(
−

B1(n − 2s)
εn−2sνn−2s`n+1−2s + B2 + O

( 1
νε

))
. (3.3)

Proof of Theorem 1.2. Recall that ` = 1− r
ν

and ν = k
n−2s+1

n−2s . Denote L = `k. Then from (3.2) and (3.3),
∂F(`,ε)
∂ε

= 0 and ∂F(`,ε)
∂`

= 0 are equivalent to

−B1(n − 2s)
εn+1−2sLn−2s +

B3(n − 2s)
εn+1−2s + O

( 1
νε

)
= 0 (3.4)

and
−B1(n − 2s)
εn−2sLn+1−2s + B2 + O

( 1
νε

)
= 0 (3.5)

respectively.
Denote

h1(L, ε) =
−B1(n − 2s)
εn+1−2sLn−2s +

B3(n − 2s)
εn+1−2s

and

h2(L, ε) =
−B1(n − 2s)
εn−2sLn+1−2s + B2.

Thus h1 = 0 and h2 = 0 have a unique solution

L0 =
(B1

B3

) 1
n−2s , ε0 =

(B1(n − 2s)
B2Ln+1−2s

0

) 1
n−2s .

Moreover, it is easy to verify that

∂h1(L0, ε0)
∂ε

= 0,
∂h2(L0, ε0)

∂L
> 0

and
∂h1(L0, ε0)

∂L
=
∂h2(L0, ε0)

∂ε
> 0,

which means that h1 = 0 and h2 = 0 at (L0, ε0) is invertible. So, (3.4) and (3.5) have a solution near
(L0, ε0).

�
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Rev. Mat. Iberoam., 29 (2013), 997–1020.

A. Energy expansion

In this section, we will give some basic estimates and the energy expansion for the approximate
solutions. First, recall that

xi =
(
r cos

2(i − 1)π
k

, r sin
2(i − 1)π

k
, 0

)
, i = 1, · · · , k,

where 0 ∈ Rn−2, r ∈
[
ν(1 − r0

k ), ν(1 − r1
k )

]
, and

I(u) =
1
2

∫
Bν(0)
|A

1
2
s u|2 −

1
p + 1

∫
Bν(0)

Φ
( |x|
ν

)
|u|p+1.

Now, we introduce the following two lemmas which are important in this sequel and have been
proved in [22] and [12] respectively.

Lemma A.1. For any constant 0 < σ ≤ min{α, β}, there exists a constant C > 0, such that

1
(1 + |y − xi|)α

1
(1 + |y − x j|)β

≤
C

|xi − x j|σ

( 1
(1 + |y − xi|)α+β−σ

+
1

(1 + |y − x j|)α+β−σ

)
.

Lemma A.2. For any constant 0 < κ < n − 2s, there is a constant C > 0 such that∫
Bν(0)

1
|y|n−2s

1
(1 + |x − y|)2s+κ dy ≤

C
(1 + |x|)κ

.

Note that

Uε,r(x) =

k∑
i=1

PUε,xi(x)

and

Uε,xi(x) = Cn,s
ε

n−2s
2

(1 + ε2|x − xi|2)
n−2s

2

for some suitable Cn,s. We have
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Lemma A.3. There is a small ε > 0 and some constant C > 0 such that∫
Bν(0)

1
|x − y|n−2s U

4s
n−2s
ε,r (y)

k∑
i=1

1

(1 + |y − xi|)
n−2s

2 +τ
dy ≤ C

k∑
i=1

1

(1 + |x − xi|)
n−2s

2 +τ+ε
.

Proof. We can find this proof in [12]. Here we just need to use

Uε,r(x) ≤ C
k∑

i=1

1
(1 + |x − xi|)n−2s .

�

Let G(x, y) be the Green function of As in B1(0) with the Dirichlet boundary condition (see [4]),
namely, G(x, y) solves

AsG(·, y) = δy in B1(0), G(·, y) = 0 on B1(0),

and the regular part of G is given by

H(x, y) =
αn,s

|x − y|n−2s −G(x, y),

where αn,s = 1
|S n−1 |

21−2sΓ( n−2s
2 )

Γ( n
2 )Γ(s) .

Let x̄i = xi

ν
. Then

Proposition A.4. We have

Uε,xi(x) − PUε,xi(x) =
1

ε
n−2s

2 νn−2s
H(x̄, x̄i) + O

( 1
(ν`)n+2−2s

)
, (A.1)

where ` = 1 − |x̄i| = 1 − r
ν
.

Proof. First, letting ϕxi,ε = Uε,xi − PUε,xi , from the equations satisfied by Uε,xi and PUε,xi , we can get
that  Asϕxi,ε = 0 in Bν(0),

ϕxi,ε = Cn,s
1

ε(n−2s)/2 |x−xi |n−2s + O
( 1
εn+2−2s |x−xi |n+2−2s

)
on ∂Bν(0).

