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1. Introduction

Let p be an odd prime, F, denotes a finite field of g elements with characteristic p. When
S. W. Golomb studied some combinatorial problems in [1], he proposed the following two interesting
problems:

(A). Whether there exist two primitive elements @, € F, such that the equation a + 8 = 1 holds?

(B). For g > 3, whether there exist two primitive elements «, 8 € F, such that the equation a+8 = -1
holds?

These two problems have now been basically solved, at the same time, they have also been
generalized and extended. Some papers related to primitive roots and Golomb conjecture can be
found in [2-16]. For example, Sun Qi [2] proved the following generalized result:

Let integer ¢ = p" be a power of prime p. If g is large enough, then for any non-zero elements
a,b,c € F,, there exist two primitive elements «, 8 € F, such that the equation aa + b = ¢ holds.

Formally, Golomb conjecture has been basically solved, and therefore there is no work to do in this
area. But that is not the case, there is still room for further discussion. In fact recently, W. P. Zhang
and T. T. Wang [3] further extended Golomb’s conjecture in a reduced residue system modulo p, and
proved the following stronger result:

Let p be an odd prime large enough. Then for any integers 1 < a # b < p — 1, there exist three
primitive roots @, 8 and y modulo p such that the congruence equations ¢ +7y =amod p and S+7y =
b mod p hold.
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It is not difficult to see from the methods in [3] that the above result can also be further extended to
the following forms:

Let p be an odd prime large enough, u; and v; are integers with (u;u,vv,, p) = 1. Then for any
integers 1 < a # b < p — 1, there exist three primitive roots @, 8 and y modulo p such that the
congruence equations

ua +vyy =amod p and u,B+ v,y =b mod p hold.

In fact, the above result can be generalized to an arbitrary finite field F,. That is, for any non-
zero elements u;, v;,a,b € F,, there exist three primitive elements «, B,y € F, such that the equation
U@ + vy = a, up8 + voy = b holds.

In W. P. Zhang and T. T. Wang [3], they also proposed the following open problem: Can the Golomb
conjecture be extended further?

Specifically, for three distinct nonzero elements a, b and ¢ € F,, do there exist four primitive
elements «, B, ¥ and ¢ € I, such that the equations

a+o6=a, B+6=>b and y+ 6 = ¢ are satisfied ?

Obviously, the result in [3] is very meaningful. It not only gives us a stronger conclusion than
Golomb’s conjecture, but also points out the direction of further research. At the same time, we will
naturally consider more general problem:

For any k (> 2) nonzero elements ¢; € F, (i = 1,2,--- , k), do there exist k + 1 primitive elements «;
andBeF, (i=1,2,---,k), such that the equations

CL’[+,8:C,', i:1,2,"',k?

Through careful reading of [3], we find that the reason why the authors were unable to prove the
general case is that they used the properties of the classical Gauss sums, which resulted in one kind of
character sums that can not be optimally estimated. That is, they can not get the estimate
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where ¢ and d are constants, and yi, x2, - - - , s denote the Dirichlet characters modulo p, at least one
of which is non-principal character.

In this paper, we make up for the deficiency in [3] and avoid using the classical Gauss sums. Thus,
the open problem in [3] is solved, and the more general conclusion is proved. For ease of statement, we
will rewrite the problem in [3] in another form: Let p be an odd prime, k be any fixed positive integer.
Then for any k different integers cy, ¢y, ,cr € {1,2,---, p — 1}, whether there exists an integer a
modulo p such that a,c; — a, ¢; — a,- -+ , ¢, — a are all primitive roots modulo p? where the condition
that ¢; are non-zero is necessary. Otherwise, there is no guarantee that a and —a are both primitive roots
modulo p.

If so, let N(cy,ca,- - ,cr; p) denotes the number of all such 1 < a < p — 1. What about the
asymptotic properties of N (c¢y, ¢z, ,¢x; p)?

