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Abstract: This paper provides an answer if the nonuniform behavior can destroy the structural stability
of nonlinear systems. We show that if the linear system x(#) = A(#)x(#) admits a nonuniform exponential
dichotomy, then the perturbed nonautonomous system x(¢#) = A(f)x(¢) + f(t, x) is structurally stable
under suitable conditions.
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1. Introduction

Structural stability of systems is important since structural stable systems can resist external
disturbance; we refer the reader to [10-22]. Many researchers provided sufficient conditions for
structural stability of planar (2-dimension) polynomial vector fields under polynomial
perturbations [30-36]. In this paper, we focus on the high-dimensional systems. Usually authors
study structural stability under the assumption that the linear system has some hyperbolic property
and in most papers the authors assume that the linear system admits (classical or uniform) exponential
dichotomy [7, 8]. However, it is argued that (uniform) exponential dichotomy restrict the behavior of
dynamical systems. For this reason, we need a more general concept of hyperbolicity. Recently,
nonuniform exponential behavior and nonuniform exponential dichotomy was introduced (see
e.g. [1,3-6,20,21]). As a result a natural question arises: if the linear system admits a nonuniform
exponential dichotomy, can structural stability of systems be destroyed by the nonuniformity? This
paper gives a nonuniform version of structural stability of nonlinear systems.
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2. Main results

In this section, we state our main theorem. Consider the systems

x(1) = A(0)x(), (2.1)

x(t) = A@)x(t) + f(2, x), (2.2)

where t € R,x € R", A(¢) is a continuous matrix function, and f : R X R" — R" is a piecewise
continuous function. Let 7'(¢, s) be the evolution operator satisfying x(¢t) = T(¢, s)x(s), t, s € R, where
x(?) is a solution of the system (2.1).
Definition 2.1. The linear system (2.1) is said to admit a nonuniform exponential dichotomy if there
exists a projection P(t) ( P? = P) and constants @ > 0,K > 0,& > 0, such that
T (t, s)P(s)|| < Ke =9 . el ¢ > 5,
{ T (t, $)O(s)|| < Ke® =9 . el ¢ < s, 23

where P(t)+ Q(t) = Id (identity), T(t, s)P(s) = P(t)T(t, s),t, s € R, and ||-|| is the Euclidean norm (see
eg. [1,2,27]).
Remark 2.1. The nonuniform exponential dichotomy reduces to the classical (uniform) exponential
dichotomy by taking & = 0in (2.3). In bad situations, an example is given in [1, 2] to show that linear
system does not admit an exponential dichotomy, but it admits a nonuniform exponential dichotomy.
Let f : RXR" — R" be a piecewise continuous function. There exists Ly > 0 such that for any
x1, X2 € R", t € R, the piecewise continuous function f(z, x) satisfies (here £ > 0 as above)
(H) 1f(t,x1) = f(t, )|l < L™ - |lx; — x|
For a small enough number O < y < 1, denote

r+1
S = {f(t, x)‘ f(t,x) satisfies (H,), 2KL;a™' <y and sup f £ (o, 0)lle*do < +o0).
t

teR

Since the conditions in § are used in the following proof, for sake of convenience, we denote
(Hy) 2KLja™!' <y,

t+1
(H3) sup f 1f (o, 0)lle”ldo < +o0.
t

teR

For any f(z, x) € S, define L; = inf{c > Olllf(z, x1) = f(z, x2)Il < ce”||lx; — xaI}. Taking ||f(z, )l =
max{L|f € S}, then § is a normed linear vector space with norm || - [|;. If x(r) = A(H)x + f(z, x) is
topologically conjugated to y(¢) = A(t)y + g(t,y), we denote it by f ~ g. For detailed definition of a
topological conjugacy, for example, one can refer to [11,13,23,26-29].
Definition 2.2. The differential equation x(t) = A(t)x + f(t, x) is said to be structurally stable in S, if
for any g(t,y) € S, we have y(t) = A(t)y + g(t,y) is topologically conjugated to x(t) = A(t)x + f(t, x)
(i.e. g = f).
Theorem 2.1. For any f(t,x) € S, if the linear system (2.1) admits a nonuniform exponential
dichotomy, then system (2.2) is structurally stable in S.