(A.2)

Denote by G̃(x, y) the Green function of As in Bν(0) with the Dirichlet boundary condition and by
H̃(x, y) the regular part of G̃(x, y). So we can find AsH̃(x, xi) = 0 in Bν(0),

H̃(x, xi) =
αn,s

|x−xi |n−2s on ∂Bν(0),

which, together with (A.2), yields that As
(
ϕxi,ε −

1
ε(n−2s)/2 H̃(x, xi)

)
= 0 in Bν(0),

ϕxi,ε −
1

ε(n−2s)/2 H̃(x, xi) = O
( 1
εn+2−2s |x−xi |n+2−2s

)
on ∂Bν(0).
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As a result,

‖ϕxi,ε −
1

ε(n−2s)/2 H̃(x, xi)‖L∞ ≤
C

εn+2−2sd(xi, ∂Bν(0))n+2−2s =
C

εn+2−2s|ν − |xi||n+2−2s (A.3)

for some constant C > 0.
Using (A.3), we have proved

Uε,xi(x) − PUε,xi(x) =
1

ε
n−2s

2 νn−2s
H(x̄, x̄i) + O

( 1
(ν`)n+2−2s

)
.

�

Proposition A.5. There holds

I(Uε,r) =k
(
A +

A1H(x̄1, x̄1)
εn−2sνn−2s + A2Φ

′(1)` −
k∑

i=2

A1G(x̄i, x̄1)
εn−2sνn−2s + O

( 1
ν1+ε

))
,

where A, A1, A2 are some positive constants, and ε is a small constant.

Proof. Note that

I(Uε,r) =
1
2

∫
Bν(0)
|A

1
2
s Uε,r|

2 −
1

p + 1

∫
Bν(0)

Φ
( |x|
ν

)
|Uε,r|

p+1.

Using the symmetry and (A.1), we have∫
Bν(0)
|A

1
2
s Uε,r|

2 =

k∑
i=1

k∑
j=1

∫
Bν(0)

U p
ε,x j PUε,xi

= k
k∑

i=1

∫
Bν(0)

U p
ε,x1 PUε,xi

= k
(∫

Bν(0)
U p+1
ε,x1 −

∫
Bν(0)

U p
ε,x1

(
Uε,x1 − PUε,x1

)
+

k∑
i=2

∫
Bν(0)

U p
ε,x1 PUε,xi

)
= k

( ∫
Rn

U p+1
1,0 −

B0H(x̄1, x̄1)
εn−2sνn−2s +

k∑
i=2

B0G(x̄i, x̄1)
εn−2sνn−2s + O

(k
ν

)n+2−2s
)
,

(A.4)

where B0 =

∫
Rn

U p
1,0.

Recalling that

Ωi =
{
x = (x′, x′′) ∈ Bν(0) : 〈

x′

|x′|
,

(xi)′

|(xi)′|
〉 ≥ cos

π

k

}
, i = 1, 2, · · · , k,

we can obtain that∫
Bν(0)

Φ(
|x|
ν

)U p+1
ε,r = k

∫
Ω1

Φ(
|x|
ν

)(PUε,x1)p+1 + kp
∫

Ω1

k∑
i=2

(PUε,x1)pPUε,xi

+ kO
( ∫

Ω1

∣∣∣Φ(
|x|
ν

) − 1
∣∣∣ k∑

i=2

U p
ε,x1Uε,xi +

∫
Ω1

U (p+1)/2
ε,x1

( k∑
i=2

Uε,xi
)(p+1)/2

)
.

(A.5)
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Next, we estimate each terms in (A.5). For x ∈ Ω1, |x−xi| ≥ |x−x1|,we obtain for any κ ∈ (1, n−2s),

k∑
i=2

Uε,xi ≤ C
k∑

i=2

1
|x1 − xi|κ

1
(1 + |x − x1|)n−2s−κ ,

which implies that if κ close to n − 2s,∫
Ω1

U p+1/2
ε,x1

( k∑
i=2

Uε,xi
)p+1/2

= O
(k
ν

)κ· n
n−2s = O

( 1
ν1+ε

)
.

On the other hand, from (A.1) again, we have∫
Ω1

k∑
i=2

(PUε,x1)pPUε,xi

=

∫
Ω1

k∑
i=2

(
P

Cn,sε
n−2s

2

(1 + ε2|x − xi|2)
n−2s

2

)p( 1

ε
n−2s

2 νn−2s
G(x̄, x̄i) + O

( 1
(ν`)n+2−2s

))
= ε

n+2s
2

∫
Ω̃1

k∑
i=2

(
P

Cn,s

(1 + |y|2)
n−2s

2

)p( 1

ε
n−2s

2 νn−2s
G(

y
ε

+ xi, x̄i) + O
( 1
(ν`)n+2−2s

))
ε−ndy

=

∫
Bν(0)

