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1. Introduction and background

Rough set theory was originally proposed by Pawlak [28] in 1982 as a useful mathematical tool for
dealing with uncertainty. The classical Pawlak rough set model is based on equivalence relations. This
heavily restricts the application scope of rough sets. So, by relaxing the equivalence relations to binary
relations and coverings, many kinds of general rough set models were developed [6,17,22,23,25,42,44,
45, 52, 54–56]. In 2014 and 2015, Syau, Lin [35] and Zhang [50] observed that many binary relation-
based rough sets and covering-based rough sets were actually defined through their neighborhood
(system). Hence, they introduced a rough set model based on generalized neighborhood system, and
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unified the binary relation-based rough set model and covering-based rough set model into a common
framework [52]. The concept of remote neighborhood system is abstracted from the geometric notion
of “remote”, and it is the dual concept of neighborhood system. Since general neighborhood systems
has been successful used to build rough set model [35, 50, 51], so it is naturally to define a rough set
model through general remote neighborhood systems [33].

Fuzzy set theory is also an important mathematical tool to study uncertainty. Nowadays, there have
been many branches of fuzzy mathematics, such as fuzzy algebra, fuzzy topology and fuzzy logic,
etc [5,8–12,14,34,37–39,46,49]. Particularly, fuzzy rough set theory is an important branch, which can
handle more complicated uncertain problems since it has the advantages of both fuzzy set and rough set
[1–3,7,15,16,18–21,24,40,41,47,48]. Furthermore, replacing the unit interval [0, 1] with a complete
lattice L as the range of the membership function, the more general L-fuzzy rough sets further extend
the theoretical framework and application range of classic rough sets [13, 26, 27, 29–32, 43, 51, 53].
Fuzzy rough sets have a variety of forms due to the different approaches of fuzzification. Fuzzifying
binary relations and coverings are the common methods to define fuzzy rough sets. As we have seen
that general neighborhood systems and generalized remote neighborhood systems are all important
tools to define general rough sets. Hence, it is naturally to establish fuzzy general rough sets by
fuzzifying them, respectively. Quite recently, by fuzzifying the notion of generalized neighborhood
systems, the authors [51,53] established a rough set model based on L-generalized fuzzy neighborhood
systems, where L is a complete residuated lattice. It was proved that this model brought the fuzzy
relation-based rough set model, fuzzy covering-based rough set model and generalized neighborhood-
system based rough set models under a unified framework.

In this paper, considering L to be a completely distributive lattice, by fuzzifying the notion of
generalized remote neighborhood systems of classical points, we will introduce the notion of L-fuzzy
generalized remote neighborhood systems of L-fuzzy points [33], and then develop an L-fuzzy upper
approximation operator derived from L-fuzzy generalized remote neighborhood systems. It should
be pointed out that the notion of L-fuzzy generalized remote neighborhood systems is a relaxation of
the notion of L-fuzzy remote neighborhood systems in [36], which plays a crucial role in the theory
of L-fuzzy topological spaces. Moreover, it is an intrinsic way to study (fuzzy) rough sets from a
topological perspective [2, 15, 26, 54]. The main difference between the new fuzzy rough sets and the
previous fuzzy rough sets is that the method of fuzzification. Said precisely, we further fuzzifying the
points of the universe of discourse.

The contents are arranged as follows. In Section 2, we recall some notions and notations used in this
paper. In Sections 3, we introduce the concept of L-fuzzy upper approximation operators derived from
L-generalized fuzzy remote neighborhood systems of fuzzy points. We further discuss the special
L-fuzzy upper approximation operators correspond to serial, reflexive, unary, (strong) transitive L-
generalized fuzzy remote neighborhood systems, respectively. In Sections 4, we give the axiomatic
characterizations on the L-fuzzy upper approximation operators discussed in Section 3. In Sections 5,
we present a theory of reduction on our L-fuzzy upper approximation operator. In Sections 6, we make
a conclusion.
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2. Preliminaries

For any non-empty set X, we denote 2X as the power set of X. For each A ∈ 2X, we denote Ac as the
complement of A.