Similarly, we can also let M (cy, ¢y, - - - , ¢x; p) denotes the number of all 1 < a < p— 1 such thata is
a square-free (i.e., d? | a if and only if d = 1) primitive root modulo p, c; —a,c; —a,- - , ¢, — a are all

primitive roots modulo p.

AIMS Mathematics Volume 5, Issue 6, 5654-5663.



5656

L. Carlitz [21] proved that some properties of N(cy,c,- - ,cx; p) depends on some results of
Davenport.

This paper as a note of [1] and [3], we will use elementary methods and the estimate for character
sums to study the asymptotic properties of N (¢y,¢3,--- ,¢x; p) and M (¢y, ¢z, -+, ¢k; p), and give two
sharp asymptotic formulas for them. That is, we have the following results:

Theorem 1. Let p be an odd prime, k be a fixed positive integer. Then for any k different integers
c1, €0, €4{1,2,3,---, p— 1}, we have

¢ (p-1)
(p -1

N(ci,cp, -+ ;e p) =

Y (¢k+1(p -1 . 2(k+1)~w(p—1))
k+ 4 ’

where ¢(n) is the Euler function, and w(n) denotes the number of all distinct prime divisors of n, O
denotes the big-O constant depend only on k.

Theorem 2. Let p be an odd prime, k be a fixed positive integer. Then for any k different integers
ci, €0, €4{1,2,3,---, p— 1}, we have

6 ¢k+1(p B 1) ¢k+l(p - 1) (k+1)-w(p-1)
M(C]’CZ,"',Ck’p)—p‘(p_—l)k‘l'Ok T-\/lnp-Z .

It is easy to prove that our theorems also hold in the finite field F,. From our theorems we may
immediately deduce a generalized results of [1] and [3]. That is, we have the following two corollaries:
Corollary 1. Let p be a prime large enough, k be a fixed positive integer. Then for any k different
non-zero elements ¢y, ¢, -+, ¢ € F,, there exist kK + 1 primitive elements a1, a,,- -+ , &, B € F, such
that all equations

aq +ﬁ:C1, a’2+,8:C2, sy ozk+B=ck hold.

Corollary 2. Let p be a prime large enough, k be a fixed positive integer. Then for any k different
integers ¢y, ¢p,--- ,¢ € {1,2,3,---, p — 1}, there exist k primitive roots ay, @y, - , @, and a square-
free primitive root S modulo p such that all congruence equations

ar+B=cymodp, ax +B=c, mod p, -+, a; + = c, mod p hold.

Some notes: It is not difficult to see that our Corollary 1 not only solved the open problem (k =
3) proposed by W. P. Zhang and T. T. Wang in [3], but also obtained more general theorems. Of
course, Theorem 1 can also be obtained in different ways, see C. Cobeli and A. Zaharescu [4]. These
generalized results not only reveal the close relationship between the primitive elements in a finite field
F,, but also characterize their dense properties in the finite field. The results in [1] and [3] are the
special cases of our Theorem 1, i.e., k = 1 and k = 2. Theorem 2 is a general and stronger result, which
means that one of the primitive roots can be a square-free number. This result has a special meaning
in elementary number theory. That is to say, if p is a prime large enough, then for any primitive root
S mod p with |u(8)| = 1, there exist two primitive roots & and y modulo p such that @ = -y mod p

and |u(y)l = 1.
2. Several lemmas

To complete the proofs of our main results, we need following several simple lemmas. Of course, the
proofs of these lemmas require some elementary and analytic number theory knowledge. In particular,
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the contents of primitive roots and Dirichlet characters modulo p are required. All these can be found
in [17], we would not repeat them here. First we have the following:

Lemma 1. Let p be an odd prime, then for any integer a coprime to p (i.e., (a, p) = 1), we have the
identity

gb(p - 1) Z u(k) Z (r 1nd(a)) { 1 if ais a primitive root mod p;

] o(k) 0 if a is not a primitive root mod p,
p—

where e(y) = ¥, 3%’ denotes the summation over all integers 1 < r < k such that r is coprime to
k, u(n) is the Mobius function, and ind(a) denotes the index of a relative to some fixed primitive root
g mod p.

