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Abstract: The numerical method is proposed in this paper to solve a general class of continuous-
time linear programming problems in which the functions appeared in the coefficients and the
time-dependent matrices are assumed to be piecewise continuous. In order to make sure that all
the subintervals of time interval will not contain the discontinuities of the involved functions, a
methodology for not equally partitioning the time interval is proposed. The main issue of this paper is to
obtain an analytic formula of the error bound, where the strong duality theorem for the primal and dual
pair of continuous-time linear programming problems with time-dependent matrices and piecewise
continuous functions is a by-product. We shall propose two kinds of computational procedure to
evaluate the error bounds. One needs to solve the dual problem of the discretized linear programming
problem, and another one does not need to solve the dual problem. The detailed differences between
these two computational procedures will be also presented. Finally we present a numerical example to
demonstrate the usefulness of the numerical method.
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1. Introduction

The theory of continuous-time linear programming problem has received considerable attention for
a long time. Tyndall [31, 32] treated rigorously a continuous-time linear programming problem with
the constant matrices, which was originated from the “bottleneck problem” proposed by Bellman [4].
Levinson [12] generalized the results of Tyndall by considering the time-dependent matrices in which
the functions shown in the objective and constraints were assumed to be continuous on the time interval
[0,7]. In this paper, we shall consider the piecewise continuous functions on [0,7]. Meidan and
Perold [13], Papageorgiou [16] and Schechter [27] have also obtained some interesting results for
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continuous-time linear programming problems.

Anderson et al. [1-3], Fleischer and Sethuraman [8], Pullan [17-21] and Wang et al. [33]
investigated a subclass of continuous-time linear programming problems, which is called the
separated continuous-time linear programming problems and can be used to model certain job-shop
scheduling problems.  Weiss [34] proposed a simplex-like algorithm to solve the separated
continuous-time linear programming problem. Shindin and Weiss [28, 34] also studied a more
generalized separated continuous-time linear programming problem. However the error estimate was
not studied in the above articles. One of the contribution of this paper is to obtain the error bound
between the optimal solution and numerical optimal solution. This paper is also the first attempt to
numerically solve the continuous-time linear programming problems with time-dependent matrices.
As far as the author knows, the numerical methods for solving the problems with time-dependent
matrices were seemingly not studied in the literature.

Buie and Abrham [5] initiated the numerical method for solving the continuous-time linear
programming problem by considering the constant matrices. However the error of approximated
optimal solution was not studied. In other words, the error of numerical optimal solution was
unknown. To locate the error of approximated optimal solution is an important issue. Another issue
for discretizing the continuous-time linear programming problem is the partition of time interval
[0,T]. Buie and Abrham [5] adopted the equidistant dissections of time interval [0, 7']. In order to
discretize the continuous-time linear programming problems as a finite-dimensional linear
programming problem, the methods for equally subdividing the time interval as the equal length of
subintervals are frequently adopted. However, when the involved functions in the continuous-time
linear programming problems are not continuous on [0, 7], the subdivided subinterval of [0, 7] may
contain the discontinuities of the involved functions. Therefore, for the piecewise continuous
functions, equally subdividing the time interval is not the appropriate adoption. In this paper, we
propose the numerical method to solve the general class of continuous-time linear programming
problems in which the functions appeared in the time-dependent matrices are allowed to be piecewise
continuous. The problem solved in this paper includes the separated continuous-time linear
programming problem. In order to make sure that the subintervals will not contain the discontinuities,
a different methodology for not equally partitioning the time interval is proposed.

On the other hand, the nonlinear type of continuous-time optimization problems was studied by
Farr and Hanson [6, 7], Grinold [9, 10], Hanson and Mond [11], Reiland [22, 23], Reiland and
Hanson [24] and Singh [29]. The nonsmooth continuous-time optimization problems was studied by
Rojas-Medar et al. [26] and Singh and Farr [30]. The nonsmooth continuous-time multiobjective
programming problems was also studied by Nobakhtian and Pouryayevali [14, 15]. Zalmai [39-42]
investigated the continuous-time fractional programming problems. However the numerical methods
were not developed in the above articles.

Wen and Wu [35-37] have developed the different numerical methods to solve the continuous-
time linear fractional programming problems. In order to solve the continuous-time problems, the
discretized problems should be considered by dividing the time interval [0, 7] into many subintervals.
Since the functions considered in Wen and Wu [35-37] are assumed to be continuous on [0, T], we
can take this advantage to equally divide the time interval [0,7]. In other words, each subinterval
has the same length. In Wu [38], the functions are assumed to be piecewise continuous on the time
interval [0, T']. In this case, the time interval cannot be equally divided. The reason is that, in order to
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develop the numerical technique, the functions should be continuous on each subinterval. Therefore
a different methodology for not equally partitioning the time interval was proposed in Wu [38]. The
above papers were studied based on the constant matrices. In this paper, we shall solve a more general
model that considers the time-dependent matrices in continuous-time linear programming problem.
We still consider the piecewise continuous functions on the time interval [0, T]. Therefore, the time
interval cannot be equally divided.

The main issue of this paper is to obtain an analytic formula of the error bound. In this paper,
we shall propose two kinds of computational procedures to evaluate the error bounds. One needs to
solve the dual problem of the discretized linear programming problem, and another one does not need
to solve the dual problem. Solving the dual problem is time-consuming, since it can be a large scale
linear programming problem. Alternatively, we can also obtain the error bound without solving the
dual problem. In this case, we may obtain a larger error bound. However we prefer to obtain a tighter
error bound. The detailed differences between these two computational procedures will be described
in the context of this paper. Finally, we present a numerical example to demonstrate the usefulness of
the numerical method developed in this paper.

This paper is organized as follows. In Section 2, the primal and dual pair of continuous-time linear
programming problems with time-dependent matrices and piecewise continuous functions are
introduced. The assumptions needed in this paper are also presented. In Section 3, since the piecewise
continuous functions are adopted in this paper, we propose a method to partition the time interval
such that all the subintervals will not contain the discontinuities. Based on this partition, we introduce
the discretized problem of the continuous-time linear programming problem with time-dependent
matrices and piecewise continuous functions. In Section 4, under the desired settings, we can derive
an analytic formula of the error bound. The strong duality theorem for the primal and dual pair of
continuous-time linear programming problems with time-dependent matrices and piecewise
continuous functions is also obtained. In Section 5, we are going to present the convergence of
approximate optimal solutions that are step functions constructed from the optimal solutions of
discretized linear programming problems. In Section 6, two computational procedures are proposed,
and a numerical example is also provided to demonstrate the usefulness of this practical algorithm.

2. Formulation and motivation
The continuous-time linear programming problem is formulated as follows:
T
(CLP) max f a' (Hz(t)dt
0

subjectto B(t)z(t) < ¢(t) + f K(t, s)z(s)ds for all t € [0, T']
0

z € L[0,T] and z(t) > 0 for all 7 € [0, T.
The dual problem of (CLP) is defined as follows:

T
(DCLP) min f ¢’ (Hw(t)dt
0
T
subjectto  (B(1))" w(?) > a(r) + f KT (s,)w(s)ds for all ¢ € [0, T]
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w e L2[0,T] and w(r) > 0 for all 7 € [0, T.
Assume the following conditions are satisfied.

e B(#) and K(t, s) are p X g time-dependent matrices, and all the entries B;; and K;; of B and K,

respectively, are nonnegative and piecewise continuous fori = 1,---pand j=1,--- ,q.

e a and c are g-dimensional and p-dimensional vector-valued functions on [0, T'], respectively, and
all the entries a; and ¢; are piecewise continuous on [0,7] fori = 1,---pand j = 1,--- ,q,
respectively.

e foreacht€[0,7T]and j=1,---,q, the following inequality is satisfied:

)4
Zﬁam>m 2.1)
i=1
e the following inequality is satisfied:
min mniﬁﬂ&ﬂy34ﬂ>qza>a (2.2)

i=1,,p j=1, q 1€[0,T
In other words, if B;;(r) # 0, then B;;(f) > o foralli=1,--- ,pand j=1,--- ,q.
We have the following observations.

o If the vector-valued function ¢(¢) is nonnegative, then it is obvious that the zero vector-valued
function is a feasible solution of problem (CLP).
e The dual problem (DCLP) is always feasible that can be realized in Proposition 4.1 below.

The real-valued functions a; and ¢; will not be assumed to be nonnegative on [0, ] fori =1,--- ,p
and j = 1,---, ¢ in this paper. However, in the literature regarding the topic of continuous-time linear
programming problems, the real-valued functions ¢; were always assumed to be nonnegative on [0, T']
fori = 1,---, p. In this paper, we can just assume that the primal problem (CLP) is feasible without
considering the real-valued functions ¢; to be nonnegative on [0, 7] for i = 1,---, p. In other words,
when the primal problem (CLP) is feasible, the numerical method developed in this paper does not rely
on the nonnegativity of the real-valued functions ¢; fori = 1,--- , p.

As a matter of fact, the feasibility of primal problem (CLP) can be guaranteed by the feasibility of
its discretization problem (P,) that will be shown below. Of course, if the real-valued functions c; are
assumed to be nonnegative on [0, 7] fori = 1,--- , p, then we can show that the discretization problem
(P,) is feasible for each integer n € N. Therefore, in order to avoid the nonnegativity of the real-valued
functions ¢; for i = 1,---, p, we can simply assume that the discretization problem (P,) is feasible
for each integer n € N. This assumption is reasonable, unless we can prove that the discretization
problem (P,) is infeasible for some integer n € N when some of the real-valued functions ¢; are not
nonnegative for some i = 1,--- , p. Here we also raise an open question. Whether we can prove that the
discretization problem (P,) is infeasible for some integer n € N when some of the real-valued functions
¢; are not nonnegative for some i = 1,--- , p.

3. Discretization

Let¥;, S;, B;; and K;; denote the set of discontinuities of the real-valued functions a;, ¢;, B;j and K;;,
respectively. Then U;, ©; and B;; are finite subsets of [0, 7] and &;; is a finite subset of [0, T'] x [0, T].
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We also write
K = /0 x /2
ij ij ij
where RS.) and Rg) are finite subset of [0, T']. In order to determine the partition of the time interval
[0, T'], we consider the following set
q p P q P q P q
1 2
& VRVVRIVIVIVEY ¥ (V[VEa W (PIV ) Vi
j= i= i=1 j= i=1 j= i=1 j=

Then, D is a finite subset of [0, T'] written by
D = {do’dbdZ’ e ’dr}’

where, for convenience, we set dy = 0 and d, = T. It means that dy and d, may be the end-point
continuities of functions a, ¢, B and K. Let #, be a partition of [0, 7] such that D C #,, which means
that each closed [d,, d,.] is also divided into many closed subintervals. In this case, the time interval
[0, T'] is not necessarily equally divided into » closed subintervals. Let

P, = {681) e(ln) . (n)}

where e =0 and ¢!’ = T. Then, the n closed subintervals are denoted by

ED = [, ] forl=1,.

We also write
n) _ () () m _ | () ()
E, (el 1€ ) and F, [el 1€ )
Let DE”) denote the length of closed interval £, and let

| P, lI= max d".
=1, ,n

In the limiting case, we shall assume that
|| P, ll— 0asn — oo.

In this paper, we assume that there exists n,,n* € N such that

T

n,-r<n<n"-rand | Pulls —. 3.1
n*

Therefore, in the limiting case, we assume that n, is sufficiently large, which also implies that n is
sufficiently large. In the sequel, when we say that n — oo, it implicitly means that n, — oo.

For example, suppose that the length of closed interval [d,,d,,;]is [, forv =1,---,r. We consider
the following types of partitions of [0, T'].

Example 3.1. Each closed interval [d,, d,.] is equally divided by n. subintervals forv =1,--- ,r. In
this case, the total subintervals are n = n, - r. We also see that n, = n* and

1 T . .
|| P, ll= — - max [, < —, and n — oo if and only if n, — oo.
n* v=l-r n*
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Example 3.2. Let

[" = max I,.
V=1, r

Suppose that each closed subinterval [d,, d,,] is equally divided by n, subintervals forv =1,--- ,r. In
this case, the total subintervals are
n= Z n,.
v=1

Let

n' = max nv and n, = mm n,.
v=1, v=1,-,r
We also assume that the partition satisfies
n,

I*
ST

Then we have .
n.-r<n<n-rand ||P||—vrr}ax I—<I—<Z.