AIMS Mathematics Volume 5, Issue 6, 5627-5637.



5629

3. Proofs of main results

To prove the main result, some preliminary lemmas are needed.
Lemma 3.1( [26]) Let ¢(t) be a non-negative locally integrable function on R. If there exist constants

p > 0,C > 0 such that
1 1+p
—f o(s)ds < C,
P Ji

then for any B > 0, we have
!
f o(8)e P™9ds < (1 —ePP)'Cp,

o0

—+00
f o(5)Pds < (1 — ey 'Cp.
t

Lemma 3.2 Suppose that system (2.1) admits a nonuniform exponential dichotomy with the constants
g, a. If the nonlinear term f(t,x) € S, then the nonlinear system (2.2) has a unique bounded solution

y(t) satisfying

1) = f I'(2, 5)P(s)f(s,y(s))ds — f T'(t, 5)O(s)f (s, y(s))ds. (3.1)

o

Proof. Now we prove this lemma in three steps.
Step 1. First, we prove that the nonlinear system (2.2) has a unique bounded solution. For this purpose,
1+1
let sup f Ilf (o, 0)|le®“do = M, xo(f) = 0, and
t

teR

X1(t)=f T(t,S)P(S)f(S,XO(S))dS—f T'(t, 5)Q(5) f (s, x0(5))ds.

[ee)

Take r € R. From (H;) and Lemma 3.1, it is easy to obtain that
Il (DIl < 2KM(1 — )",

which implies x;(¢) is bounded. Assume that x,,(¢) is bounded. Define x,,.(f) as

xm+1(t):f T(I,S)P(S)f(saxm(s))ds—f T(1, 9)Q(8)f (5, Xm(s))dss.

(o)

From (2.3) and (H,), we have

IA

!
[ I f Ke™™ e ]|, (s)lle™ ™ + 11 £ (s, O)llds
- +00

b [ K Lol + 1G5, 0lds

t

! !
f Ke ™ 9ds - Lellx,(s)ll + f Ke 9| £(s,0)|led s

(0] —00

+00 +00
+ f Ke™ ™ - Lyllx,(s)ll + f Ke" || f(s, 0)lle™ds.
t t
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It follows from (H;) and Lemma 3.1 that

KLf —a\—1
a1 Ol < ——llen (@l + 2KM(1 = €)™,
and this implies
ZKLf —ay—1
@I < ——= 11Xt Ol + 2KM(1 = e
Consequently, we have
ZKLf 2KLf —an—1 —ay\—1
@ < (=l @l + 2KM(1 = ™)) + 2KM(1 - ™)
2KL;, 2KL; 2KL o
< [+ T wr = Ol + 2KM(1 = )
2KLs\m
1 - (Tf) Lf 2KM 1 —a\—1
WL, [l (DI + (I-e) .

a
In view of (H3), ZK% < 1, we obtain

1 2KL;s o o
||xm+1(t)||s1 g 2KM(—e )+ 2KM(1 - e

a

which implies that the sequence of function {x,,(¢)} is bounded on R. Also,

IA

t
11 () = X (D] f Ke—“(’_s)esls'(Lfllxm(s) = X1 (I e_":'s')ds

(%)

+00
- f Ke™ e Lyllx(8) = xpor ()] - €)'
t

'3
f KLe™ ™ )x,(5) = X1 (5)llds

(%)

+00
+ f KLfea([_S)”xm(s) - _X,'m_l(S)HdS.
t

Let T, = sup |[x,,,(t) — x,,—1(2)||. It follows from (H3) that
teR

Tm+1

IA

t +00
f KL ™ T, ds + f KL 9T, ds
t

—00

2KL;a™'T,,
yT,,.