Proof. See Proposition 2.2 in [18].

Lemma 2. Let p be an odd prime, y, ‘- -, x, be Dirichlet characters modulo p, at least one of which
is non-principal character modulo p. Let f(x) be an integral coefficient polynomial of degree d. Then
for any r distinct integers (in the sense of congruence modulo p) a4, - - - , a,, we have the estimate

S f(@ 1
ZX1(0+G1)X2(0+02) Xr(a+ar)e( » )<( +d)- p2.

a=1

Proof. This estimate is Lemma 17 in [19]. Its proof relies on deep results from number theory. For
detailed proof, see Appendix 5, Example 12 in [20].

Lemma 3. Let p be an odd prime, k be a fixed positive integer, y;, - -+, xx be Dirichlet characters
modulo p, at least one of which is non-principal character modulo p, N be any positive integer with
1 < N < p — 1. Then for distinct integers cy, ¢z, - - - , ¢y modulo p, we have the estimate

Z xia=ci)-x2(a=cy)---xe(a—cp) <¢ \p-Inp,

1<a<N

where <, denotes the big-O constant depend only on £.
Proof. If N = p — 1, then from Lemma 2 we have the estimate

D xi@=c) xala= e yila—co)| < p. 2.1)
If 1 < N < p—1, then from (2.1), Lemma 2, the identity
”Z‘i nr\_[p ifpln
Z\p) 70 ifpin
and the estimate
1 P

< <

‘sin (ﬂ)
p

min(r, p —r)

we have

D xia=cn) - xala—c)-xila - )

1<a<N
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p-1 _,
ZXI(G—Cl) -Xz(a—CZ)...Xk(a_ck) .e(r(ap ))

1<a<p-1 r=0

I
< |-
1=

>

1
-1

15 —rb\) [ ra
= - el— ||| D xita=en xaa=co)-xila—co-e|—
p r=1 \1<b<N P a=1 P
N &
+; xia—ci)-xaa—cz)-x(a—cy)
a=1
—1 p-1
VP K 1 N 1
< — +—<\p) —<+p-Inp. (2.2)
I — ‘sin(%) Vp ; r
Now Lemma 3 follows from the estimates (2.1) and (2.2).
Lemma 4. Let p be an odd prime, k be a fixed positive integer, y;, - -+, xx be Dirichlet characters

modulo p, at least one of which is non-principal character. Then for pairwise distinct integers
c1,C2, -, modulo p, we have the estimate

p-1

D @) xita - 1) - xala = e2) -+ xa (@ = e) < pt - Alnp.

a=1

Proof. Let T = p% / +/In p, note that (see Exercises for Chapter 2 in [17])

(@] = ) p(d), (2.3)
d?|a

from (2.3) and the properties of the partition we have

p-1

Z (@l x1(a = c1) - xala = c2) - xi(a = i)

a=

= ZZy(d) xila—ci) xa(a—c2) - xi(a—cp)

‘B

a=1 d?|a
_ Z w(d) - x1 (ad2 - 01) ‘X2 (ad2 - Cz) " Xk (ad2 - Ck)
d?a<p-1
k
_ Z (A (d) - x(d) Z l_[X,- (a - clﬁz)
d<~p asty =1
= Y UG @ D Y ]—[)a( )
d<T asdy i=1
+ D, MGG @ i@ ) l—[%( 7)
T<d<+/p <P i=1
= Vi+ V.. 2.4)
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Applying Lemma 3 we have the estimate
k
—2
Vi= Y @R @ i@ Y [ Jaifa-cd)
d<T a<L i=1
< <b

< Zl,u(d)l- Vp-Inp<T-+p-Inp. 2.5)

d<T

From the trivial estimate we also have

k
Vi = Y @@ @ i@ Y [ J(a-cd)

T<d<+p ash i=l
p p
< Z lu(d)) - 7 < T (2.6)
T<d<+p

Combining (2.4), (2.5) and (2.6) we have the estimate
-1
lu(@| - x1(a—c1)-xa(a—c2)---xxla—c) <p

=
v

- 4/In p.