- *

rn,  n. n
In the limiting case, we shall assume n, — oo, which also means that n — co.
Under the above construction for the partition #,, we see that the real-valued functions a;, ¢; and

B;; are continuous on the open interval E;”) and the real-valued function K;; is continuous on the open
rectangle E;”) X E,((”) forl,k=1,---,n. Now we define

@] = inf a;(r)and ¢’ = inf c(r) (3.2)
J teE teE}")
and the vectors
m _ (0 (0 (n) q ) _ () () (n) p
a (a“ 2y s .y, ) € R? and ¢, (c” 2 Cpy s clp) e R?.
Then we see that
a(r) > a” and ¢(r) > ¢\ (3.3)

forallt e E”andl=1,--- ,n
For the time-dependent matrices B(¢) and K(, s), the (i, j)-th entries of constant matrices BE") and
Kl(,': ) are defined and denoted by

B = sup Bi(t)and K} = inf K1, 5). (3.4)
1eE (t.5)eE" xEL"”
We see that
B(r) < B" and K(t, 5) > K" (3.5)

forall ¢ € E_E”) and (¢, s) € El(") X E,(C"), respectively, for Lk =1,--- ,n.

Remark 3.1. From (2.2), it follows that if B # 0, then B}") > o> Oforalli=1,---,p, j=1,--- ,q

and/ =1,--- ,n. Given any fixed ¢ € E_l(n), from (2.1), forany j=1,---,q, there exists i; € {1,--- , p}
such that B;, j(t) > 0, which says that Bgz)j #0,1.e., BEZ)J > o > 0. In other words, for each j and [, there

exists ij; € {1,2,- -+, p} such that B, > & > 0.
J
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Foreachn e Nand [/ =1,--- ,n, we define the following linear programming problem:

(Pn)

n
OIRON
max Zb[ ‘(al ) Z
=1

subjectto Bz, < ¢!

(1) ()
Bl 7, < ¢

zzeRforl=1,---,n.

I-1
+ Z bl({")Kl(:)zk forl=2,---,n
=1

In order to formulate the dual problem of (P,), we need to write it as the following standard form:

(P,) max b'z
subjectto Mz <bandz > 0,
where
z=(z, > Zp, ,Zn)T
1. n n n T
b:(c(l)’. . ’cg )’... ,CZ))
—_ () () (n) (1) n) )\
b—(b1 al’, - 0", ,bﬁl)a;))
[ B 0 0 0 0
(n) gr(n) (n)
I S P SO
M=| -0Kj -b,°Ky, B 0 0
(n; (n) (n; (n) (n; (n) (n) ' (n) '(n)
L _bl Knl _DZ Kn2 _b3 Kn3 _bn—lKn,n—l B" |
The dual problem of (P,) is given by
(D,) min b'w
subjectto M'w >band w > 0,
where
W= (Wi W W)
[ (pm)" o) (m\" ) (m\" ) (g
(Bl ) -9 (Kle) -0 (K31 )T o) (Knl)
(1) (n) (n) () ()
0 (B) - (K3T2) oy (k%)
(n) (n) ()
[ I T R 0 0 (k%)
' () . m \"
0 bn—l (Kn,_lr_l—l)
0 0 0 (B

AIMS Mathematics
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More precisely, the dual problem (ﬁ,,) is written by

n

D,) min Z (cﬁ”))T W

=1

subject to (Bg”)) W, = 0™l + o Z ("> Weforl=1,---.n—1
k=I1+1

Now, let

Then, by dividing bﬁ”) on both sides of the constraints, the dual problem (ﬁn) can be equivalently written
by

D,) min Z D(") (") W,

n
T T
subject to (BE”)) w;>a” + Z o (Kg)) woforl=1,---.n—1
k=I+1

(B;”))T w, >a"

w,eRl forl=1,---,n.

Remark 3.2. We have the following observations.

o If cE") > 0 forall/ = 1,---,n, then the problem (P,) is feasible, since (z,z,,--- ,z,) = 0 is
a feasible solution of (P,). If the vector-valued function ¢ is nonnegative, then cﬁ") > 0 for all
[ =1,---,n, which says that the primal problem (P,) is feasible.

e The dual problem (D,,) is always feasible for each n € N, which can be realized from part (i) of
Proposition 3.1 given below.

Recall that b;”) denote the length of closed interval El("). We also define

(n) (n)
5 = krrl)ax D, (3.6)

Then we have

(n) b(ﬂ) b(") .

= max{ PRTRRRIR bgln)} = max {b(n) 551)1}

which say that

s > ™ and || P, [I> " > 5", (3.7)
for/=1,---,n— 1. For further discussion, we adopt the following notations:
fﬁ") = max aﬁ") and T(") = kmax T,(C") (3.8)
g
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5'5") = min min {B;T’.) : B;T’.) > 0} and 0'5") = min 6'2") (3.9)
=l p j=1,- g ) ) k=l .n
P
175") = max max ZK,E’;) and VE") = max 17,({”) (3.10)
k=1, .n j=1,-,q | 4 . Y k=I,--,n
=
q
Z(n) _ Z (n) () _ 7(n)
= max max K/ ¢ and = max
L gzt p | £ Kl ¢ k=l K
j=1
T = max sup a;(t)
J=1.4 1e0,1)
{ = max sup c(?)
=1.P 1€[0,T]
)4
v=max  sup > Kit,s) 3.11)
J=14 (1,)€l0,T1X10,T1 <5
q
¢ = max sup Z K, s). (3.12)

i=13P (1,5)€[0,T1X[0,7] =1

Foreach/ = 1,---,n, by Remark 3.1, since ijj) > o > 0 for Bg’j) # 0 and there exists i;; such that
BEZ?J > o, it follows that 0'5") > o-. We also have the following inequalities:

(n) (n) (n) (n) (n) (n)
o, <0, T 2Tt ady >y (3.13)
and
<<, W< <vandd" >0 >0 >0 (3.14)
for any n € N.
Proposition 3.1. The following statements hold true.
(1) Let
() (m \*~!
T v
mE") _ 1 ,(1 +em. L ) > 0. (3.15)
(1) l (n)
g g

We define W;f) = tng") fori=1,--- ,pandl=1,---  n, and consider the following vector

) _ ([« «® <\ o w® _ (w® e e )T
w —(W1 JW, o, ,wn) with W, —(w“,wlz, ’sz) .

Then W™ is a feasible solution of problem (D,). Moreover, we have

W) < L exp(re T 2) (3.16)
o o
forallneN,i=1,---,pandl=1,--- ,n.
(ii) Given a feasible solution w™ of problem (D,), we define
" = min {wﬁf), mﬁ”)}
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fori=1,--- ,pandl=1,---  n, and consider the following vector

~ () _ (o) =0 — (1) ) _ (=m =0 -\
W (W1 SWy --,wn) with W, (w”,wlz,~--,wlp)

Then W™ is a feasible solution of problem (D,) satisfying the following inequalities
T v
Wg’) < E") < — -exp(r-T . —)
o o
forallneN,i=1,---,pandl = 1,--- ,n. Moreover, if each cﬁ") is nonnegative and w™ is an

optimal solution of problem (D,,), then W\ is also an optimal solution of problem (D,,).

Proof. To prove part (i), by Remark 3.1, for each j and [, there exists i;; € {1,2,---, p} such that

BEZ) ;> 0. By (3.9), it follows that BEZJ) ;2 o > 0. Therefore we have

)4 T(n) V(n) V(n)

Z B(n) u(n) B(n) . v(n) — B(") L1 (1 + S(Vl) / ] > T(") [1 + 5(") L ) (3 17)
lij " Wi lii Wi lijj = () (n) l l (n) ’ ’

i=1 g, o o,

l

Since

P (n) V(n)
() (n) v (n) () m Tk () k
E O K Wi < E ,5 K TN (1 T F] (by (3.7))
k

(
i=1 Oy

n) _(n) (n)
% T 4
ss,ﬁ”*g[lﬂi”)-%) (by (3.10)),
o
k

it follows that, for/ =1,--- ,n -1,

(") (n) (n) v(n)
+ Z Zb K Wi

k=Il+1 i=
(n) (n) (”)
vV, T
(n) Tl Tk k (n)
)+ Z (1 +s, (n)]
k=l+1
n v(") ' T(n) y
<7+ ) s Lo 1+ g (by (3.7) and (3.13))
k=l+1 0y
n (n) (n)
v %
_T(n) 1+Zg(”).l_.1+5(”).l_
l l (n) l (n)
k=131 o g
V(n)
(n) m 1
=1, (1 +5, (n)] . (3.18)
o
Therefore, from (3.17) and (3.18), we obtain
)4
IR wa KD 02 d for [= 1, 0 1
J 1 ij i
i=1 k=Il+1 i=
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and
(n) u(n) (n) (n)
E B W, 2T, = a,;

nij
i=1

which show that W is indeed a feasible solution of problem (D,). Moreover, for [ = 1,--- ,n, from

(3.7), (3.1) and (3.14), we have

(m) (m !

T % n T n T n

L .(14_55”).1_] <X (1+||p|| _)Sl.(1+_.z)gl.(1+r_.1)_
o o o

n* o n o

o
i.e., n* — oo in the limiting case, this proves (3.16).
To prove part (ii), foreach j=1,--- ,gand [/ = 1,--- ,n, we define the index set

.T n
(1+r—-1) Texp(r~T~K) asn — oo,
n o

I; = { B} > 0}

It is clear that /;; # @ by Remark 3.1. Foreach/ = 1,--- ,n, we see that

(n) —(n) _ (n) —(n)
ZB[U [l ZBIU lz : (319)

IEIII

For each fixed [ = 1, - - - , n, we also define the index set

Ij={ien;:w) ="} (3.20)

For each fixed j=1,--- ,gand [ =1,--- ,n, we consider the following two cases.
n) _ v(n

e Suppose that I;; # 0, i.e., there exists i;; such that B(") > (0 and w(") =w,’ = wh) In this case, by

3.17),forl=1,--- ,n, we have

(1)
v
Z BY ™ > BY = BY L ® > [1 +s . L ) (3.21)
ij Wii lijjj lij lijjj liy; (n)
g
Since w(”) < m(") = wk) for each k, by referring to (3.18), for [ = 1,--- ,n — 1, we also have
P MO
(n) (n) () =) () (n) (n) | 5, (n) (m 1
a; +Z Z O Ky Wi < a5 +Z Z O Ky Wiy <70 | 1+ 5, TN
i=1 k=l+1 i=1 k=l+1 g

which implies, by (3.21),

(n) (n) (n) —(n) (1) —(n)
D> S K ZBI,,

i=1 k=l+1
For [ = n, from (3.21) again, we also have

P
Z B > 7 > o,

nij
i=1
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e Suppose thatl_lj =0,1.e.,if i € I;; then WE?) = wg’) forl=1,---,n. Inthiscase,for/=1,--- ,n—1,
we have

(m) 200 _ | gm0
Z Bll] li Z Z D Kkllj Wi

i=1 k=Il+1 i=
p
— (1) —(n) (n) (n)  —(n)
= Bw - Z Do Ky - (by (3.19)
i€l k=l+1 i=1
_ (n), (1) (n) (ﬂ) —(n)
- ZBlthlt Z Zb kll[.wkl
i€l k=Il+1 i=
_ (n), () (n) (n)  —(n)
- Z Bllj Wi — Z Z D Kkllj "W
i=1 k=Il+1 i=
> Z BEI") E”) - Z Z b(") K,E’;) wk”) (since W(") > w(") and b(”) K,E';) > 0)
J u 1] 1 ij
k=Il+1 i=

> al") (since w™ is a feasible solution of problem (D,)).
For [ = n, by (3.19) again, we also have
(n) —(n) (n) — (n) (1) (n) (n) (n)
Z ij ni Z Bm] ni Z Bm] Z Bnlj ni
i€l i€l

> ! (by the feasibility of w™).

From the above two cases, we conclude that w™ is indeed a feasible solution of problem (D,,).
Finally, since the objective values satisfy

(n) (n) —(n) (n) | (n) (n)
D) W e S ()

it says that if w is an optimal solution of problem (D,), then W™ is also an optimal solution of
problem (D,). This completes the proof. m

Proposition 3.2. Suppose that the primal problem (P,) is feasible with a feasible solution

2 = @2}, 1), where 7" = (&}, 2, ) for 1 =1,--- ,n. Then
05" < 5_(1+ 1201l .E) L. Xp(r.T.ﬂ) (3.22)
(oA g

forallj=1,---,q,l=1,--- ,nandn € N.