Throughout this paper, L is denoted a completely distributive lattice. The smallest element (resp.,
the largest element) in L is denoted by ⊥ (resp., >). An element a in L is called a prime element if
a > b∧ c implies a > b or a > c. The set of non-> prime elements in L is denoted by P(L). An element
a in L is called co-prime if a 6 b ∨ c implies a 6 b or a 6 c. The set of non-⊥ co-prime elements in L
is denoted by J(L) [4].

Let X be a non-empty set and LX be the set of all L-fuzzy sets (or L-sets for short) on X. Then (LX,≤)
also forms a completely distributive lattice, where ≤ is the partial order inherited from L. Precisely, for
A, B ∈ LX, that A ≤ B means A(x) ≤ B(x) for each x ∈ X. The smallest (resp., largest) element in LX

is denoted by ⊥X (resp., >X). The set of non-unit prime elements in LX is denoted by P(LX). The set
of non-zero co-prime elements LX is denoted by J(LX) [36]. For x ∈ X, a ∈ J(L), we denote xa as the
L-fuzzy set defined by xa(y) = a if y = x and xa(y) = ⊥ if y , x. Generally, xa is called an L-fuzzy
point in X. For an L-fuzzy set A and an L-fuzzy point xa, by xa ∈ A we mean that xa ≤ A.

In the following, we shall recall some results about generalized remote neighborhood system-based
approximation operators from [33].

Definition 1. [33] Let X be non-empty set. Then a mapping RN : X −→ 22X
is said to be a

generalized remote neighborhood system operator (GRNSO, for short) on X provided RN (x) is non-
empty for each x ∈ X. Usually, RN (x) is said to be a generalized remote neighborhood system
(GRNS, for short) of x and each K ∈ RN (x) is said to be a remote neighborhood of x.

Definition 2. [33] Let RN : X −→ 22X
be a GRNSO. Then for A ∈ 2X, its lower and upper

approximation operators RN (A) and RN (A), are defined by

RN (A) = {x ∈ X | ∃K ∈ RN (x), Ac ⊆ K}.

RN (A) = {x ∈ X | ∀K ∈ RN (x), A * K}.

A is called a definable set if RN (A) = RN (A), otherwise, it is a rough sets .

Let RN be a GRNSO on X.

� RN is called serial provided for any x ∈ X and A ∈ RN (x), A , X.
� RN is called reflexive provided for any x ∈ X and A ∈ RN (x), x < A.
� RN is called unary provided for any x ∈ X and A, B ∈ RN (x), then there exists an C ∈ RN (x)

such that A ∪ B ⊆ C.
� RN is called transitive provided for any x ∈ X and A ∈ RN (x), then there exists a B ∈ RN (x)

such that for each y < B there exists a By ∈ RN (y) with A ⊆ By.
� RN is called strong-transitive provided for any x, y, z ∈ X, A ∈ RN (y) and B ∈ RN (z), x < A

and y < B⇒ x < B.

For detail meanings about the above concepts, please refer to [33].
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3. L-fuzzy upper approximation operators derived from L-generalized fuzzy remote
neighborhood systems of L-fuzzy points

In this section, we will introduce the concept of L-fuzzy upper approximation operators derived
from L-generalized fuzzy remote neighborhood systems of L-fuzzy points. We further discuss the
special L-fuzzy upper approximation operators correspond to serial, reflexive, unary, (strong) transitive
L-generalized fuzzy remote neighborhood systems, respectively.

Definition 3. An L-generalized fuzzy remote neighborhood system operator (LGFRNSO, for short) is
a mapping FRN : J(LX) −→ 2LX

such that FRN (xa) is non-empty for each xa ∈ J(LX).
Usually, FRN (xa) is called L-generalized fuzzy remote neighborhood system (LGFRNS, for

short) of L-fuzzy point xa, and each K ∈ FRN (xa) is called L-generalized fuzzy remote
neighborhood of xa.

Remark 1. As the adjacent structure of L-fuzzy point, L-fuzzy remote neighborhood system was
proposed by Wang in [36]. It is well known by the scholars familiar with fuzzy topology that L-fuzzy
remote neighborhood system overcomes some shortcomings of L-fuzzy neighborhood system in
L-fuzzy topological spaces, and it greatly promotes the development of L-fuzzy topological space
theory. By relaxing the requirements of L-fuzzy remote neighborhood system in L-topological space,
we introduce the notion of L-generalized fuzzy remote neighborhood system.