INIA

+0o0

Since 0 < y < 1, the series Z 1%, () — X,—1(?)]| converges uniformly on R. Denote lim x,,(t) = y(¢),
m=1 e

and note y(¢) is bounded. In addition,

1) = f T(2, 5)P(s)f(s,y(s))ds — f T'(t, 5)Q(s)f (s, y(s))ds.

o0
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Step 2. We will prove that any bounded solution of system (2.2 ) can be expressed by formula (3.1).
Now assume that system (2.2 ) has another bounded solution x(¢) satisfying x(0) = xo, ||x(#)|| < 9. We
have

x(7)

T, 0)x(0) + f T(t, $)iuf (s, x(s))ds
0
= T(,0)x(0) + f T(t, s)(P(s) + Q(s) f(s, x(s))ds
Ot !
= T 0)x(0) + f T(t, s)P(s)f(s,x(s))ds + f T(t,5)0(s)f(s, x(s))ds
0 0

1

0
= T(,0)x0) + f T(t, s)P(s)f(s, x(s))ds — f T(t, s)P(s)f(s,x(s))ds 3.2)

— 00

+f0 T(t, 9)Qs)f(s, x(s))ds — f T (1, 9)Q(s)f (s, x(s))ds
= f T(t, s)P(s)f(s,x(s))ds — f+°° T(t,s)Q(s)f(s, x(s))ds

(o0

0 +00
+T(,0)[x0 — f T(0, s)P(s)f(s, x(s))ds + f T(0, s)Q(s)f (s, x(s))ds].
_ 0

(o)

From Lemma 3.1, we have

I f T'(t, s)P(s)f(s, x(s))ds — f T'(t, 5)Q(5)f (s, x(s))ds||
f Ke™ ™9 - M (Ll Ix(s)ll - e + |1 f (s, 0)II)|ds

IA

+| f Ke™ ™ - eM(Lellx(s)] - e + [ £ (s, 0)I])|ds

IA

| f Ke ™™™ N(Ly0 + M)ds| + | f Ke" (L9 + M)ds|
2K(1 — e (@® + M).

IA

Hence, we see that

0 +00
T(t,0)[xo — f T(0, $)P(s)f (s, x(s))ds + f T(0, 5)Q(s)f (s, x(s))ds]
_ 0

(%)

is bounded. In addition, the above formula is the solution of system (2.1), so it is a bounded solution.
Note that the linear system has no non-trival bounded solution due to the nonuniform exponential
dichotomy. Thus we have

0 +00
T(t,0)[xo — f T(0, s)P(s)f(s,x(s))ds + f T(0, s)Q(s)f (s, x(s))ds] =
_ 0

[ee)

and therefore,

(%)

x(t) = f T(t, s)P(s)f(s,x(s))ds — f ) T(t,)Q(s)f(s, x(s))ds.
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Step 3. We prove the uniqueness of the bounded solution. From (2.3), (H,) and (H3), we have

!
@ =Xl < f Ke™ - eMLylly(s) = x(s)lle™"ds

(o)

+00
+ f Ke® ™9 ML ly(s) — x(s)lle™*ds
t

2KLsa ! sup |ly(r) — x@)||
teR

¥ sup lIy(@) = x@I|.

IA

IA

That is, sup ||y(¢) — x(?)|| < y sup |[y(t) — x(¢)||, which implies y(¢) = x(¢). Thus, the uniqueness is proved.
teR teR
Remark 3.1 In the proof, the function sequence {x,,(t)} can be seen as the approximation sequence of

the solution of system (2.2) and we conclude that {x,,(t)} is bounded on R.
Lemma 3.3 Suppose that the system (2.1) admits a nonuniform exponential dichotomy, fi(t,x) € S, (i =
1,2) and 2KLa™" < y. Let y(t, 0, x) be the bounded solution of

2(t) = Atz + fi(t, x) (3.3)
with ¢(0, 0, x) = x. Then for any x € R",0 € R, the following differential equation
(0 =AWz + otz + @(t,0, ) = fi(t, ¢, 0, X)) (3.4)

has a unique bounded solution 7'¢(t) satisfying

209 = f T(t, $)P(s)| fa(s5, 22 (5) + (5,0, X)) = fils, ¢(s, 0, x))]ds
- (3.5)

+ f T(ta S)Q(S)[fZ(s’ Z(Q’X)(s) + QD(S’ O, X)) - fl(s’ ‘P(S’ O, X))]dS

Moreover, 79 (o) uniformly converges to 790(o) for x — xy € R".