Proof. By Remark 3.1, for each j and /, there exists i;; € {1,2,-- -, p} such that B(") > 0, which implies

(1) (n)
Blw >0 >0.
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If ¢ = 0, then Kj;(z, s) = O for all (¢, s) € [0, T] x [0, T'], which imply that each Kl(,f ) is a zero matrix for
I,k=1,--- n. In this case, using the feasibility of z™, we have

(n) (1) (n) (1) (n) (n)
O<0— Z <Blt;]. <ZB111S le —clil-<§

which implies
0<z?<

{
pt
For the case of ¢ # 0, we want to show that

-1
<t -(1+ [z -?)
J o o

forall j=1,--- ,gand[=1,---,n. We shall prove it by induction on [. Since z" is a feasible solution
of problem (P,), we have Blz(”) < c(") for [ = 1, which says that

(n) () (1) m . 1)
By i 4, < ZBm n 2 S Chppp

Therefore, for each j, we obtain

()
(n) €1iy 4
Zl TR S .
J (n) o
Lij; j

Suppose that
I-1
SR I TN
o o

forl=1,2,--- ,n— 1. Then, for each j, we have

n-1 n-1 -1 n—1
" < £-(1+ P 2) :L-(H P f) _1l. 3.23
le]_;a 120-2) = o0 P01l (3.23)
By the feasibility of 2™, we have
n—1
B™z®™ < ¢ 4 Z NGl
k=1

Therefore, for each j, we obtain

q -1 q
(1) (n) () ) (n) (n) (n) (n)
Bninjj ) an = Z an]h Znh - mnj + Z D nktn] " Lk

:

=1 =1 h=1
q n—1
< cf:;)_ + Z b(") K, a(t,5) - z(") for some (¢, s) € E, X E;
B
(n) L P\
+ [ Pall- ZKlnjh(t 5) - o 1Pl [(1+ | P |l 0') 1] (by (3.23))
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¢

n—1
S{+g- (1+ Il % | -;) - 1] (by (3.12)),

which implies
n—1
W<t (ke L)

n]—

Therefore, by induction, we obtain

#_{(Hnﬂw?)sg(uuﬂugf (3.24)

forall j=1,---,gandl=1,--- ,n. From (3.1), since

£ (mn g <E T £ (Y

n* o n
and r .
£(1+r_£) Té-exp(r-T'g) asn" — oo (i.e., n — ©0),
o n o o o
using (3.24), we complete the proof. m
Let zZW = (z(") '(”), o, 7" with z(") (zg’), Zg’), ,z,q))T be an optimal solution of problem (P,,).

We construct a Vector—valued step functionz™ : [0, T] — R? as follows:

(3.25)

—(n) m _ [ @ 0 _

() = z, ifteF, [el 1€ )forl—l,---,n

z"(n = —<n)
z, ift=T

Then we have the following result.

Proposition 3.3. Suppose that the primal problem (P,) is feasible with a feasible solution

zm = (2(") , ;”), oo 7™, where Z(") (zg'),zg) , ,zl"))T forl=1,--- ,n. Then the vector-valued step

function 7™ deﬁned in (3.25) is a feasible solution of problem (CLP).

Proof. Since Z™ is a feasible solution of problem (P,,), it follows that
Bz < c” and Bz < c|” + Z O"KWZ" forl=2,--- ,n. (3.26)

We consider the following two cases.

(n)

e Suppose thatt € F ;") forl=2,---,n. Recall that ¢, is the left-end point of closed interval E(")

Then

B(Hz™(t) — f K(t, $)Z"(s)ds

0

-1 t
:B(t)?”)(t)—z f K, $YZ"(5)ds — ﬁ K, $YZ"(s)dss
oy Ekn) n

€
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-1
=B0OZ" - ) f K(t, )7 ds — ﬁ K(t, 5)2."ds
k=1

€

-1
< B = [l gearas— [ kpapas oy 6.y
A

-1

< BE")ZE") Z KI(Z) ,((")ds (since the last term is nonnegative)
E (n)

._.
~

— B;")zgn) Z b(n)K(n) (ﬂ) < c(n) (by (3 26))
k=1

< ¢(®) (by (3.3)).

For [ = 1, the desired inequality can be similarly obtained.
e Suppose that = T. Then

T n
B(TZ"(T) - f K(T, s)’z*m(s)ds:B(T)z;")—Z f K(T, $)2."ds
0 = YE!

< B(n) (n) E K(n)z(n) ds = B(n) (n) E b(n) Kr(lz) in)
-(n)
k=1 =1

< B"Wz" — Z b(”)K’(:,?z,((”) (since K% > 0)

< ¢ (by (3.56))
< ¢(T) (by (3.3)).

Therefore we conclude that Z™ is indeed a feasible solution of problem (CLP). This completes the
proof. m

4. Analytic formula of the error estimation

Given an optimization problem (P), if problem (P) is a maximization problems, then V(P) denotes
the supremum of the objective function, and if problem (P) is a minimization problems, then V(P)
denotes the infimum of the objective function. We have to mention that the supremum or infimum is
attained when the optimal solution of problem (P) exists. In other words, V(P) denotes the optimal
objective value of problem (P) when there exists a feasible solution x* of problem (P) such that the
supremum or infimum is equal to the objective value of x*. For example, the supremum of problem
(CLP) is denoted by V(CLP).

Let Z™ be an optimal solution of problem (P,). Then, using (3.3), we have

T n
.
(a()"Z"(t)dt > f a”) 2%dr="y o (a) 7" = V(P,). (4.1)
[ > [y aa=,
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Therefore we have

T
V(CLP) > f (a(?))" Z"(¢)dt (by Proposition 3.3)
0
> V(P,) (by (4.1)).

Using the weak duality theorem for the primal-dual pair of problems (DCLP) and (CLP), it follows
that
V(DCLP) > V(CLP) > V(P,) = V(D,). 4.2)

In the sequel, we want to show that

lim V(D,) = V(DCLP). “4.3)
n) _ (n) o m (n) : m _ ¢ m () (M\T : :
Let w' = (w,", w,", Wy ) withw, ™ = (w) ", w)’, ,wlp) be an optimal solution of problem

(D,). We define
—(n) _ - () (m)
W —mln{wli , W, },

where mg") is defined in (3.15), fori=1,--- ,pand [ = 1,--- , n, and consider the following vector

~ ) _ (o) =0 )\ el o) () () -\
W —(w1 ,w2,~~-,wn) with w, —(w”,wlz,---,wlp)

Then, according to part (ii) of Proposition 3.1, we see that W is an optimal solution of problem (D,)
satisfying the following inequalities

W < wf” < - exp (r- T g) (4.4)

forallneN,i=1,---,pandl=1,--- ,n.
Foreach/=1,---,n, we define a vector-valued function 1_15") on F l(") = [egf)] , eE")) by

B0 = (e - 1) (K) w0 + (B - Bw) 5"

()

el n T — (n - n T — (1
+ f (K(s. - Kj") w"ds+ > f (K= K) wds. (4.5)
t E/

k=I+1

We also define a vector

r = (B - B(T)) . (4.6)
Forl=1,---,n,let
7" = max sup [A)(1) + a;(t) - a], 4.7)
jZl,'" q teE;n) J J

where fzg.') is the jth component of h{", and let

715”) = max 7‘1,((").
k=l n

Then we have

(n) _ =(n) —(n) ()| _ =) _(n)
n, = max{ﬂl R PEREI o }—max{ﬂl ,7rl+1} 4.8)
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which says that

" > ) (4.9)
and, for any 7 € E™,
a2 7" 2 1) +a;(0) - a) (4.10)
for/=1,---,n—1and j=1,---,g9. We want to prove
lim 7" = 0 = lim 7\".

We first provide some useful lemmas.

Lemmad4.1. Fori=1,---,p, j=1,---,qandl=1,--- ,n, we have

sup [aj(t) - ag.’)] — 0, sup [c,-(t) - an)] — 0 and sup [B(") ij(t)] — 0asn — oo.
reE" reE" reE"

Proof. According to the construction of partition #,, we see that a; is continuous on the open interval
Ef") = (e(") egn)). Let {6,,},-_, be a decreasing sequence and be convergent to zero such that 6,, > 0 for

-1’
all m, where ¢, is defined by
(n) (n)
(el e 1)

01 =

l\)l'—‘

Therefore we can define the compact interval

mn) _ | (n)
Ep) = [el”) + 6 el = 6,
Then we have
E™ = U EY and E) C E for my > m 4.11)

Since E;;? C Eg"), it follows that a; is continuous on each compact interval Ez(,:?’ which also means that
a; is uniformly continuous on each compact interval El(r"”) Therefore, given any € > 0, there exists
0 > 0 such that |[¢t; — 1| < ¢ implies

laj(t) — a;(t2)| < = for any t,,1, € E;". (4.12)

Since the length of E;") is less than or equal to || P, ||< T/n* with n* — oo by (3.1), we can consider
a sufficiently large ny € N such that 7/ny < ¢. In this case, each length of E;") for/=1,---,nisless
than ¢ for n > ny. In other words, if n > ng, then (4.12) is satisfied for any ¢, 1, € E;r';) We consider the
following cases.

™ i attained at ™™ € E(") From (4.11), there exists m* such that

e Suppose that the infimum a;
1) e El(;? Now, given any t € E™, we see that t € E;Zl)o for some my. Let m = max{mq, m*}.

From (4.11), it follows that z, "™ € El(,';) Then we have

' at) - a; (1)) <

‘a.,-(t) - agn)

l\)lm

(n) 5

since the length of £} is less than 0, where € is independent of 7 because of the uniform continuity.
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e Suppose that the infimum ag’) is not attained at any point in E;"). Since a; is continuous on the

open interval E'™, it follows that the infimum ag';) is either the righthand limit or lefthand limit
given by
m _ 13 m _ 1
a; = 112} aj(t) or a; = hr(g aj(t).
t—e "+ t—e -
Therefore, for sufficiently large n, i.e., the open interval E;") is sufficiently small such that its

length is less than ¢, we have

€
'a‘,(t) - ag’) <=

2

forallt e El(").

(n

From the above two cases, since a;(f) > a lj) forall r € El("), we conclude that

0 < sup [aj(t)_ag,”]s <eforl=1,---,n.

(n)
teEl

€
2
The other cases can be similarly obtained. This completes the proof. m

Lemma4.2. Fori=1,---,p, j=1,--- ,qand l,k=1,--- ,n, we have

sup [K,-j(s, 1) — KZ?J] —0asn— o
(s.NEEV" XE"

and

sup lf( ) (Kij(S, ) — KZ’I)J) . W](:it)dsl 0 dsn — oo,
E"

()
teE]

Proof. According to the construction of partition $,, we see that K;; is continuous on the open rectangle
(n) ) _ () () (n
E," X E, —(ek_l,ek )x(el_l,el )

Let {6,,};>_, be a decreasing sequence and be convergent to zero such that 6,, > 0 for all m, where 0, is
defined by

1= 5 -min{(e” — &), (ef” = ).

Therefore we can define the compact rectangle
(n) m _ | ,m (n) (n) (n)
EQ X Ep) = [ + 6. e’ = 6] X [} + 6 €] — 6]

The following inclusion

| JED < E c B x E”
m Im k )
m=1
is obvious. For (s,1) € E,({") X El("), there exists m; and m, such that s € E,(c';zl andr € Ef;?z respectively.
Let m = max{m;,m,}. Then we have E,(;Zl c E,gz and Ez(;?z c El(;? Therefore we obtain

(s.) € El) XE" CE” xE,"

km Im>

AIMS Mathematics Volume 5, Issue 6, 5572-5627.



5590

which proves

(n) (n) _ (n) (n)
EPxE" =|_|E{ x E{). (4.13)
m=1
We also see that
(n) (n) (n) (n)
E,, XE, SE, XE,_ for my > my. 4.14)

Since E,(C’Z X Eg;) C E,({") X E;"), it follows that K;; is continuous on each compact rectangle E/(Q X E;r':l) ,
which also means that K;; is uniformly continuous on each compact rectangle E,(:Z X Ez(::z) Therefore,

given any € > 0, there exists 6 > 0 such that

|ty — 6| <dand |s; — syl <O
implies
€
2
for (si,41), (s2,12) € E\" x E\”. Since the length of E\"” is less than or equal to || P, ||< T/n* with
n* — oo by (3.1), we can consider a sufficiently large ny € N such that 7/ny < ¢. In this case, each

length of E,E”) fork = 1,--- ,nis less than ¢. In other words, if n > ny, then (4.15) is satisfied for any
(s1,1), (852, 1p) € E,((’Z X El(r';) We consider the following cases.

|Kij (s1.11) = Kij (s2,12)| < (4.15)

e Suppose that the infimum K,E';l)j is attained at (s™, £™)) € E,(C”) X El("). From (4.13), there exists m*
such that (s™, (")) ¢ E™. xE;")*. Given any (s,1) € E,(c") xE;"), we see that (s, 1) € E,(c”) xEﬁ") for
m m mo mo
some myo. Let m = max{m*, mo}. From (4.14), it follows that (s, £), (s, 1) € E"” x E\”. Then
we have

K,‘j(S, t)— Kl(c;lt)]

= |Kij(s,0) = Ky (5,477

€
<z
2
since the lengths of E,(;Z and Ez(;? are less than ¢, where € is independent of (s, ) in E,E") X El(")
because of the uniform continuity.
e Suppose that the infimum KZ’B} is not attained at any point in E,((”) X El("). Let
%;; = {K,- (5,0 1 (s,0) € EP x E}”’} .
Since Kj; is continuous on the open rectangle E,E") X E;"), it follows that the infimum K,({';I)J is in the
boundary of the closure of %;; and is the limit of the function K;; on E,E") X EE'” . Therefore, for

sufficiently large n, i.e., the open rectangle E,(C") X E;") is sufficiently small such that the lengths of
E,((") and El(”) are less than ¢, we have

n €
Kij(S, f)— Klgli)j < 5

for all (s,7) € E\” x E\".