Next, we define the L-fuzzy upper approximation operator derived from LGFRNSO.

Definition 4. Let FRN : J(LX) −→ 2LX
be a LGFRNSO. Then for each A of LX, the upper

approximation operator FRN (A) is defined as below:

FRN (A) =
∨{

xa ∈ J(LX)|∀K ∈ FRN (xa), A � K
}
.

Remark 2. It is easy to see that when L = {⊥,>}, the L-generalized fuzzy remote neighborhood
system operator reduces to the generalized remote neighborhood system operator, and the L-fuzzy
upper approximation in this paper reduces to the upper approximation based on generalized remote
neighborhood system operator in [33].

Now, we turn our attention to the properties of L-fuzzy upper approximation operator. The following
lemma will be used frequently in the sequel.

Lemma 1. [36] Let A, B ∈ LX, then

A ≤ B ⇔ ∀xa ∈ J(LX), xa ∈ A⇒ xa ∈ B

⇔ ∀xa ∈ J(LX), xa < B⇒ xa < A.

Proposition 1. Let FRN be a LGFRNSO. Then
(1) FRN (⊥X) = ⊥X,
(2) For any A, B ∈ LX and A ≤ B⇒FRN (A) ≤ FRN (B).

Proof. (1) For any xa ∈ J(LX) and K ∈ FRN (xa), then there exists a K ∈ FRN (xa) such that
⊥X ≤ K. It follows that xa < FRN (⊥X). This means that there is no L-fuzzy point is contained in
FRN (⊥X). Hence, FRN (⊥X) = ⊥X.

(2) For each xa ∈ FRN (A) and K ∈ FRN (xa), we have A � K. Since A ≤ B, so B � K. This
shows that xa ∈ FRN (B). It follows by Lemma 1 that FRN (A) ≤ FRN (B). �
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Next, we present the serial, reflexive, unary, transitive and strong-transitive conditions for
LGFRNSO. It is not difficult to see that these conditions are natural extensions of the corresponding
conditions for GRNSO in [33]. It should be addressed that the serial, reflexive, unary, transitive
conditions for neighborhood (systems), are discussed because that the approximation operators
associated with them corresponds to different modal logic systems, respectively, please refer
to [23, 44, 52].

Definition 5. Let FRN be a LGFRNSO.

(FRN1) FRN is called serial provided for any xa ∈ J(LX) and A ∈ FRN (xa), A , >X;
(FRN2) FRN is called reflexive provided for any xa ∈ J(LX) and A ∈ FRN (xa), xa < A;
(FRN3) FRN is called unary provided for any xa ∈ J(LX) and A, B ∈ FRN (xa), there exists an

C ∈ FRN (xa) such that A ∨ B ≤ C.
(FRN4) FRN is called transitive provided for any xa ∈ J(LX) and A ∈ FRN (xa), there exists a

B ∈ FRN (xa) such that for each yµ < B there exists a Byµ ∈ FRN (yµ) with A ≤ Byµ;
(FRN5) FRN is called strong-transitive provided for any xa, yµ, zν ∈ J(LX), A ∈ FRN (yµ) and C ∈

FRN (zν), xa < A and yµ < C ⇒ xa < C.

Proposition 2. Let FRN be a LGFRNSO. Then FRN is serial iff FRN (>X) = >X.

Proof. (⇒) Let FRN be serial. Take any xa ∈ J(LX), then for each K ∈ FRN (xa), we have K , >X

(i.e.,>X � K) since FRN is serial. It follows that xa ∈ FRN (>X), and so >X ≤ FRN (>X).
Thus, FRN (>X) = >X.

(⇐) Let FRN (>X) = >X. For any xa ∈ J(LX), K ∈ FRN (xa), we have xa ∈ FRN (>X) = >X,
it follows that >X � K. That means K , >X for any K ∈ FRN (xa). Hence FRN is serial. �

Proposition 3. Let FRN be a LGFRNSO. Then FRN is reflexive iff ∀A ∈ LX, A ≤ FRN (A).

Proof. (⇒) Let FRN be reflexive and A ∈ LX, xa ∈ A, we obtain that for each K ∈ FRN (xa),
xa < K. Then A � K, this tells us xa ∈ FRN (A). Therefore A ≤ FRN (A).