Il
—_

a

This proves Lemma 4.
3. Proofs of the theorems

In this part, we shall prove our main results. First we prove Theorem 1. Let p be an odd prime, k
be any fixed positive integer. Then for any k different integers ¢y, ¢;,--- , ¢, € {1,2,3,---, p— 1}, from
Lemma 1 we have

k+1 -1 p-1 d
hlp— 1 =1

2.
k h; .
u(h) o, (si-ind(c; —a)
TIZ 55 e(T)}' o

For any integer | < s <h < p—-1withh | p—1and (s,h) = 1, we write e(%) = xsu(a), and

Xsa(@) = 0, if p | a. It is clear that y,,(a) is a Dirichlet character modulo p, x;; = xo denotes the
principal character modulo p. So from (3.1) and the above notations we have

. k+1(p _ 1) ,u(h) h , /J(hl) : ’
N(C],Cz,"' 7Ck,p) 1)k+1 Z ¢(h) Zl hlzl ¢(hl) 1
5= 1lp— Si=

/’lk -

() O,

N Z Jz hk) z: } :)(s,h(a)/\/sl,hl (€1 =a) X (C2—a) X (Ck — @)
hilp—-1 ¢ (hy s=l - a=1

S | p-l
- R D (e -0 xo = -x @ -a)
a=1
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JARCESY iy pn) ) )
e h;h;] h; o) () $) $ )

(hhy o hk);&(lll D)

hy

XZ Z Z szh(amhl (c1 = @)Xy (¢ — a)

sg=1 a=1

= W1 +W2.

Now we estimate W, and W, in (3.2) respectively. It is clear that

W

Note that if (h, hy, hy, - -+ ) # (1,1, 1,---, 1), then at least one of x5 4, X5, ks Xsoos**°

¢ (p—1) K

DN ro@yo (1 - a)xoes —a) -+ xo (cx - @)
TG ; o(@)xo (c1 0 (c2 0 (ck
¢ (p-1) ¢ (p-1)

7 1F +0(<p—1>'<+1 'k)'

principal character modulo p. Then from the identity

dn

3 "(;EZ;' Z =S @i =[] [Z Iﬂ(r)l) ~[Ta+n=22

din plin \rip® pelin

and Lemma 2 we have the estimate

W, =

<

<

<

S p-1) wh) ph) pl)  plh
- ,;1 ,%1 h; o S 6 B
(hhy,hoy e )#(1L,1,1, 1)
. p-l

XZ Z Z Z)(sh(a))(sl i (Cl _a) "X s (Ck )

si=1 a=1

¢"“(p— 1) Z Z Z | r) | ()| () |

(- DR L L G 900 ) 9l) )
(hhy,hyy e ) #(1L 1,1, 1)
hy p-1
xZ Z D xen@xan (€1 = @)+ xn (- @)
si=1 la=1
¢"“(p— 1)
o 2 O D G0T ) ksl ) (0 1P
slp—1 silp-1 s21p-1 sklp—1
¢k+1(19 - S+ a(p-1)
pk+% )

Combining (3.2), (3.3), (3.4) and (3.5) we have the asymptotic formula

N(ci, e, e p) =

AIMS Mathematics

¢k+1(p _ 1) Lo ¢k+1(p — 1) ) 2(k+l)-w(p—1) '
(p— 1} phrz

(3.2)

(3.3)

» X si iy 18 NOt

3.4)

(3.5)
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This proves Theorem 1.
Now we prove Theorem 2. From the method of proving (3.2) we have the identity

M(cy,ca,- - ,crs p)