U p
1,0

k∑
i=2

G(x̄, x̄i)
εn−2sνn−2s + O

( 1
ν1+ε

)
,

where Ω̃1 = {
y
ε

+ x1 ∈ Ω1}.
Now we estimate

∫
Ω1

∣∣∣Φ( |x|
ν

) − 1
∣∣∣U p

ε,x1

∑k
i=2 Uε,xi . For x ∈ Ω1 and ||x| − ν| ≥ δν, where δ > 0 is a fixed

constant, we have

||x| − |x1|| ≥ ||x| − ν| − ||x1| − ν| ≥
1
2
δν

and from Lemma A.1, ∫
Ω1

∣∣∣∣Φ(
|x|
ν

) − 1
∣∣∣∣U p

ε,x1

k∑
i=2

Uε,xi

≤ C
∫

Ω1

k∑
i=2

1
(1 + |x − x1|)n+2s

1
(1 + |x − xi|)n−2s

≤ C
(1
ν

)1+s
k∑

i=2

1
|xi − x1|n−1−2s

∫
Ω1

1
(1 + |x − x1|)n+s

≤ C
(1
ν

)1+ε
.

(A.6)

If x ∈ Ω1 and ||x| − ν| ≤ δν, we have∣∣∣∣Φ(
|x|
ν

) − 1
∣∣∣∣ ≤ C

∣∣∣∣ |x|
ν
− 1

∣∣∣∣ ≤ C
ν

(
(|x| − |x1|) + (|x1| − ν)

)
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≤
C
ν

(|x| − |x1|) +
C
k
,

and ||x| − |x1|| ≤ ||x| − ν| + |ν − |x1|| ≤ 2δν. Choosing κ ∈ (1, n − 2s), we obtain that∫
Ω1

∣∣∣∣Φ(
|x|
ν

) − 1
∣∣∣∣U p

ε,x1

k∑
i=2

Uε,xi

≤ C
∫

Ω1

(1
ν

(|x| − |x1|) +
1
k

) k∑
i=2

1
(1 + |x − x1|)n+2s

1
(1 + |x − x1|)n−2s

≤
C
ν

∫
Ω1

k∑
i=2

1
(1 + |x − x1|)n+2s−1

1
(1 + |x − x1|)n−2s

+
C
k

k∑
i=2

1
|xi − x1|κ

∫
Ω1

1
(1 + |x − x1|)2n−κ

≤ C
(1
ν

)1+ε
.

This, together with (A.6), tells us that∫
Ω1

∣∣∣∣Φ(
|x|
ν

) − 1
∣∣∣∣U p

ε,x1

k∑
i=2

Uε,xi ≤ C
(1
ν

)1+ε
. (A.7)

Finally, ∫
Ω1

Φ(
|x|
ν

)(PUε,x1)p+1

=

∫
Ω1

(
PUε,x1

)p+1
+

∫
Ω1

(
Φ(
|x|
ν

) − 1
)
U p+1
ε,x1 + O

( ∫
Ω1

∣∣∣∣Φ(
|x|
ν

) − 1
∣∣∣∣U p

ε,x1

H(x̄, x̄1)
νn−2s

)
=

∫
Bν(0)

U p+1
1,0 −

(p + 1)B0H(x̄1, x̄1)
εn−2sνn−2s +

∫
Ω1

(
Φ(
|x|
ν

) − 1
)
U p+1
ε,x1 + O

( 1
ν1+ε

)
.

But ∫
Ω1

(
Φ(
|x|
ν

) − 1
)
U p+1
ε,x1 =

∫
Ω1

(
Φ(|x̄1|) − 1

)
U p+1
ε,x1 +

∫
Ω1

(
Φ(
|x|
ν

) − Φ(|x̄1|)
)
U p+1
ε,x1

=

∫
Ω1

(
Φ(|x̄1|) − 1

)
U p+1
ε,x1 + O

( 1
ν1+ε

)
= −Φ′(1)`

∫
Bν(0)

U p+1
1,0 + O

( 1
ν1+ε

)
.

Thus, from the estimates above, we have proved∫
Bν(0)

Φ(
|x|
ν

)U p+1
ε,r = k

( ∫
Bν(0)

U p+1
1,0 − Φ′(1)`

∫
Bν(0)

U p+1
1,0 −

(p + 1)B0H(x̄1, x̄1)
εn−2sνn−2s
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+(p + 1)
k∑

i=2

B0G(x̄i, x̄1)
εn−2sνn−2s + O

( 1
ν1+ε

))
,

which, together with (A.4), implies that our desired result holds.
�

Similar to Proposition A.5, we also have

Proposition A.6.

∂I(Uε,r)
∂ε

=k(n − 2s)A1

(
−

H(x̄1, x̄1)
εn+1−2sνn−2s +

k∑
i=2

G(x̄i, x̄1)
εn+1−2sνn−2s + O

( 1
ν1+ε

))
,

and

∂I(Uε,r)
∂r

=k
(
A1

∂H(x̄1,x̄1)
∂r

εn−2sνn−2s − A2Φ
′(1)

1
ν
− A1

k∑
i=2

∂G(x̄i,x̄1)
∂r

εn−2sνn−2s + O
( 1
ν1+ε

))
,

where A1, A2 are the same constants as in Proposition A.5.
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