(⇐) For each xa ∈ J(LX) and K ∈ FRN (xa), by K ≤ K, then xa < FRN (K). Since K ≤
FRN (K), so xa < K. We have FRN is reflexive. �

Proposition 4. Let FRN be a LGFRNSO. Then FRN is unary iff for any A, B ∈ LX, FRN (A∨
B) = FRN (A) ∨FRN (B).

Proof. (⇒) For any A, B ∈ LX, since FRN (A) ≤ FRN (A ∨ B) and FRN (B) ≤ FRN (A ∨ B),
so

FRN (A) ∨FRN (B) ≤ FRN (A ∨ B).

Then we only need to prove

FRN (A) ∨FRN (B) ≥ FRN (A ∨ B).

Next we prove that if for any xa < (FRN (A) ∨FRN (B)) then xa < FRN (A ∨ B).
For any xa < (FRN (A) ∨FRN (B)), we have xa < FRN (A) and xa < FRN (B).Then there

exists K,V ∈ FRN (xa) such that A ≤ K and B ≤ V . Therefore A ∨ B ≤ K ∨ V . Because FRN
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is unary, so for K,V ∈ FRN (xa), there exists an M ∈ FRN (xa) such that K ∨ V ≤ M. We have
A ∨ B ≤ M. Hence xa < FRN (A ∨ B). It follows by Lemma 1 that

FRN (A) ∨FRN (B) ≥ FRN (A ∨ B).

Thus
FRN (A ∨ B) = FRN (A) ∨FRN (B).

(⇐) For each xa ∈ J(LX) and K,V ∈ FRN (xa). By K ≤ K, we obtain xa < FRN (K). In the
same way, we have xa < FRN (V). Thus

xa < (FRN (K) ∨FRN (V)) = FRN (K ∨ V).

We have there exists M ∈ FRN (xa) such that K ∨ V ≤ M. Therefore FRN is unary. �

Proposition 5. Let FRN be a LGFRNSO. Then the FRN is transitive iff for any A ∈ LX,
FRN (A) ≥ FRN (FRN (A)).

Proof. (⇒) For each xa < FRN (A), there exists a K ∈ FRN (xa) such that A ≤ K. By FRN is
transition, for the K ∈ FRN (xa), there exists a V ∈ FRN (xa) such that for each yµ < V , there exists
a Vyµ ∈ FRN (yµ) such that K ≤ Vyµ . Thus A ≤ Vyµ , yµ < FRN (A). We obtain that FRN (A) ≤ V .
Therefore xa < FRN (FRN (A)). Then for any

A ∈ LX,FRN (A) ≥ FRN (FRN (A)).

(⇐) For each xa ∈ J(LX) and K ∈ FRN (xa). By K ≤ K, we have

xa < FRN (K) ≥ FRN (FRN (K)),

and so
xa < FRN (FRN (K)).

Hence, there exists a V ∈ FRN (xa) such that FRN (K) ≤ V . It follows by Lemma 1 that yµ <
FRN (K) for each yµ < V . Then there exists a Vyµ ∈ FRN (yµ) such that K ≤ Vyµ . Therefore,
FRN is transitive. �

Proposition 6. Let FRN be a LGFRNSO. If FRN is strong-transitive then for each A ∈ LX,
FRN (A) ≥ FRN (FRN (A)).

Proof. For each xa ∈ FRN (FRN (A)) and K ∈ FRN (xa), then FRN (A) � K. We have there
exists a yµ ∈ FRN (A) such that yµ < K. By yµ ∈ FRN (A), we have for each M ∈ FRN (yµ),
A � M, there exists a zν ∈ A such that zν < M. By FRN is strong-transitive, we have zν < K and so
A � K, which means xa ∈ FRN (A). Hence,

FRN (A) ≥ FRN (FRN (A)). �

The following Example 1 shows that the converse of the Proposition 6 is not true.
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Example 1. Let X = {x, y, z}, L = [0, 1]. For any a ∈ (0, 1], define

FRN (xa) = FRN (ya) = {0X},FRN (za) = {0X} if a , 0.8,

FRN (z0.8) =
{
0X, x0.8, x0.8 ∨ z0.8, y0.8 ∨ z0.8, x0.8 ∨ y0.8

}
.