Proof. For fixed (0, x) € R X R", clearly, system (3.4) satisfies the conditions of Lemma 3.2. Thus,
(3.4) has a unique bounded solution z@*(¢) satisfying (3.5). Now we construct a sequence {zfﬁ’x)(t)}.
Let zég’x)(t) =0, and

299 = f T(t, )P(s)[ fa(s, 297 (5) + ¢(s,0, %)) = fi(s,¢(s,0,x))|ds
_ f T(t, )05 fa(s, 297(5) + 95,0, )) — fi(s. ¢(5: 0, )]ds.

Assume that 7.9(¢) is well defined. Take

t

O f T(t, $)P(s) fo(s, 245 (5) + (5,0, %)) = fi(5, (5,0, %)]ds

o0

- f T(t’ S)Q(S)[fZ(S7 ZJ(S’X)(S) + ‘10(5’ O, X)) - fl(sa SD(S’ O, x))]ds

From Remark 3.1 and Lemma 3.2, the approximation sequence {zﬁﬁ’x)(t)} of the solution of system (3.4)
uniformly converges to z@(¢) on R x (R x R").

AIMS Mathematics Volume 5, Issue 6, 5627-5637.



5633

Now we claim that for any non-negative integer m, xo € R",h > 0, 299(1) uniformly converges to

Zi’%xo)

Form =0, z

0

(t)on |t — 0| < h, for x — Xxo.
(0,%)

(1) = 0, the claim is clear. Assume that the above claim holds for m = k. Now we

consider m = k + 1. For xy € R", h > 0, we prove that for any € > 0, there exists a constant 6* such that

(0.%) (0,x0)
Iz ) =z Ol <& lt—ol <h,

where ||x — xp|| < 6".
t+1
Since fi(t,x) € S, i = 1,2, let sup f fi(o, 0| ldo = M, i = 1,2.
From (2.3) and (H;), we have [

where 7 = 1[In

(0,%)

IA

8[(Ly, +Lys,) M+2M)]

o
Iy (0 = 22"l

| [ 7Pt + 5,030 = fits 5. 0301

- T 905, 207(5) + (5,0, — fis, (s, 0, s
- m T(t, P 5, 20(5) + (5. 0, %)) = Fi(s, ¢(s,0, x0)lds

v f T 0O 2(5) + 6500300 — Fils. 5,00 30|
I m K oM fo(s, 290(5) + p(s, 0, 0) = (s, 905, 0, )]

~L(5, 28 (5) + (5,0, 30)) = fi(s, ¥(5, 0, xo)|ds
- f Ke™ - oM f(5, 527 (s) + ¢(s, 0, X)) = fils, ¢(s,0, X))]

~La(s, 28 (5) + (5,0, %)) = fi(s, (s, 0, 20))]|[ds

A =7 ! +T +00
:f st+f st+f st+f Jds,
—co -1 t t+T

ca

|. From Remark 3.1 and Lemma 3.2, we see that the approximation

sequence {z,,” (t)} of the solution of system (3.4) is bounded on R. Also, y_(s, 0, x) is bounded on R.
Without loss of generality, we assume that they are all bounded above by M. Since f(t,x) € S,(i =
1,2), a standard computations lead us to

IA

AIMS Mathematics

—T =T
f Jds < f Ke ™™ . e H[(2L;, + 2L )M + 4M]e™ds <

&
E
o 4

(%)