From the above two cases, we conclude that

0< sup [Kij(s, H—K™

< €
(S,I)EEZH)XE;”)
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and

0 < sup [f )(Kij(sa - K/S?J) Wzl)dsl
E"

zeE(")
€ o =m
<SP <e T exp(ro T 2 sing (44,

which implies

sup [‘fE()( K;i(s,t) - ,Z?J) w;{'l’)dsl — 0asn — oo.
k

1eE™
1

This completes the proof. m

Lemma 4.3. Foreachl=1,--- ,n, we have
lim 71" = 0 = lim 7"\
n—oo n—oo

Proof. It suffices to prove

sup [h(")(t) +a,(t) - (”)] — 0asn — oo.
IGE(")

From (3.1), since

r-T
DE") <Pyl — — 0asn— o
n

and w(”) is bounded according to (4.4), it follows that
(n) (n) —(n) (n) (n) )
(ez ) Ky wyw <7 Ko wy” — 0 asn — oo

Now, we have

0 < sup [A() + a;(t) - a} |

tEE(")

<" Z K(l':; 7+ Z W sup El"]) : j(t)]

' Z Z e [f) (Kij(s’ D= KIS?J) Wy ds

+ sup [a (1) - ag’)]

k=l i=1 teE" reE"
Using Lemmas 4.1 and 4.2, we complete the proof. m
We define the following notations:
p
%E") = max sup Z Ki(s,1)

Lt | (nerel® TIxE® 421

(4.16)
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and

From (2.2), (2.1) and (3.11), we see that

)4
5" > min { o Z Bi/(f)} >0 >0and§" <.
j=1,-,q | t€[0,T] £ T ’
i=

J=

Let
f;") = max %,((") < vand b;") = min 13,((”) > 0. 4.17)
k=l

k=l n

Then we see that 0 < bﬁ") and

6 2 4} and b < b7}, (@.18)
Now we define the real-valued functions 1 and v on [0, T] by
n) 4 (n) _
W) = v ifre Fforl=1,---,n
i ifr=T
and . .
D(n)(t): bl lfteFl fOrl:l’.-.’n
™ ifr=T.
Then we have
u”(t) < v and v"™(t) > o forall 1 € [0, T] (4.19)

From (4.4) and Lemmas 4.1 and 4.2, we see that the sequence {7157)};":1 is uniformly bounded, which

also says that {715”)};’;’:1 is uniformly bounded. Therefore there exists a constant ¥ such that 715") < x for

allneNand!/=1,---,n. We also define a real-valued function p™ on [0, T] by

x ift:e;f)lf()rlzl’...’n
P(n)(l) = T(En) ifte El(n) forl=1,---,n
max {r +a;(T)-all} ifr=el =T
j=l,.q J nj
where r” is the jth component of r® in (4.6). Then we have

J

p™(r) < xforalln e Nand r € [0,T) (4.20)

Let1l, = (1,1,---,1)" € R” denote a p-dimensional vector such that each component of 1, is 1. Let
the real-valued function ™ : [0, T] — R, be defined by

() =

| P@m~@—0] 4.21)

p™ ([) p (t)

The following observations will be adopted for further discussion.
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Remark 4.1. Suppose that f is piecewise continuous on [0, 7] with the finite discontinuities D =
{di,---,d,}. Let G, be the open intervals with end-points consisting of the discontinuities in O for

v=0,1,---

,r, where Gy = (0,d,), G, = (d,,d,+;) forv=1,--- ,r—1and G, = (d,, T). Then we see

that f is continuous on the open intervals G,, which says that f is Riemann-integrable on [0, 7']. We
also have the following observations.

e Let f be a function defined on [0, 7] such that f(f) = f(¢) for t ¢ D, i.e., their function values are
different only for the discontinuities of f. Then we see that

T T
f f(x)dx = f f(x)dx.
0 0

e Let E = (a,b) be an open interval, let F = [a,b) be an helf-open interval and let £ = [a, b]
be a closed interval. Suppose that g is defined on [a, ] and is continuous on (a,b). Then g is
Riemann-integrable. We also see that the following improper Riemann integrals

b— bH—
f g(t)dt = f ¢(t)dt and f g(t)dt = f g()dt
E a+ F a

are identical with

The following lemma will be used for further discussion.

Lemma 4.4. We have

forteFl(")andl: 1,---,n, and

b
f g(tydt = f g(nydt = f g(tdt = f g(t)dt.
E a E F

T
i) (B(1))T 1, > h"(r) + a(t) — a)” + f ™ (s) (K(s,0)7 1,ds

f(T) (B(T)" 1, > v +a(T) — a.

Moreover the sequence of real-valued functions {f™} | is uniformly bounded.

Proof. According to Remark 4.1, forz € F ?”), from (4.21), we have

T
ff(”)(s)ds=f

AIMS Mathematics

I

(n)
(n)
t b )

(n
1

o

t
)
bl

- exp

- exp

A ON
()
o ,
(T —5)
G
(1" (T~9)]
by

(by (4.9) and> (4.18))

T ()
4

m
!

:

(1)
£ (T -s)

(n)
bl

[u(")(s) (T - )

|os

()

(n)
_
)
£

—_— .eXp

Jas

(£ (T - 5)]
k

¢ €Xp _T_ dS

[+ . (T — )]

L - ( ) ds

by
(T -t
A ) I 1] (4.22)
b(’l)
1
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Since "
¢ exp| =D
p B

I
o exp[-fi’” (T~
L )
bl

ift=e" fori=1,---,n

(”) Tll —_
iiZEE(,)iO] l— l,"' ,I’l,

using (4.22), it follows that, for t € F",
(n)

f T
b . ¥ (f) > e Je
h 2

T
U O f i"(s)ds  ifte E” forl=1,---,n.
Tt
> 7" 1" f f"(s)ds (since 715’” <zxforalll=1,---,n). (4.23)
t

Fort = ¢ = T, we also have,

b - §f(T) = max {r(.”) +ai(T) - a(".)} . (4.24)
j:1,"',q Y |

nj

Foreach j=1,--- ,gand /= 1,--- ,n, we consider the following cases.

e Forr=¢" =T, from (4.24), we have

p
D By(T) - 0T 2 B - 1(T) = b0 - F(T) = #” + ay(T) - al)).

nj
i=1

e Fort € F", by (4.23) and (4.10), we have

p
3By 1) = B - 10(0) = v - (1)

i=1

T P
> R0 + aj(r) — a)) + f D Kij(s. 1) - (s)ds.
roi=]

Finally, from (4.19) and (4.20), it is obvious that the sequence of real-valued functions {f*}% is
uniformly bounded. This completes the proof. m

We define a vector-valued function W"(¢) : [0, T] — R” by

V_VE") +f(n)(l)1p ifte Fl(n) forl=1,---,n

W+ (T, ifr=T. (4:23)

w(r) = {

Remark 4.2. Since the sequence of real-valued functions {f™}* | is uniformly bounded by Lemma 4.4,
using (4.4), it follows that the family of vector-valued functions {W™},cy is also uniformly bounded.

Proposition 4.1. For any n € N, W" is a feasible solution of problem (DCLP).
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Proof. For [ = 1,--- ,n, we define a vector-valued function b® on F l(") by

b() = (B) - B") w"

eE")

_ f (K(s,n)— K") w"ds - Z f (K- K) wds
t k=i+1 v E,

T
+ 1) (B)" 1, - f f"(s) (K(s,0)" 1,ds,

t

which implies

T
—b"™() + @) (B(t)" 1, - f () (K(s, )" 1,ds
(n)

= (B - B@) W + f ! (K(s.0) = KJ) %" ds
t

+ Z f (K(s.) - K2)" %" ds.
iz VE"

Therefore, by adding the term (eﬁ") - t)(Kl(l"))TWE") on both sides, we obtain

- T
(e = ) (K1) W =0+ 170 BO) 1, = [ 176) (K5, 1

t

= (& = ) (KO) W+ (BY - ) W

(1) n
€l
+ f (Ks. = K) w"ds+ f (K(s.0) - K2) w"ds
t k= VE"
—_ 1™
- h] (t)a

which implies
b(0) — (e — 1) (K) &
= —h"(®) + ") (B®)" 1, - f F0s) (K5, )" 1,ds
> a(f) — a” (by Lemma 4.4) t

Now we obtain
T
(B(1))" W (1) — f (K(s,1))" W"(s)ds

T
= (BT (W +i"(0)1,) - f (K(s,0)7 (W +(5)1,) ds (by (4.25))

n

o
- ((BE’”)T W - f (k) wds - f (&) w;”)ds} +b"(1) (by (4.26))

! k=i+1 v Ex

(4.26)

(4.27)
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n

_ ( BEn))T Wgn) _ Z b;{n) ( KZO)T V_V](:z)] +b® (t) — ( egn) _ t) ( Kl(ln))T W;n)

k=I+1
>a +b"(r) - (eﬁ") - t) (Kl(l”))T w"  (by the feasibility of W for problem (D,))
> a” +a(r) — a (by (4.27))
=a()

Suppose that r = T. We define
— T
b = (B(T) - BY") W, +1"(T) (BT 1,.
Then we have _ .
—b" +{*(T) (B(T)" 1, = (B - B(T)) W =r®

which implies that
b = —r +§(T) (B(T) 1, = a(T) - a’ (by Lemma 4.4) (4.28)
Now we obtain

(BT)"W(T) = (BY) W + B > al” + B (by the feasibility of w™)
>a" +a(T) — a”™ (using (4.28))
=a(Tl).

Therefore we conclude that W is indeed a feasible solution of problem (DCLP). This completes this
proof. m

Fori=1,---,pand j=1,---,q, we define the step functions Zz(l.”) :[0,T] — R and EE") [0, T] —

R as follows:
a’ ifte F"forl=1,---,n

—(n) _ 1j
() =
a; (0 { a" ifr=T.

nj
and
£ () = cgz) ifteFf") forl=1,---,n
" " oifr=T,

ni

respectively. Fori = 1,--- , p, we also define step function WE")(t) :[0,T] - Rby

w? ifr=T.

ni

_(n) W), 1fteFl forl=1,---,n
wo(r) = { i

Lemmad.s. Fori=1,---,pand j=1,---,q, we have

T
f [aj(t) - &En)(t)] -’fj")(t)dt —0asn — o (4.29)
0
and .
f [Ci(f) - 55")(0] -\ ()dt — 0 asn — co. (4.30)
0
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Proof. It is obvious that the following functions
|a,0) =@’ (0)] -7 and [ei0) =" 0] - " (1)

are continuous a.e. on [0, T], i.e., they are Riemann-integrable on [0, 7']. In other words, their Riemann
integral and Lebesgue integral are identical. Fori =1,--- ,nand t € E;”), Lemma 4.1 says that

0<a;r- a&")(t) =a(t) - ag.l) < sup [aj(t) - ax.’)] —0asn >
teEf”)

and
0 < ci(t) - &"(1) = ci() - ¢ < sup [e(t) = ¢’ > Oasn — oo,
teE;")

which implies
a(t) — Zzi.")(t) — 0and ¢;(r) — EE")(t) —0asn — ooae.on[0,7T].

(9]

Since the sequence @")}n , 18 uniformly bounded from Proposition 3.2, using the Lebesgue bounded

(o)

convergence theorem for integrals, we obtain (4.29). On the other hand, since the sequence {Wf.")}n:] is
also uniformly bounded according to (4.4), using the Lebesgue bounded convergence theorem, we can
also obtain (4.30). This completes the proof. m

Theorem 4.1. The following statements hold true.

(1) We have
lim sup V(D,)) = V(DCLP) and 0 < V(DCLP) - V(D,) < &,,

n—0oo
where

n

&n=-V(D,)+ ) f (e’ wdt

=1 VE,
n (n) (n)
7, 17 - (T -1 .
' lel fE;'“ o [ I b

satisfying £, — 0 as n — oo. Moreover there exists a convergent subsequence {V(D,)};>, of
{V(D)},2, such that
]}im V(D,,) = V(DCLP). (4.32)

(i) (No Duality Gap). We have

V(DCLP) = V(CLP) = lim sup V(D,) = lim sup V(P,)

n—-o00 n—o00

and
0<V(CLP)-V(®P, =VDCLP)-VD, < g,.
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Proof. To prove part (i), we have

0 < V(DCLP) — V(D,) (by (4.2))

— V(DCLP) — Z f . <"> w"di

f (e(t))T W (r)dt — Z f . <”> w"dt  (by Proposition 4.1) (4.33)
:Z f () — )" wdr + f (1) (e(1) 1,,dr
=1 JE"” 0
=&y,
which implies
V(D,) < V(DCLP) < V(D,) + &,. (4.34)

Using Lemma 4.5, we obtain
T
0< Z f ci(t) = ) - widr = f |cit) = 2”0 - #" ()t — 0 as n — co. (4.35)
(n) 0

Since fﬁ") < vand b;") > o for all n by (4.17), and ﬂﬁ") — 0 as n — oo by Lemma 4.3, it follows that
p™ — 0asn — oo a.e. on [0, T], which implies that {"” — 0 as n — oo a.e. on [0, T]. Applying the
Lebesgue bounded convergence theorem for integrals, we obtain

T
f i) (e()" 1,dt — 0 as n — co. (4.36)
0

From (4.35) and (4.36), we conclude that &, — 0 as n — co. From (4.34), we also obtain

lim sup V(D,)) < V(DCLP) < limsup V(D,) + limsup &, = lim sup V(D,).