Then
FRN (xa) = FRN (ya) = FRN (za) = 1X.

Take any A ∈ LX. If A = 0X then

FRN (0X) = 0X = FRN (FRN (0X)).

If A , 0X, then there is w ∈ X such that A(w) > 0, so FRN (A) ≥ FRN (wA(w)) = 1X.

Hence, FRN (A) ≥ FRN (FRN (A)) for any A ∈ LX.
However, take A = 0X, C = x0.8 ∨ z0.8, note that

x0.6 < A ∈ FRN (y0.7), y0.7 < C ∈ FRN (z0.8),

but x0.6 ∈ C. Therefore, FRN is not strong-transitive.

4. An axiomatic characterization on L-fuzzy upper approximation operators derived from
LGFRNSO

Using a set of axioms to characterize approximation operators is a hot topic in (fuzzy) rough set
theory [13, 15, 25, 26, 32, 40]. In this section, we will give an axiomatic characterization on L-fuzzy
upper approximation operators derived from LGFRNSO.

In this section, we always assume that f : LX −→ LX to be an operator.

Theorem 1. There is a LGFRNSO FRN s.t. f = FRN iff f fulfills
(F1): f (⊥X) = ⊥X;
(F2): A ≤ B⇒ f (A) ≤ f (B).

Proof. (⇒) It is known from Proposition 1.
(⇐) Assume that f : LX −→ LX satisfies (F1) and (F2). Then we define an operator FRN f :

J(LX)→ 2LX
as that for each xa ∈ J(LX),

FRN f (xa) = {A ∈ LX |∃B ∈ LX s.t. A ≤ B and xa < f (B)}.

Taking any xa ∈ J(LX), it follows by (F1) that xa < ⊥X = f (⊥X), so ⊥X ∈ FRN f . Hence,
FRN f (xa) is non-empty, and so FRN f is an LGFRNSO. Next, we prove that FRN f = f .
From Lemma 1, we need only check that for any A ∈ LX, xa < FRN f (A) iff xa < f (A).

If xa < FRN f (A), then there exists a B ∈ FRN f (xa) such that A ≤ B. By the definition of
FRN f (xa) and B ∈ FRN f (xa) we get that there is a C ∈ LX such that B ≤ C (and so A ≤ C since
A ≤ B) and xa < f (C). It follows by (F2) that f (A) ≤ f (C) and so xa < f (A), as desired.

Conversely, if xa < f (A), then A ∈ FRN f (xa). By A ≤ A, then xa < FRN f (A), as desired. �

Theorem 2. There is a serial LGFRNSO FRN s.t. f = FRN iff f fulfills (F1), (F2) and (F3):
f (>X) = >X.
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Proof. (⇒) Assume that FRN is a serial LGFRNSO and f = FRN . Then it follows by
Proposition 1 and Proposition 2 that f = FRN fulfills (F1)- (F3).

(⇐) Assume that f fulfills (F1)- (F3) and FRN f is defined as that in Theorem 1. Note that
we only need to check the serial condition. In fact, for every xa ∈ J(LX), by f (>X) = >X we have
xa ∈ f (>X), it follows by the definition of FRN f (xa) that >X < FRN f (xa). Hence, for every
K ∈ FRN f (xa), K , >X, and so FRN is serial. �

Theorem 3. There is a reflexive LGFRNSO FRN s.t. f = FRN iff f fulfills (F1), (F2) and (F4):
A ≤ f (A), for every A ∈ LX.

Proof. (⇒) Assume that FRN is a reflexive LGFRNSO and f = FRN . Then it follows by
Proposition 1 and Proposition 3 that f = FRN f fulfills (F1), (F2) and (F4).

(⇐) Assume that f fulfill (F1), (F2) and (F4) and FRN f is defined as that in Theorem 1. Note
that we only need to check the reflexive condition. In fact, for every xa ∈ J(LX), take A ∈ FRN f (xa),
by the definition of FRN f , then there is a B ∈ LX such that A ≤ B and xa < f (B). It follows by
A ≤ B and (F4) that A ≤ B ≤ f (B), then xa < A. Therefore, FRN f is reflexive. �

Theorem 4. There is a transitive LGFRNSO FRN s.t. f = FRN iff f satisfies (F1), (F2) and
(F5): f (A) ≥ f ( f (A)), for every A ∈ LX.