-1 o ouh) =, o uh 1 () <
T (p- D hlpz_] ¢<h>; ,%lwz)zl ,%l ()

se=1
p-1
X Z (@l xsp(@ sy (€1 = @) - Xy (€2 = @) -+ Xy (Cx — @)
a=1

k1 — 1) 2=
- qip—(—pl)k”) Z (@)l - xo(@xo (cr —a) - xo (c2 —a) -+~ xo (ck — a)
a=1

JARCES) o M) ph) ph) )
(p—DFT e L7 L g g () @)

(h.h1,ha - h)#(1,1,1,-,1)

h hy he  p-l
xZ Z DD @] Xan@xan (€1 = @)+ Yoo ek — a)
s=1 a=1
= FE; +E2.

From (2.3) and properties of the Mobius function we have the asymptotic formula

-1
lu(@)| - xol@)xo (c1 —a) - xo(c2 —a) -~ xo(ck —a)

<

ST
—_ -

= S @l +0® = p Z“” +O(VP) = =P+ O(VP).

a=1

From (3.4) and Lemma 4 we have the estimate

Pp-1 ph) p(h) plhy) )
SN h;,%l & ¢ ¢(h) $Un) ¢ )
(hhy,hoy h)#(1L,1,1,- 1)
he  p-1
xZ Z U @ Yo @ (€1 = @) o (i = @)
si=1 a=1

¢k+1(p—1> TS Ly WO ] )] ey

<
(p-DFT L L L ey ) b)) P
(hhyshoy h)#(1,1,1, 1)
hy p-1
xZ Z DD M@ xsp@s, i (€1 = @)+ Xan, (c = @)
s=1 la=1
¢k+1(l?— 1) 3
< T 2 WOl 2 kol ) ol pt inp
s|p—1 silp—1 sklp—1

(3.6)

(3.7
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k+1
-1
< o (pl ) ) /lnp . kD w(p=1). (3.8)
pk+1

Combining (3.6), (3.7) and (3.8) we have the asymptotic formula

. _ 6 ¢k+l(p - 1) ¢k+l(p - 1) (k+1)-w(p-1)
M(Cl,Cz,"',Ck,p)—P'(p_—l)k+0 T-\/lnp-Z .

This proves Theorem 2.

To prove Corollary 1, we assume that p is a prime large enough, k is a fixed positive integer. Then
for any k different integers ¢y, ¢,---,cx € {1,2,3,---,p — 1}, from Theorem 1 we know that
N(cy,ca,- - ,cx; p) > 0. So there is at least one primitive root S modulo p such that all ¢; — 8, ¢; — 3,
-+, ¢ — 3 are primitive roots modulo p. Let a; = ¢; — 8 mod p, it is clear that all @; are primitive roots
modulo p,i =1,2,--- , k. Therefore, we have the congruence equations

ai+B=cymodp, aa+B=c,mod p, -+, ay+ B = c, mod p.

This proves Corollary 1.
Similarly, we can also deduce Corollary 2.

4. Conclusion

In this article, we proved two main results, they are closely related to Golomb’s conjecture. Theorem
1 describes that when the prime p is large enough, then for any fixed positive integer k and any k
different non-zero elements ¢y, c,,--- ,c; € F,, there exist k + 1 primitive elements ay, @y, - , &, 5 €
[F,, such that all equations

ar+B=ci, my+B=cy, -+, ax+ = ¢, hold.

Theorem 2 proves a more general and stronger result. That is, if p is a prime large enough and & is any

fixed positive integer, then for any k different integers ¢y, ¢, ,cr € {1,2,3,---, p — 1}, there exist
k primitive roots ay, @y, - ,@; and a square-free primitive root S modulo p such that all congruence
equations

ai+B=cymodp, e +B=c, mod p, -+, a+ B =c, mod p hold.

Of course, Theorem 1 and Theorem 2 are also correct in the finite field F,.
These results not only solved an open problem (k = 3) proposed by W. P. Zhang and T. T. Wang
in [3], but also obtained more general conclusions.
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