From part (ii) of Proposition 3.1, we see that {V(D,)} | is a bounded sequence. Therefore there exists
a convergent subsequence {V(D,,)};2, of {V(D,)},. Using (4.34), we obtain the equality (4.32). On
the other hand, it is easy to see that &, can be wrltten as (4.31), which proves part (i).
To prove part (ii), by part (i) and inequality (4.2), we obtain
V(DCLP) > V(CLP) > limsup V(D,) = V(DCLP).

n—oo

Since V(D,) = V(P,) for each n € N, we also have
V(DCLP) = V(CLP) = lim sup V(D,) = limsup V(P,)

and
0 < V(CLP) - V(P,) = V(DCLP) - V(D,) < &,.
This completes the proof. m
From Remark 3.2 and Theorem 4.1, if the vector-valued function ¢ is nonnegative, i.e., the primal
problem (P,) is feasible, then the strong duality holds for the primal and dual pair of continuou-time
linear programming problems (CLP) and (DCLP).
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Proposition 4.2. The following statements hold true.

(i) LetZ™ be defined in (3.25). Then, the error between V(CLP) and the objective value of Z™ is less
than or equal to g, defined in (4.31), i.e.,

T
0 < V(CLP) — f a(t)"z"(dt < &,.
0

(ii) Let W™ be defined in (4.25). Then, the error between V(DCLP) and the objective value of W™ is
less than or equal to g, i.e.,

0< f (c()" W (r)dt — V(DCLP) < g,

Proof. To prove part (i), Proposition 3.3 says that Z™ is a feasible solution of problem (CLP). Since
3 f (a”) 2"t = Z o (a") 2" = V(P,) = V(D) 437)
(n)
l_

anda\” < a(f) forallz€ E/” and /= 1,-- ,n, it follows that

0 < V(CLP) — f (a()) " Z"(H)dt < V(CLP) — Z f <") "Z()dr

= V(DCLP) — V(D,,) (by (4.37) and part (ii) of Theorem 4.1)
< g, (by part (i) of Theorem 4.1).

To prove part (ii), we have
f (c())T W(r)dt — V(DCLP) (by Proposition 4.1)

f (c()" W (r)dt — V(D,) (since V(D,) < V(DCLP) by part (i) of Theorem 4.1)
=g, (by (4.33) and (4.34))

This completes the proof. m

Definition 4.1. Given any € > 0, we say that the feasible solution z'© of problem (CLP) is an e-optimal
solution if and only if

T
0 < V(CLP) - f (a@)" 29@)dt < €.
0
We say that the feasible solution w'® of problem V(DCLP) is an e-optimal solution if and only if
T
0< f (e(t)" w'O()dt — V(DCLP) < e.
0
Theorem 4.2. Given any € > 0, the following statements hold true.
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(1) The e-optimal solution of problem (CLP) exists in the following sense: there exists n € N such
that 9 =7, where 7" is obtained from Proposition 4.2 satisfying €, < €.

(i1) The e-optimal solution of problem (DCLP) exists in the following sense: there exists n € N such
that w'© = W, where W™ is obtained from Proposition 4.2 satisfying €, < €.

Proof. Given any € > 0, from Proposition 4.2, since &, — 0 as n — oo, there exists n € N such that
&, < €. Then the result follows immediately. m

5. Convergence of approximate solutions

In the sequel, by referring to (3.25) and (4.25), we shall present the convergent properties of the
sequences {Z™}> | and {W"}>, that are constructed from the optimal solutions Z™ of problem (P,)
and the optimal solution W of problem (D,), respectively. We first provide a useful lemma.

Lemma 5.1. Let the real-valued function n be defined by

T v-(T -1
n(t) = —-exp [—] 5.1
o o
on [0, T), and let W be a feasible solution of dual problem (DCLP). We define
wgl)(t) = min {wgo)(t), n(t)} 5.2)

foralli=1,--- ,pandt € [0,T]. Then w'V is a feasible solution of dual problem (DCLP) satisfying
w(t) < W) and W (1) < n(¢) foralli = 1,--- ,pand t € [0, T].

Proof. By the feasibility of w® for problem (DCLP), we have
P P T
Z Bij(t) - WV (t) > aj(t) + Z f Ki(s,1) - w”(s)ds (5.3)
i=1 i=1 Y1
Since K;j(s,#) > 0 and w'"(r) < w”(#), from (5.3), we obtain
P )4 T
D By w0 = i) + f Kij(s, 1) - wD(s)ds. (5.4)
i=1 i=1 V!

For any fixed r € [0, T'], we define the index sets
I ={i: w0 <0} and L = {i : w0 > n(0)}
Then

0) o
W(.])(t) — W,‘ (t) lfl € IS
! n(t) ifiel..

For each fixed j, we consider the following three cases:
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e Suppose that I. = 0 (i.e., the second sum is zero). Then WEO)(I) = wgl)(t) for all i. Therefore, from

(5.4), we have
P P p T
D By - w () = > Bty w0 2 a0 + ) f Kij(s, 1) - w(s)ds.
i=1 i=1 i=1 V1
e Suppose that I. # () and B;;(t) = O for all i € I... Then

p
2. Bi® W@ = ) By w0+ 3 By(o) w0
i=1

iel< i€l
= D By w0+ ) By - w(0)
i€l i€l

p p T
=Y B - w0 z a0+ ) f Kij(s, 1) - w"(s)ds (by (5.4)).
i=1 i=1 v?

e Suppose that I, # () and there exists i* € I, with B;-;(r) # 0, i.e., Bi-j(1) > 0. From (5.1), we see

that .
o-nt)y=1t+v- f n(s)ds (5.5
t
for all t € [0, T']. By (5.5), for each t € [0, T'], we have
p T
TN = an+ Y f Kij(s, ) - (s)ds. (5.6)
i=1 v
Therefore we obtain
P
D By - w0 2 > By w0 = Y Bij(0) - nt) 2 o (a). (5.7)
i=1 i€l i€l

Using (5.6), (5.7) and the fact of wfl)(t) < n(t), we also have
p P T P AT
Z Bij(t) - w (1) > a;(t) + Z f Kij(s,1) - n(s)ds > a,(t) + Z f Kii(s,0) - Wi (s)ds.
i=1 i=1 Y1 i=1 M1

This concludes that w'! is a feasible solution of (DCLP), and the proof is complete. =

We also need the following useful lemmas.

Lemma 5.2. (Riesz and Sz.-Nagy [25, p.64]) Let {f;};2, be a sequence in L*[0,T). If the sequence
{fide, is uniformly bounded with respect to || - ||, then exists a subsequence { fkj};i] that weakly

converges to f € L*[0, T). In other words, for any g € L*[0, T], we have

T T
Jl.gg j; S, (Dg(Ddt = fo f(Dg@)dt.
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Lemma 5.3. (Levinson [12]) If the sequence {fi},>, is uniformly bounded on [0, T] with respect to
|l - I, and weakly converges to f € L*[0, T], then

f(®) < limsup fi(¢) and f(t) > likm inf fi(t) a.e. on [0,T].

k—oo

Lemma S5.4. Let {fi};2, and {gi};2, be two sequences in L?[0, T] that weakly converge to f, and gy in
L?[0, T, respectively.

(1) If the function n defined on [0, T] is bounded, then the sequence {1 - fi};>, weakly converges to
n- fo.

(i1) The sequence {f; + gk}, weakly converges to fy + go.

Proof. To prove part (i), for any 7 € L*[0,T], we see that h - n € L*[0,T]. Therefore the weak
convergence says that

T T T T
,}imf h-(n-fk)dt:khmf<h-n>-fkdt=f(h-n)-fodr:f h-(n- foyd,

which says that the sequence {n - f;};7, weakly converges to 7 - fo.
To prove part (i1), for any & € LZ[O T1], we have

T T T
tim [ G0+ o noar = tim [ o wvar+ [ a0 o
—*Jo —2\Jo 0

T T
_ fo £ - h(Ddt + fo o() - h(t)dt

(by the weak convergence for the sequences {fi};2, and {gi};2,)
T
= [ oy + ooy - ey
0

This completes the proof. m

Let {f™} | be a sequence of vector-valued functions in L*[0, T]. Then we say that {f™}  weakly
converges to a Vector—valued function f in L*[0, T'] if and only if each sequence {f; (”) », of component
functions weakly converges to f;.

Theorem 5.1. (Strong Duality Theorem) Ler {z}>, and {W"}* | be the sequences that are
constructed from the optimal solutions 7 of problem (P,) and the optlmal solution W™ of problem
(D,) according to (3.25) and (4.25), respectively. Then the following statements hold true.

(i) There is a subsequence {Z"0} | of (2™}, such that (2"} | is weakly convergent to an optimal
solutionz” of primal problem (CLP)
(i1) For each n, we define

W (1) = min {W(1), (1)}

Then there is a subsequence {w("k) e of { {wmye I | such that {wlwyee e s weakly convergent to an
optimal solution W* of dual problem (DCLP).

Moreover we have V(DCLP) = V(CLP).
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Proof. From Proposition 3.2, we see that the sequence of functions {z™}®, is uniformly bounded
with respect to || - |l,. We denote by 7" the jth component of z. Using Lemma 5.2, there exists a

(1)
subsequence {z] } of {’*n)} that weakly converges to some 7 40) € L*[0,T]. Using Lemma 5.2

n?) ™) 40) )
again, there exists a subsequence {z2 } of {z2 k } that weakly converges to somez,” € L[0, T].
k=1

k=1

o) =1
By induction, there exists a subsequence {’z(jnk )} of {”(.n" )} that weakly converges to some’Z(.O)
k=1 k=1

L*[0, T for each j. Therefore we can construct a subsequence {z"V};° | that weakly converges to z©.
Since Z" is a feasible solution of problem (CLP) for each n;, we have

Z™(1) > 0 and B(HZ" (1) < () + f K(t, s)z"(s)ds for all t € [0, T]. (5.8)
0

Using Lemma 5.3 and (5.8), for each j, we have

w2 lim infZ{™ (1) > 0 ae. in [0, T,

which says that Z”(f) > 0 a.e. in [0,T]. Using Lemma 5.4, it is clear to see that the sequence
{ ;’.:1 Bij(1) ./Z%jnk)}zil weakly converges to Z;’.ZI B;(1) -?,0) fori=1,---, p. Therefore we obtain

Bz (t) < lim sup B(t)Z"(¢) (using Lemma 5.3)

k—oc0

< c¢(r) + lim supf K(t, )27 (s)ds (by (5.8))
0

k—oo

!
=c() + f K(t, $)29(s)ds a.e. in [0, T] (by the weak convergence) (5.9
0

Let Ny be the subset of [0, 7] on which the inequality (5.9) is violated, let NV; be the subset of [0, T']
on whichZ®(¢) # 0, let N = Ny, U N;, and define

Z00) iftg N
z(t)_{ ifre N,

where the set N has measure zero. We see that z*(¢) > 0 for all ¢ € [0, T] and Z*(f) = Z”(¢) a.e. on
[0, T].

e Fort ¢ N, from (5.9), we have

BWZ' (1) = B{OZO(1) < e(f) + f K(t, $20(s)ds = ¢(t) + f K(t, $)Z'(s)ds.
0 0
e Fort e N, we have

B(HZ (1) =0 < c(t) + f K(t, 520 (s)ds = ¢c(t) + f K(t, $)Z*(s)ds.
0

0
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This shows that Z" is a feasible solution of problem (CLP). Since Z*(r) = Z”(¢) a.e. on [0, T, it follows
that the subsequence {z""¥}° | is also weakly convergent to Z".