Proof. (⇒) Assume that FRN be a transitive LGFRNSO and f = FRN . Then it follows by
Proposition 1 and Proposition 5 that f = FRN f fulfills (F1), (F2) and (F5).

(⇐) Suppose that f fulfills (F1), (F2) and (F5) and FRN f is defined as that in Theorem 1. Note
that we only need to check the transitive condition. Indeed, let xa ∈ J(LX) and A ∈ FRN f (xa).
Then for every xa < f (A) = FRN f (A), by (F5), we have xa < FRN f (FRN f (A)). It follows
by Definition 4 that there exists a B ∈ FRN f (xa) such that FRN f (A) ≤ B. From Lemma 1 we
conclude that for each yµ < B, yµ < FRN f (A). So, there exists a Vyµ ∈ FRN f (yµ) such that
A ≤ Vyµ . Hence, FRN f is transitive. �

Theorem 5. There is a unary LGFRNSO FRN s.t. f = FRN iff f fulfills (F1), (F2) and (F6):
f (A ∨ B) = f (A) ∨ f (B), for every A, B ∈ LX.

Proof. (⇒) Suppose that FRN is a unary LGFRNSO and f = FRN . Then it holds by Proposition
1 and Proposition 4 that f = FRN f fulfills (F1), (F2) and (F6).

(⇐) Assume that f fulfills (F1), (F2) and (F6) and FRN f is defined as that in Theorem 1. Note
that we only need to check the unary condition. In fact, let xa ∈ J(LX) and A, B ∈ FRN f (xa). Then
by the definition of FRN f (xa) we have xa < f (A) and xa < f (B). By (F6), we have

xa < ( f (A) ∨ f (B)) = f (A ∨ B),

otherwise we will have xa ∈ f (A) or xa ∈ f (B) since a is co-prime in L. Then there exists C ∈
FRN f (xa) such that A ∨ B ≤ C. Thus FRN f is unary. �

Remark 3. It is not difficult to prove that (F6) ⇒ (F2), (F4) ⇒ (F3), and (F5) can be rewritten as
(F5′) f (A) = f ( f (A)) in the present of (F2) and (F4).

The following corollary give the axiomatic characterizations on L-fuzzy upper approximation
operators associated with some compositions of the mentioned conditions.
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Corollary 1. (1) There is a serial and transitive LGFRNSO FRN s.t. f = FRN iff f fulfills
(F1)–(F3) and (F5).

(2) There is a serial and unary LGFRNSO FRN s.t. f = FRN iff f satisfies (F1)–(F3) and
(F6) iff f fulfills (F1), (F3) and (F6).

(3) There is a reflexive and transitive LGFRNSO FRN s.t. f = FRN iff f satisfies (F1), (F2)
and (F4), (F5) iff f fulfills (F1), (F2) and (F4), (F5′).

(4) There is a reflexive and unary LGFRNSO FRN s.t. f = FRN iff f satisfies (F1), (F2), (F4)
and (F6) iff f fulfills (F1), (F4) and (F6).

(5) There is a transitive and unary LGFRNSO FRN s.t. f = FRN iff f satisfies (F1), (F2) and
(F5), (F6) iff f fulfills (F1) and (F5), (F6).

(6) There is a reflexive, transitive and unary LGFRNSO FRN s.t. f = FRN iff f satisfies (F1),
(F2) and (F4)–(F6) iff f fulfills (F1), and (F4)–(F6) iff f satisfies (F1), (F4), (F5′) and (F6).

Note 1. An operator f : LX −→ LX fulfilling (F1), (F4), (F5′) and (F6) is usually called a L-closure
operator. It is known that there is a bijection between L-closure operators and L-topologies. Hence,
reflexive, transitive and unary LGFRNSO can characterize L-topology.

5. Reduction on L-fuzzy upper approximation operator based on LGFRNSO

As we all know, reduction theory is the foundation of the application of rough sets. In this section,
we will present a theory of reduction on L-fuzzy upper approximation operator based on LGFRNSO.
The core think is to get rid of the smaller redundant L-fuzzy remote neighborhoods.