+00 +00
f Jds < f Ke™ ™9 . *M[(2L; + 2L )M + 4M]e™ds < Z,
t +T

+T

!
f Jds
f—t‘f

f Ke @9 . pelsl [L_f2||zzg,X)(s) + (s, 0, X) — Z,((Q’XO)(S) — (8,0, X0l - oo
-7
+Lyllp(s, 0,%) = (s, 0, x0)l| - €M ]ds
t
f Ke_a(t_s)’}’[||Z§(Q’x)(s) — Z](CQ:XO)(S)” + 2||e(s, 0, X) — ¢(s, 0, x0)||]ds
-7
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By assumption, for the above & > 0, there exists a constant 6, > 0 such that when |[x — xo|| < 6,
128(r) — 28 (1)l < &, |t — ol < h. Since ¢(t, 0, x) is the solution of (2.2),

o(t,0,x) = x + f [A($)e(s, 0, x) + f(s,¢(s,0,x))]ds.
Y

Due to the continuity, we can assume that there is a positive constant 6 such that ||A(?)|| < 6, for
|t — ol < h+ 7. We have

A

t
lle(t, 0, %) = @(t,0, x0)ll < |lx = xol| + ] f (0 + Lp)e(s, 0, x) — ¢(s,0, Xo)llds
0

IA

t
llx = xoll + (0 + 5%7) f lle(s, 0, x) = ¢(s, 0, X0)llds.
0

It follows from Bellmen’s inequality that

2= A
lle(t, 0, %) = (1,0, Xl < Ilx = xolle® ==l < [lx — xole** 2",

That is, for the above & > 0, there exists a constant §, such that

ll(t, 0, x) — p(t,0, x)ll < &, [t—0l < h,

where ||x — xp|| < 6p. Consequently,

! !
3
f Jds < f Ke o9 . Y 3g45 < —7, |t —ol < h.
—r ‘ 2Ka 2

-T

I+T 3
Similarly, there exists a constant § > 0, for ||x — xo|| < &, f Jds < %, |t — ol < h. Taking
t

5* = min{é, 0}, then for |x — xo| < 6", we have
12970(1) = 220l < & + 3y < 4e, |t—ol <h.

Therefore, for any x, € R",h > 0, when x — Xxo, zﬁf;f)(t) uniformly converges to z,(f_’;m)(t) on |t —o| < h.

1
From the induction principle, for any non-negative integer m, xo € R" and & > 0, if x — X, then 2291
: (0.%0)
uniformly converges to z,,"" () on |t — o| < h.
In particular, taking 4 = 0, we have for any non-negative integer m, xy, € R", if x — X, then fo ’x)(Q)
uniformly converges to 22" ().
We finally need to prove that for x — xo, 29 (o) uniformly converges to 7 (o) on R. In fact, for

any € > 0, since {zﬁf,”x)(g)} uniformly converges to 7% (o) on R, there exists a constant m, such that

1229(0) - 2e(o)| < E, o€ R, x € R

In addition, for x — xq, since {zﬁf,)(’)x)(g)} uniformly converges to szf(;x(’)(g) on R, there exists a constant

8%, |lx — xoll < &* such that for the above € > 0,
o (@) ~ 2 V(@) < E 0 €R.
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Hence, for |x — x| < 67,

2@9(0) — 2@ (0)| < [9(0) — 227 ()] + Iz9(0) — 22 (0)| + |22 (0) — 2@ (0)| < 3E.

Therefore, for x — xg, 299 (0) uniformly converges to z¢*)(0) on R. This completes the proof of
Lemma 3.3.
Proof of Theorem 2.1. For any g in S, it suffices to prove that

x(t) = A(t)x + fi(t, x). (3.6)

is topologically conjugated to
x(t) = A()x + f(2, x). (3.7)

Forany p € R, x € R", let y(¢, 0, x) be a solution of system (2.2) and y(o, 0, x) = x. From Lemma 3.3,
the differential function (3.4) has a unique bounded solution z@¥(¢) satisfying (3.5). For x — x, € R,
7@9(0) — 7@*(p) uniformly with respect to 0. Now we take

H(o, x) = x + 2¢(0).

Then by a similar argument as in [9] or [25,26], it is not difficult to prove the conjugacy between
system (3.6) and (3.7).

4. Conclusions

This paper provides a nonuniform version of the theorem on the structural stability of nonlinear
systems. We show that if the linear system x(¢) = A(#)x(¢) admits a nonuniform exponential dichotomy,
then the perturbed nonautonomous system x(¢) = A(¢)x(¢) + f(¢, x) is structurally stable under suitable
conditions.
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