On the other hand, since W(") is a feasible solution of problem (DCLP) for each n, Lemma 5.1 says
that w is also a feasible solution of problem (DCLP) for each n satisfying W(")(t) < '\(")(t) for each
i =1,---,pand ¢t € [0,T]. From Remark 4.2, it follows that the sequence {w(”)} ~, 1s uniformly
bounded. Since

-T
— - exp (v_) forall r € [0,T],
o

)= exp| 00 <
o g g

we see that the sequence {wW (")} ~, 1s also uniformly bounded, which implies that the sequence {w (”)}fl":l
is uniformly bounded with respect to || - |,. Using Lemma 5.2, we can similarly show that there is a
subsequence {W"¥}5°  of {w}*  that weakly converges to some W. Since W is a feasible solution
of problem (DCLP) for each ny, we have

W(1) > 0 and (B(1))T W™ (1) > a(t) + f (K(s,1)" W"(s)ds for all € [0, T]. (5.10)

Using Lemma 5.3 and , for each i, we have

“(0)(t) > hm 1nf (”‘)(t) >0a.e.in[0,7T],

which says that () > 0 a.e. in [0,7]. Using Lemma 5.4, it is clear to see that the sequence
{Zf:1 B;(1) - W;"”}Z‘;l weakly converges to Zle B;(1) - WEO) for j=1,---,q. Therefore we obtain

(B())" wO(r) > lim inf (B(t))" W (¢) (using Lemma 5.3)
> a(t) + hm inf f (K(s,1)" w"(s)ds (by (5.10))
=a(r) + f (K(s,0)" W(s)ds a.e. in [0, T] (by the weak convergence) (5.11)

We define n(t) = n(1)1,. Then we see that wW(r) < 5(7) for each k and for all 7 € [0,T]. Let N be

the subset of [O/,\T] on whiEh the inequality (5.11) is violated, let K/l be the subset of [0, T'] on which
wO() £ 0, let N = Ny U N, and define

< (0) . =
W) = w () %fte_f//\\/
n(1) ifreN,

where the set A has measure zero. Then we see that W*(¢) > 0 for all € [0, 7] and W*(¢) = wO(¢) a.e.
on [0, T]. Now, we are going to claim that w* is a feasible solution of (DCLP).

e Suppose that 1 ¢ N. From (5.11), we have
(B@)" w(t) = (B@)" W (1)
> a(f) + f (K(s,0)" wO(s)ds = a(r) + f (K(s,1)" W*(s)ds.
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e Suppose that ¢ € N. Since w(f) < n(t) for all ¢ € [0, T, using Lemma 5.3, we have

WO (#) < lim sup W"™(¢) < n(¢) a.e. on [0, T].

k—o0
Since w*(r) = w(¢) a.e. on [0, T, it follows that

w*(f) < n(t) a.e. on [0, T1]. (5.12)
Therefore we obtain
T
(B()" W' (t) = (B(1))" n(r) > a(r) + f (K(s,1))" n(s)ds (by (5.6))
> a(r) +f (K(s,1)" W*(s)ds (by (5.12)).

Therefore we conclude that w* is a feasible solution of (DCLP). Since w*(¢) = w(¢) a.e. on [0, T], it
follows that the subsequence {W"V}° | is also weakly convergent to W".
Finally, we want to prove the optlmahty Now, we have

T Ny T ny T
f (a(e)" 7" ()t = Z f(nk) [a(t) - k)] Z™(dt + Z f(n;a (aﬁ k)) 7" (t)dt
" =1 =1 VE
ny,
- Z f< > [a(t) (m) 2" dr + Z h(nk) (nk) " (by Remark 4.1)
.
l_

f |ac) - ] 2" dr + V(P,,)

= E/
and
T ng T
| RCOIECTEDY f ey e+ [ oy 1o,
0 = JE™
ng
:Zf C(t) (ﬂk) (nk)dt+zb(nk) (nk) —(HA) f (C(t)) f(nk)(t)l dt
=1 E;"")
N
= c(t) <"k) WWdt + V(D,,) + f (e(t)" ™ ()1 ,dt
which imply
T 103
.
V(P,) = f (@) Z"™ ()dr — f a() —a"™| 7™ dr. (5.13)
k 0 ; E—,;nk)[ l ] l
and

T Nk .
V(Dy) = j(: (e()’ W("“(t)dt—; fE o [c(;)_cgnw] #0dy

1
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T
- f (e())" F"™(0)1,4t.
0

Since V(P,,) = V(D,,) and W < W for each ny, from (5.13) and (5.14), we have
T
f (a(n)" " (dr - f a(t) - a<"k> 2" di

Nk T
f (c(t)™ W <"k>(t)dt—z f e =) wiar - f (e(0)" " (1)1 ,,dt
E* 0

Using Lemma 4.5, we have

iy,
0< Z f:( ) [a.,-(t) - agz")] Zg”‘)dt
=1 VE*
T
= f |ajd) - a0 -2 dt - 0 as k — oo
0
and
0< Z f c (1) — cgl"k) ng"")dt
I=
_ i (m) (”k)
= f |cit)) = & @)| - w™ (t)dt — 0 as k — oo,
0
By taking limit on both sides of (5.15), and using (4.36), (5.16) and (5.17), we obtain

hm f (a()" 2™ (1)dt > hm f (c()" W™ (¢)dt.

Using the weak convergence, we also obtain

T T
f @) z"(ndt > f (c(t)" W (t)dt.
0 0

According to the weak duality theorem between problems (CLP) and (DCLP), we have that

f (a(t) T (1)dt = f (c(0)” W (D,

(5.14)

(5.15)

(5.16)

(5.17)

and conclude that z* and W* are the optimal solutions of problems (CLP) and (DCLP), respectively.

Theorem 4.1 also says that V(DCLP) = V(CLP). This completes the proof. m
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6. Computational procedure and numerical example

In the sequel, we are going to provide the computational procedure to obtain the approximate
solutions of the continuous-time linear programming problem (CLP). Of course, the approximate
solutions will be the step functions. According to Proposition 4.2, it is possible to obtain the
appropriate step functions so that the corresponding objective function value is close enough to the
optimal objective function value when 7 is taken to be sufficiently large.

Recall that, from Theorem 4.1 and Proposition 4.2, the error between the approximate objective
value and the optimal objective value is given by

(n) f(ﬂ) (T =t
=-V(D,) + Z [f (c(2)" W En)dt + fﬁ*ﬂ Z;”) - exp [%] (e()’ lpdt] .

We shall propose two kinds of computational procedure. One needs to solve the dual problem (D,,) for
many times in order to attain the pre-determined error, and another one does not need to solve the dual
problem (D,,).

6.1. Computational procedure without solving (D,,)

We first rewrite the error &, and 1_15") as follows:

n_p
- Z ST+ Y Y |, et
En

=1 i=1 =1 i=1

p (’l) (n)
fz (T -1

=1 i=1

and
e(n)
h"() = (B - B(1) w" + f (K(s,0)" W\"ds
+ K(s,0) — K™) w"ds. 2
> E(m( (s.0)— K&) W"ds (6.2)
k=I+1 k
We define
)4 P (n)
(n) (n) (n) _ (m)
= w,”’ -| max sup (B B ()| + w max su K;i(s,)ds
K ; l [J_l" qteE(E‘))( . A )) ; : [ b teE(li’))f 1)

n P
Z NON maX Supf (Kij(S, 1) — Klﬁ’;l)])ds+ max sup [a,(t)_agl)]
E" =l

Py e cE™ @ e

where mg") is given by (3.15). Using (4.7) and (6.2), we have

(n)

P e,
Z max supf Ki(s,1) - wl")ds

teE(")

P
= (1) — (1) (n) _
T < Z W, [ max sup (B ,j(t)

=l teE(")
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(") (by (4.4) and the fact of K;;(s, 1) —

By (4.8), since
ﬂ;n)

it follows that

= max{ﬂl ST ST

Z Z {n x sup fEW (Kij(s, 1) — KE'Z),) Wﬁ(’f)ds+ nllgx sup [aj(t) a(")]
I 0 ,

4 reE\"”

Ky > 0 by (3.5)).

(n) =(n) = (n)}

() (n)
n" < kmax 3% (6.3)
For any fixed € £, let
~(n)
sup Kij(s, 1) = 9.0
SEE_](:’)
We also define
P P
’3*[") = Z mg") +| max sup (Bg’j) - Bij(t) Z ") b(") s max  sup K, 1)
i=1 S e i= =Lt (e B
n.op
+ Z Z tn,((”) . b;”) max sup Kii(s, 1) — K]({Z)J) + max sup [aj(t) - agl)]
k=ltl i=1 J=hrd (s.NeE"XE™ L qteE(”)
From Lemmas 4.1 and 4.2, we see that%;”) — 0 as n — oo. Then we have
P P
35") < Z mﬁ”’ . max sup (Bgfj) - Bij(t) Z . max sup [(e§ ") ) ‘A/EZ) (t)]
= J=1, (€E™ P E(n)
= 1 =
n P
(n) (n) [~ (n) n)
+ Z w,"” - ,-Izl}e}-xq sup D, ( klzj(t) Kkh/) + maxq sup [a,(t) —a; ]
k=l+1 i=1 Y B T g™
<3, (6.4)
Let
7#1") = max %f{”) and K,EZ)J = sup Kj(s,0).
k=L, (s,t)eEi")ng”)
Using (6.3) and (6.4), we obtain
" <7, (6.5)

Let

We also have

p
’37”) = mg”) . Z max (BE")
e | j=1,g % Y
i=1
AIMS Mathematics

(n) _
Bll] = II'_l(fn) Bij(t).
ek,

B(”))

(n) (n)
lij w; 'Dz

p
Z max KZ(Z)
j=l-q "

i=1
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n P
(n) (n) (n) () (n)
+0,7- Z {mk . [Z Jrr11axq (Kklu Kklu)}} + ]rrllax sup [a](t) —a; ]

k=111 i=1 1eE"

We define the real-valued function

’*(n)

—~n (1) _
70 (1) = T, %fteFl forl=1,---,n
m, ift=T

Since%f") — Qasn — oo, it follows that?r*l") — (0 as n — oo. Using the Lebesgue bounded convergence
theorem for integrals, we have

fT 700 [u@) (T - 1)
oy X 0 (7)

] -ci(H)dt > 0asn — oo (6.6)

From (4.4), (6.1) and (6.5), we obtain

"(”) [fgﬂ) (T -

),
) < sz<n> j; e =ci)dr+ ZZ f . b<"> Pl — - ]~c,-(t)dt (6.7)

=1 i=1 =1 i=1

T ) Wy (T -
5% f (et =) (")dt+z [ e [—“ o ”]-a(r)d;

=1 i=1

— 0 as n — oo (by (6.6) and the similar argument in the proof of Lemma 4.2)
Fori=1,---,pand/=1,---,n, we define

—~(n) (1)
T, (T -1t
/%lln) gn)_(f ci(t)dt — b(n) (n))+ — f exp [#]-ci(t)dt (6.8)
E" b E® b

l

and
n

P
2.8
ll
=1 i=1

Then, from (6.7), we see that g, <'g, and g, — 0 as n — co. Given a pre-determined error tolerance e,
if €, < €, then the error g, between the approximate objective function value and the optimal objective
function value will be less than €. The numerical integrals in (6.8) can be calculated by applying the
Simpson’s rule.

In most of cases, the first integral in (6.8) can be obtained analytically, and the second integral in
(6.8) cannot be obtained analytically. Fori=1,--- ,pand/=1,--- ,n, let

 _ exp [fgm (T - egml)] . [fgn) (T - egm)] |

l (n) ()
bz bz

i (T -1
Ef b
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we obtain

p
By > ( f ci(Ddt —d" - cg’)) +
Em |

1 I

< Z f( ) (Cl(t) Cgl)) En)dt
: EW

1

=1 i !
p T —(n) (n) . _
+Z(sup c,(t))-f d (t)-exp[u @ (T l)]dt—>0asn—>oo
0

1€[0,T] ™ (1) o((7)

P 7.(‘(11) b(n)
> [sup ci(t)) : ﬁ Lo (6.9)

=

Fori=1,---,pandl/=1,---,n, we define

e = (sup cm]
teE™

D(n) /ﬂt(n) E(n)
"(ﬂ) (n) n () [ li
g, =W, -([W ci(dt — " - c;; ]+ ECEE (6.10)
El 1
n.p
n)
ll
=1 i=1
Then, from (6.9), we see that g, — 0 as n — oo and
&, <€, <&, (6.11)

Now the computational procedure is given below.

e Step 1. Set the error tolerance e and the initial value of natural number n € N.

e Step 2. Evaluate the values &' accordlng to (6.8) (resp. € "(") according to (6.10)) fori=1,---,p
and/ =1, -

o Step 3. If En <€ (resp. &, < €), then go to Step 4; otherwise, consider one more subdivision for
each closed subinterval and set n « n + 7 for some integer 77 and go to Step 2, where 7 is the
number of new points of subdivisions for all the closed subintervals. For example, in Example 3.1,
we can set n* < n*+1 (one more subdivision for closed subinterval is considered). In this case, we
have 7 = r (total r new points of subdivisions for all the closed subintervals). In Example 3.2, we
cansetn, « n,+ 1 forv =1,---,r (one more subdivision for closed subinterval is considered).
In this case, we also have 7 = r (total r new points of subdivisions for all the closed subintervals).

e Step 4. Find the optimal solution Z™ of primal problem (P,).

e Step 5. Set the step function Z"(¢) defined in (3.25), which will be the approximate solution of
problem (CLP). The actual error between V(CLP) and the objective value of Z™(¢) is less than
&, < € by Proposition 4.2, where the error tolerance € is reached for this partition P,,.