Definition 6. Let FRN be a LGFRNSO. It is easily seen that the following mapping MFRN :
J(LX) −→ 2LX

defined by ∀xa ∈ J(LX),

MFRN (xa) =
{
K ∈ FRN (xa)|∀V ∈ FRN (xa),K ≤ V ⇒ K = V

}
is also a LGFRNSO, and each element of FRN (xa) is called the maximum remote neighborhood at
xa.

Definition 7. Let FRN be a LGFRNSO.
(1) For a K ∈ FRN (xa), K is called a reducible element of FRN at xa ∈ J(LX), if there exists

a V ∈ FRN (xa) such that K < V (i.e., K ≤ V but K , V), otherwise, K is called an irreducible
element.

(2) FRN is called irreducible if for any xa ∈ J(LX), each K ∈ FRN (xa) is irreducible at xa,
otherwise, FRN is called reducible.

Proposition 7. Let FRN be an LGFRNSO and K ∈ FRN (xa) be reducible at xa. It is observed
easily that the following mapping FRN K : J(LX) −→ 2LX

defined by

∀yb ∈ J(LX),FRN K(yb) =

{
FRN (yb) − K, y = x, b = a;
FRN (yb), otherwise.

,

is also a LGFRNSO.

Proof. The proof is obviously, so we omit it. �
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Proposition 8. Let FRN be a LGFRNSO and K be a reducible element of FRN at a point
xa ∈ J(LX). Then V ∈ FRN K(xa) is a reducible element of FRN K at xa iff V is a reducible
element of FRN at xa.

Proof. (⇒) From FRN K(xa) ⊆ FRN (xa) we conclude easily that if V is a reducible element
FRN K at xa then V is a reducible element of FRN at xa.

(⇐) Let V be a reducible element of FRN at xa. Then there exists an M ∈ FRN (xa) such
that V < M. If M , K, then M ∈ FRN K(xa), and so V is a reducible element of FRN K at xa.
If M = K, by K is a reducible element of FRN at xa, there exists an H ∈ FRN (xa) such that
H > K = M > V . It follows that V is a reducible element of FRN K at xa. �

Definition 8. Let FRN be a LGFRNSO. Then redu(FRN ), generated by eliminating all reductive
elements of FRN at every L-fuzzy point, is called the reduction of FRN .

Proposition 9. Let FRN be a LGFRNSO. Then K ∈ FRN (xa) is a reducible element of FRN
at xa ∈ J(LX) iff K <MFRN (xa).

Proof. (⇒) Let K ∈ FRN (xa) be a reducible element of FRN at xa ∈ J(LX). Then there exists a
V ∈ FRN (xa) such that V > K. By Definition 6, we have K <MFRN (xa).

(⇐) Let K ∈ FRN (xa) and K < MFRN (xa). Then there exists a V ∈ FRN (xa) such that
V > K. Therefore K ∈ FRN (xa) is a reducible element of FRN at xa ∈ J(LX). �

Lemma 2. Let FRN 1 and FRN 2 be two LGFRNSO. If ∀xa ∈ J(LX), FRN 1(xa) ⊇ FRN 2(xa),
then FRN 1(A) ≤ FRN 2(A) for every A ∈ LX.

Proof. Take xa ∈ FRN 1(A), then A � K for each K ∈ FRN 1(xa). By
FRN 1(xa) ⊇ FRN 2(xa), it follows that A � V for any V ∈ FRN 2(xa), that means,
xa ∈ FRN 2(A). Hence, FRN 1(A) ≤ FRN 2(A) by Lemma 1. �

Proposition 10. Let FRN be a LGFRNSO and K ∈ FRN (xa) be a reducible element of FRN
at xa ∈ J(LX). Then FRN and FRN K generate the same L-fuzzy upper approximation operator.
That is,

FRN (A) = FRN K(A),∀A ∈ LX.

Proof. Let A ∈ LX. Then for any xa ∈ J(LX), by FRN (xa) ⊇ FRN K(xa) and Lemma 2, we have
FRN (A) ≤ FRN K(A).

Next we prove that FRN (A) ≥ FRN K(A). For all xa < FRN (A), by Definition 4, there
exists an V ∈ FRN (xa) such that A ≤ V .