Suppose that the integrals mentioned above can be calculated analytically. Using the similar
argument presented above, we can obtain a tighter error bound without considering the supremum of
¢; and K;;(-, 1) on E;") for any fixed 1.
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6.2. Computational procedure for solving (D,)

(n)

In order to obtain 7, ", by referring to (4.7), we need to solve

sup {R)(r) + a (1)} (6.12)

reE"”

Fort e Fl(”) and/ =1, --- ,n, we define

B - B(”) o Zf K(”) " ds
k=1 YE

and
(1)

h" () = — (BT w" + f " (K5, 0)T Wds + Z f (K(s, )T W, ds (6.13)

k=I+1

Then, from (6.2), we see that the vector-valued function 1_15”) can be rewritten as

PPN ) NN (O] (n)

h;"(t) =h,” + h/”(t) fort € F,". (6.14)
Now we define the real-valued function hg.’) on E;”) by

R () + aj(0), ift e E"

lim h(")(t) +at), ift= e(")
h(n)(l.) l—>el 1+( J ) -1

(n) (n)
111(11) (hlj (1) + aj(t)), ifr=e¢

t—>e, -

Since a and B are continuous on E;”) and K is continuous on E,(C") X El("), respectively, for all [,k =
1,---,n, it follows that hﬁj) + a; is also continuous on E;”). This also says that hg’) is continuous on the

compact interval El(”). In other words, the supremum in (6.12) can be obtained below

sup {R(1) + a;()} = sup K (1) = max h(@). (6.15)

reE" reE"

In order to further design the computational procedure, we need to assume that a, B and K are
twice-differentiable on [0, 7] and [0, 7] X [0, T'], respectively, for the purpose of applying the Newton’s
method, which also says that a, B and K are twice-differentiable on the open interval El(”) and open
rectangle E,((”) X Eﬁ"), respectively, for all Lk = 1,--- ,n. From (6.15), we need to solve the following
simple type of optimization problem

max_h (o). (6.16)

o <t<e™

Then we can see that the optimal solution is
e d
= eE")l ort" = eg " or satisfying pr (hg.’)(t))‘t:t* =0.
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According to (6.14), it follows that the optimal solution of problem (6.16) is
= eE")l ort* =e ) or satisfying — % (_(")(t) + aj(t))| L= 0.

Let Zl(]'.’) denote the set of all zeros of the real-valued function %(EZ.’)(I) +a;(t)). Then

max hg?) (6%) h(”) ( (”)) » Sup h(”) )¢, if Zl(j'.’) #0
r eZ

max {i? (e[")) . h)"’ (¢} if 2" = 0.

max h(")(t)
zeE(") i

Therefore, using (6.15) and (6.17~), we can obtain the desired supremum (6.12).
From (6.13), the jth entry of h;") is given by

(n)

ZEZ)(I) ZBU(I) _(") + Zf Kij(s, t)~w")ds + Z Zf:( ii(s, 1) - w(")ds

k=I+1 i=1

Then, for ¢ € E;"), we have

5 d
7 —(n)
S = ZﬁB”(’) i Z f

np
(9
+ f Kii(s,1) - w(")ds

(n)

Kij(s,0) - W\ ds — Kj(t,1) - ‘(”)]

and

2

%hﬁ}” Z B0 W Z y TCORA
P
2

n.p
—(n)
+ f(n E¥ Kij(s, 1) -w,ds
1 YE

=l+1 i=

+

(n)
d
f ~Kij(s,0) - wi'ds — —Ki(s, 0| W)
t a s=t

=~

We consider the following cases.
e Suppose that hg.') is a linear function of  on E;") assumed by
() = B () + aj(t) = ;- 1+
for j=1,---,q. Using (6.15), we obtain

max {1 (e)")) . if"’ (¢”) . by}, if a; =0
max h(")(t) max hg.') (eﬁ”)l) h(")( ) a; - el ’ bl]} ifa;>0
B max {1 (")) 1% (e) ay - e, + by}, if <0

(6.17)

(6.18)

(6.19)

(6.20)
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e Suppose that h;;f) is not a linear function of ¢ on E;"). In order to obtain the zero ¢* of d%(ﬁ;;”(r) +

a;(1)), we can apply the Newton’s method to generate a sequence {t,},_, such that 7,, — ¢ as
m — oo. The iteration is given by

d
dt A * i

tm+1 = tm - d2 —m d2 ] (621)
—=hP®)|  + —5a;@)
dr? Y t=ty, dr* t=t,
form = 0,1,2,---. The initial guess is #y. Since the real-valued function %(ﬁ;}’)(t) + a;(t)) may

have more than one zero, we need to apply the Newton’s method by taking as many as possible
for the initial guesses #;’s.

Now the computational procedure is given below.

e Step 1. Set the error tolerance € and the initial value of natural number n € N.

e Step 2. Find the optimal objective value V(D,) and optimal solution w of dual problem (D,,).

e Step 3. Find the set Zl(j’.’) of all zeros of the real-valued function %(ZE?)(I) + a;(t)) by applying the
Newton method given in (6.21).

e Step 4. Evaluate the maximum (6.16) according to (6.17), and evaluate the supremum (6.12)
according to (6.15).

e Step 5. Obtain 71(”) using (4.7) and the supremum obtained in Step 4. Also, using the values of

”) to obtain JT( " accordlng to (4.8).

° Step 6. Evaluate the error bound ¢, according to (4.31). If &, < €, then go to Step 7; otherwise,
consider one more subdivision for each closed subinterval and set n < n+n for some integer 7 and
go to Step 2, where 7 is the number of new points of subdivisions for all the closed subintervals.
For example, in Example 3.1, we can set n* « n* + 1. In this case, we have = r. In Example 3.2,
we can setn, < n, + 1 forv=1,---,r. In this case, we also have n = r.

e Step 7. Find the optimal solution Z™ of primal problem (P,).

e Step 8. Set the step function z"(¢) defined in (3.25), which will be the approximate solution of
problem (CLP). The actual error between the optimal objective value V(CLP) and the objective
value at Z"(¢) is less than &, by Proposition 4.2, where the error tolerance € is reached for this
partition P,.

6.3. Differences

For the computational procedure without solving the dual problem, we can obtain two error bounds
€, and g,. For the computational procedure for solving the dual problem, we can obtain the error bound
g, in which (6.11) is satisfied. The differences between the above two computational procedures are
presented below.

e The computational procedure without solving (D,) will save the CPU time. However, the integer
n regarding the partition £, may be very large. In this case, in order to obtain the approximate
solution Z™(¢) of problem (CLP), we may need to solve a large scale problem (P,), which may
need a lot of memory for the computer and may result in out of memory at running time. The
reason is that, in order to reach the pre-determined error tolerance €, we may not need so large
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integer n that satisfies €, < € or €, < € as shown in (6.11). However, a much small integer n may
satisfy €, < €, where g, is the tighter error bound between the approximate objective function
value and the optimal objective function value.

e The computational procedure for solving (D,) can obtain the tighter error bound &,. However,
we will need more CPU time to obtain ¢, since the dual problem (D,) must be solved for many
times. In other words, we can obtain a reasonable integer n regarding the partition #, such that
the error bound g, < €.

6.4. Numerical example

In the sequel, we present a numerical example that considers the piecewise continuous functions on
the time interval [0, T']. We consider 7 = 1 and the following problem

1
maximize f [a1(2) - z1(2) + ax(¥) - zp(2)] dt
0
subject to  by(1) - z1(7) < (1) + f [k1 (2, 8) - 21(5) + ka(, 5) - 22(s)] ds for all 7 € [0, 1]
0

by (1) - 2(8) < (1) + f [ks(t, 5) - z1(S) + ka(t, ) - z2(s5)] ds for all ¢ € [0, 1]
0
z=(z,2)" € L5[0,1],

where
e, if0<r<02 2t, if0<t<0.5
ai()={ sint, if02<r<06 anda(®) =4 1, if0.5<t<0.7
£, if0.6<r<1 £, if07<t<1
r, if0<r<0.3 t, if0<r<04
o=l o7, if03<r<05 (= 3 If04<r<05
Y2 ifos<r<08 MCANYTY A if05<1<08
cost, if0.8<r<1 2, if0.8<r<1.
b\'() =20cost, if0<r<02 b)) = 25cost, if0<1<0.5
bi(t) =4 bP(1)=25sint, if02<1<0.6 andby(t) =1 b ) =221, if0.5<1<0.7
b1 =272, if0.6<r<1 b1 =254, if07<r<1
and
KV, 5) = £ + s, if0<r<08and0<s<05
kit s) = KP(t,5) = +sins,  if0<r<08and0.5<s<1
BT P, s) = (Inn)? + 3¢, if0.8<r<land0<s<05
KP(t,5) = cost+5e™, if08<r<land0.5<s<1
KV, 5) =1 - 82, if0<t<0.6and0<s<0.7
kit s) = KP(t,s)=1-sins, if0<¢<0.6and0.7<s<1
2T D) = (Inp? e, if0.6<r<1and0<s<07
KP(t,5) = 3¢ -sins, if0.6<t<land0.7<s<]1
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K" (2, 5) = 3% - sin s, if0<t<03and0<s<0.6
Kt 5) = KD, 5) =2t - 82, if0<r<03and0.6<s<1
’ K21, 5) = (In0)? + (cos s)%, if03<r<1and0<s<0.6
K2, 5) =1 - 57, if03<r<land0.6<s<1
Kt 5) = 22 + s, if0<r<0.5and0 < s<0.3
Ka(t. 5) = KP(t,s) = sint + 52, if0<r<05and03<s<1
’ K2, 5) = (cos1)? + 375, if0.5<t<1and0<s<03
KP(t,5) = 263 - §2, if0.5<t<1land03<s<1.

The time-dependent matrices B(¢) and K(¢, s) are given below:

B1() Bia(1) ] _ [ bi(®) O ]

B = l Bo(t) Ban(t) 0 bat)

and
K(t.s) = [ K (t,s) Kia(t,s) ] _ [ ki(t,s) ky(t,s) ]
’ Ky (t,5) Knxn(t,s) k3(t,s) ka(t,s)
We see that B(¢) satisfies conditions (2.1) and (2.2). From the discontinuities of a,, a,, ¢y, ¢2, by, bs, ki,
ks, ks, k4, according to the setting of partition #,, we see that r = 8 and

D=1{dy=0,d, =02,d,=03,d3 =04,d, =0.5,ds =0.6,ds =0.7,d; = 0.8,ds = 1}.

For n* = 2, it means that each closed interval [d,,d,] is equally divided by two subintervals for
v=0,1,---7. In this case, we have n = 2 - 8§ = 16. Therefore we obtain a partition P .
Forte F l("), we can rewrite (6.19) and (6.18) as follows:

HGE Z ol + Z Zw,ﬁ’j’ f  Ky(s.nds

k=Il+1 i=1

L)

Bij(t) + f l K,'J'(S, t)dS
t

and

d " 9
_EBU(I) - K,‘j(l‘, t) + t a_tKij(s’ t)dS

p
0
DI E f = Ki(s. 0ds. (6.22)

Let us recall
11
f (Ins)’ds = s(Ins)* - 2sIn s + 2s + C and f (cos 5)*ds = 38+ 7sin2s+C.