Case1: If V , K, then V ∈ FRN K(xa) and so xa < FRN K(A).
Case2: If V = K, by K ∈ FRN (xa) is a reducible element of FRN at xa ∈ J(LX), then

there exists a M ∈ FRN (xa) such that A ≤ V = K < M and so M ∈ FRN K(xa). Therefore,
xa < FRN K(A).

A combination of Case1 and Case2, it follows by Lemma 1 that FRN (A) ≥ FRN K(A). �

By Proposition 10, we obtain the following corollary.

Corollary 2. Let FRN be a LGFRNSO. Then FRN and redu(FRN ) generate the same L-fuzzy
upper approximation operator.
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Proposition 11. Let FRN 1 and FRN 2 be two irreducible LGFRNSO. Then FRN 1 and
FRN 2 generate the same L-fuzzy upper approximation operator iff FRN 1=FRN 2.

Proof. (⇐) The proof is obviously, so we omit it.
(⇒) Take any K ∈ FRN 1(xa), then by Definition 4, we have

xa < FRN 1(K) = FRN 2(K),

so there exists an V ∈ FRN 2(xa) such that K ≤ V . Because FRN 2 is irreducible we obtain that
K = V ∈ FRN 2(xa). Hence, FRN 1(xa) ⊆ FRN 2(xa). In the same way, we can prove that
FRN 2(xa) ⊆ FRN 1(xa). Therefore, FRN 1 = FRN 2. �

By Corollary 2 and Proposition 11 we have the following theorem.

Theorem 6. Let FRN 1 , FRN 2 be two LGFRNSO. Then FRN 1 and FRN 2 generate the
same L-fuzzy upper approximation operator iff

redu(FRN 1) = redu(FRN 2).

At last, we say some about the L-fuzzy lower approximation based on L-generalized fuzzy remote
neighborhood systems.

Remark 4. (1) In classical set theory, it holds the law of excluded middle. That means, for A ∈ 2X and
x ∈ X, we have

A ∪ Ac = X, A ∩ Ac = ∅ and x ∈ A or x ∈ Ac.

This makes that upper and lower approximations based on GRNSO are not independent because they
can also be represented by each other, precisely, for A ∈ 2X,

RN (A) = (RN (Ac))c,RN (A) = (RN (Ac))c,

which are usually called Dual Theorem.
(2) In L-fuzzy set theory, to analogize the classical negative operator, we usually consider L together

with an order-reversing involution ′ : L −→ L [36]. Then for each A ∈ LX, the L-fuzzy set A′ can be
defined pointwisely. Note that for A ∈ LX and xa ∈ J(LX), we have no

A ∨ A′ = >X, A ∧ A′ = ⊥X and xa ∈ A or xa ∈ A′.

That means, the law of excluded middle in L-fuzzy set dose not hold. This makes that we have no
the fuzzy version of Dual Theorem, so we can not define and study the L-fuzzy lower approximation
through the L-fuzzy upper approximation with an order-reversing involution ′.

6. Conclusions

In this paper, we constructed an L-fuzzy upper approximation operator from the LGFRNSO. Then
we presented the basic properties, axiomatic characterizations and reduction theory on the new
approximation operator. Furthermore, the serial, reflexive, unary and (strong) transitive conditions in
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LGFRNSO were proposed, and the associated approximation operator with them were discussed,
respectively.

As we have seen in Remark 4, for GRNSO, since the upper and lower approximations can be
represented by each other, then we can easily define and study lower approximation through upper
approximation. But for LGFRNSO, we can not define and study the L-fuzzy lower approximation
through the L-fuzzy upper approximation. Therefore, the study on L-fuzzy lower approximation and
that on L-fuzzy upper approximation are independent work. We will leave the research on L-fuzzy
lower approximation based on LGFRNSO as a future work. Additionally, as to our knowledge, general
neighborhood systems based rough set have important application in information systems, see [52] and
it references. Note that fuzzy set can be regarded as a fuzzy information granule and general L-fuzzy
remote neighborhood systems can be regarded as the fuzzy information associated with fuzzy point.
Therefore, it seems that fuzzy remote neighborhood-based rough sets should have some applications
in fuzzy information systems. We will also consider this problem in the future work.
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