Then we also need the following integrations:
e(n)
CSds+ 2 (e - 1), if 0 <7<0.5and [t,€]"] C [0,0.8]

t
()

& g f s’ds +cost-(ef’ —1),  if0.5<t< land[t,e["] C[0,0.8]
f —ki(s,t)ds = !
t

e;') )
f (n sy’ds — 3™ - (e — 1), if0<7<0.5and [r,e"] C[0.8,1]
t
(n)

f’ cos sds = 5e™' - (ef’ 1), if0.5<t<land[r,e]"] C[0.8,1]
t
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5616

(n)

)
2t - f s3ds,
t
e([")
e 9 CoSst - s2ds,
f —ka(s,t)ds = I
f ot = <) 5
—e - (In s)“ds,
t
e?")
cost-f 3s2ds,
t
e;n)
3cost- szds,

()
¢

0
(?tk3(s, Nds =

t

()

el 6
ft‘ Ek;;(s, tds =

and

ol

f " k(5. 0)ds =
1

()

€
f ka(s,t)ds = (n)
t _t ¢

AIMS Mathematics

t
(n)
€

4t - f sds,
(In 5)’ds — sin2¢ - (¢{" - 1),

t
(n)
€

2t - f sds,
t

(n)
€
s*ds + 2t - (e?") - t),
t e;")
sin sds + 2t - (egn) - t),

! o

: (cos 5)*ds — 3e™" - (ef”) - t),

e(”)

’ sds + 1 - (egn) - t),
e;") 5
s°ds + sint - (65") - t),

(1)
l (In s)°ds + 3e™" - (eﬁ") - t),

(1)
¢

cos sds + 5S¢ - (e}”) - t),

14

S L

t

—

1
e’ (In 5)%ds,

e(n)

. ! 2
sint - 3s°ds,
t

if 0 <7< 0.7 and [1,e] C [0,0.6]
if 0.7 <7< 1 and [t,e] C [0,0.6]
if0<7<0.7and[t,e”] C [0.6,1]

if 0.7 <7< 1and[t,e”] C [0.6,1]

if 0 <7< 0.6and [t,e{"] C [0,0.3]
if0.6 << 1and[t,e"™] C[0,0.3]
if0 <7 <0.6and[t,e”] C[0.3,1]

if0.6 <7< 1and[t,e™] C[0.3,1]

if0<1<03and[t,e"”] [0,0.5]
if0.3 <7< 1and[r,e™] C[0,0.5]

if0<7<03and[r,e"] C[0.5,1]

if0.3 <7< 1and[t,e] C[0.5,1].

if 0 <7<0.5and[t,e{"] C [0,0.8]
if0.5 <1< 1and[t,e] € [0,0.8]
if0<7<0.5and[t,e”] C[0.8,1]

if0.5 <7< 1and[r,e™]C[0.8,1]

if 0 <7<0.7and [1,e"] C [0,0.6]
if 0.7 <7< 1 and [1,e] C [0,0.6]
if 0 <7<0.7and [1,e] C [0.6, 1]

if 0.7 <7< 1and [t,e] C [0.6,1]
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(n)

i
f ky(s,t)ds =
t

e(ﬂ)

1

f’ kq(s,t)ds =
t

t

t

Now, for k > [ + 1, we need

f 9
£» Ot

0
.fE‘”) E‘kl(s’ Nds =
k

0
L(M a—tkz(s, tds =
k

0
wa) EIQ(S, Nds =
k

AIMS Mathematics

e

24

E;n)
sd S,

2sds,

(In s)2ds + (cos 1)? - (e — 1),

(n)
N

2. f s3ds,
t

(n)
Nl

s*ds + 1 - (eﬁ") - t),

t
(n)
]

sin sds + % - (eg") - t),

(cos s)%ds + 3¢~ - (e?") - t),

()
¢

f s3ds,
t

if 0 <7<0.6and[r,e] C [0,0.3]

if 0.6 <7< 1and[r,e”] C [0,0.3]

if0<r<0.6and[t,e"] C[0.3,1]

if0.6 <t < land[t,e”] C[0.3,1]

if 0 <7<03and[t,e] C [0,0.5]

if0.3 <7< 1and[t,e] C[0,0.5]

if 0 <7<03and[t,e”] C [0.5,1]

if0.3 <7< 1and[t,e”] C[0.5,1].

KV (s, 0)ds = f s*ds +2t 0",
£

KP(s, 1ds = f s*ds +cost- v,
Eﬂ]((n)

kf)(s, Nds = f (In 5)°ds — 3e™" - b,(c"),
E/(:l)

k§4)(s, Nds = f cos sds — Se”" - bg’),
El(c”)

0
f —kg)(s, Hds =2t f sds,
E™ ot E™
k 8 k
f —k;z)(s, t)ds = cost- f s2ds,
Em 61‘ Em
k 6 k
k) (s,0ds = —e" - f (In 5)*ds,
50 Ot 150
k 6 k
f — kP (s,ds = cos - f 35%ds,
E](cn) ot E_l(cn)
0
—kgl)(s, t)ds = 3cost- f s%ds,
® ot E"
0
—k?)(s,t)ds = 4t-f sds,
in) ot Ekn)

) Ot

3

@ Ot
k

ﬁkg‘%s, nds =2t - f

S dS,
i(n)
Ek”

9
—k (s, 0)ds = f  (Ins)’ds = sin(21) -
Ek"

if £/ [0,0.8] and 0 <t < 0.5
if £/ [0,0.8]and 0.5 < < 1
if £ C[0.8,1]and 0 <1 < 0.5

if £/” [0.8,1]and 0.5 <1 < 1

if £ € [0,0.6]and 0 < 1 < 0.7
if £ € [0,0.6] and 0.7 < < 1
if £ C[0.6,1]and 0 << 0.7

if " C[0.6,1]and 0.7 <t < 1

if £ €[0,0.3]and 0 <7 < 0.6
if E” € [0,0.3]and 0.6 < < 1
if £ €[0.3,1]and 0 <1 < 0.6

if £/” [0.3,1]and 0.6 <1 < 1
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0
ﬁi’” Elq(s, Hds = f
E

0
f —ki4)(s,t)ds:4t~f s3ds,
E‘/(:l) 61‘ Ein)

and
f ki(s,t)ds =
EP
f ko(s,t)ds =
EW
f k3(s,t)ds =
EY"
jj ka(s,t)ds =
EP
Since eé")

e ForO<r<02andt

AIMS Mathematics

[ s = [ anspas+ (eosey?
E‘Ln) E_,((")

f k§4)(s, nds = t2~f s’ds,
EL’” ELM)

f kP (s, nds = f sPds+ 7 v,
E-v;{n) E;(n)
f kf)(s, Nds = f sin sds + £* - b,(cn),
E(»t) E(/x)
k k

f K (s, t)ds = f (cos s)’ds + 3™ - ",
E‘v(") E(n)
k k

f kf)(s, Nds = 21 f s3ds,
E/(:l) E_"((")

= 0.3 and eg") =0.8,let/; =2 and [, = 7. We have the following cases.

9
f —kP(s,0ds = f s*ds + 20",
E;{'” ot E—‘((n)

d
f — kP (s, )ds = f sin sds + 2t - ",
5™ Ot 2
k k

3
—k (s, 0)ds = f (cos $)%ds — 3¢ - v,
£

o Ot
k

f KD (s, 1ds = f Sds+ 7,

E—](:x) E_,((“)

f k(lz)(s, Nds = f s%ds + sint - b,(:'),
E;(n) E_;:’)

f KV(s, ds = f (In 5)*ds +3e™ - D",
E](:x) E,((/x)

f k(l4)(s, Nds = f cos sds + 5e"- b,({”),
E(") E—(n)
k k

f k(zl)(s, fds = 1*- f s3ds,

E;(n) E_;(n)

f kf)(s, tHds = sint-f s2ds,
E’Zrl) E(fl)

k

f K (s, 0ds = ™" - f (In 5)%ds,
E]((") E‘(ﬂ)

f K (s, ds = sint - 3s%ds,
£

()
Ek

f K (s, )ds = 3sint - f s*ds,
E—Ln) ELIX)

f kgz)(s, Hds = 2t2~f sds,
E”((n) E,(‘u)

€ E;"), we have

L)

d d i
4 (A :W(")-[——b(l)(t)—k(l)(t,t)+f
dr (vll ) 1 p7 1 t

if £/ €[0,0.5]and 0 <1 < 0.3

if £V € [0,0.5]and 0.3 <1< 1

if £” C[0.5,11and 0.3 <1 < 1.

if £ € [0,0.8]and 0 < < 0.5
if £ € [0,0.8]and 0.5 <7 < 1
if £ c[0.8,1]and 0 <1 < 0.5

if £ C[0.8,1]and 0.5 <t < 1

if £V [0,0.6] and 0 < 1 < 0.7
if £ € [0,0.6] and 0.7 <1 < 1
if £ C[0.6,1]and 0 < 1 < 0.7

if £ € [0.6,1]and 0.7 < < 1

if £ €[0,0.3]and 0 <1 < 0.6

if £/ € [0,0.3]and 0.6 < < 1

o, ifE" C[03,1]and 0 <1< 0.6

if £/” C[0.3,1]and 0.6 < < 1

if £/ €[0,0.5]and 0 <1 < 0.3
if £/ € [0,0.5]and 0.3 <1 < 1
if £/" C[0.5,1]and 0 <1< 0.3

if £ C[0.5,1]and 0.3 <1 < 1.

0
Ek(ll)(s, t)ds)

if £ € [0.5,1]and 0 < 7 < 0.3
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b
0 0
— (1) Q)] — (n) 3)
. —k ,Dd —k ,Dd
+ Z (Wkl Ll(c") al’ 1 (s ) S+Wk2 L}:«) 81‘ 3 (s ) S)
+ Z (w,(j;) : f . gtk@)(s Dds + ') - f 8tk<3)(s t)ds)

and

()

m(s t)ds)+w(") fl kgl)(s, ds
t

()

¢
) = w0 [ b<11>(t)+f
t
+ Z (wg? f k(l)(s Nds + Wﬁ(’? f()kgl)(S, t)ds]
Ekn

k=I+1

1 — 3
+ Z (wg;> fE K (s nds +wy - fE K, t)ds)
k k

k=0 +1

n
+ Z [w,((';) f k(13)(s, t)ds+wl(:;) f kf)(s, t)ds)
E]((n) E;(n)

k=b+1

e For0.2 <t<03andzte€ El("), we have

L)

d "9
(n) — (n) 2 )] 1
( (1) = [ 00 -k t)+[ KV, t)ds)

(1)
4 g
. [ KOG, 1) + f l Ekg”(s,t)ds]
t

0
+ (0’) f > KD (s, 0ds + Wy - f > kG, t)ds]

k I+1

b
+ (w,(;? fE . gk(l)(s Dds + ') - f 2K, t)ds)

0
(n) ©) — () 3)
+ ) ( f = —k7(s,ds + w5 - ng) 6tk3 (s, t)ds)

and

(1)

€l

() = - [ bP() + f
t
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(n) (1) — (1) (1)
+ Z (wkl fE ky(s,t)ds +w); - fﬁg’” k3 (s, t)ds]

k=I+1

(n) (1) (1) 3)
+ Z (wkl fE ky’(s,ds +w,, fEi’” k; (S,t)ds)

k=l1+1

n
+ E (w,(:;) f k(13)(s,t)ds+wl(:;) f k(;)(s,t)ds)
E(n) E—](cn)
k

k=l+1

e For0.3<t<0.5and € E\", we have

e(")

d "9
g -(n) @ _ D 1)
dt( (1) = ( ORI t)+j; KU, t)ds)

(n)
+ [ K, 1) + f o — ks, t)ds]

0
} (n) )] — (1) 3
+ ( f: k (s,t)ds + w ‘fEE’” tk3 (s, t)ds]

k=I+1
0

and

o

n _(n @ !
W) = w [ —b} )(t)+[

b
+ E (Wfﬁ)f m(s t)ds+w(”) f k?)(s,t)ds)
E(" E(n)
k k

o)

k(l)(s t)ds)+w(") f] kf)(s,t)ds
t

k=1+1
n
— (1) 3) — (1) 3)
+ Z (wk'; .f()kl (s,0)ds +w; - f{)l% (s, t)ds)
B E
k=h+1 k k

e For0.5<t<06andzte€ El(”), we have

L)

d "9
D -(n) LT PN ¢)) 0.0
(” (1) = [ SO0 kP + [ P (s,t)ds)
& g
+w§§) [ Kt 1) + f ks, t)ds]

0
(1) (2) — (1) 3)
k ) (wkl f - (s,)ds +w,, - j;g” 0tk3 (s, t)ds)

0 0
o) 4 (n) Y,3
+ Z (wkl fE,ﬁ 5 —kV(s,)ds + w5 fE}c") 6tk3 (s, t)ds)
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and
e(n)

0 P 2) !
R0 = W [bg (t)+j;
—(n) (2) —(n) 3)

+ E ( f (s, yds +w'l) - j; . S (s,t)ds]

(n)

k(z)(s t)ds)+w(") f : kf)(s, Nds
t

k=I+1
n
(n) “4) — (n) 3)
+ Z [WH f(n) k\"(s,0ds +w,, - f(n) ki’ (s, t)ds)
k=lr+1 2 E,

e For0.6 <t<0.8andte€ El("), we have

e(ﬂ)

n —(n d l
(~< () = W [ b0 - k70 + f
t
Q)
+ [ K9t 1) + f o — ks, t)dS)

0
( ) f —k(z)(s tds +w - f —k§4)(5,f)ds]

£ £ ot

o0

) _(n) ©) !
KP(r) = - [bl (r)+j:

L
(n) 2) (n) 4)
) (w,d fE k(s nds + fE K (s,t)ds]
k

(%k?)(s, t)ds)
I

ol
"o

and
o

1
K2 (s, t)ds)+w(") f K (s, 0)dss
t

k=I+1

n
+ Z (w,(("l) f k§4)(s, t)ds+wl($) f k§4)(s, t)ds)
k=l +1 E” E”

e For0.8 <t<landte E;"), we have

()
d ‘0
A - (n) (3) @ 4
( KOE [ 00 -k, r)+j: ks t)ds)

()

+ [—kg‘”(t, 1) + f l
t
+ Z (") f k(4)(s t)ds+w(") f 2k(4)(s Nds
(n) E—I((n) at 3 ’

k=I+1

0
—tk§4)(s, t)ds)

and
e(ﬂ)

n —(n 3 !
h( D) = w - [ b )(t)+[

RO

K9 (s, z)ds)+w§;’> f ks, 0ds
t
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n
— () “ — () “
+ Z( " fE k(s nds +wy - fE kG, t)ds]

k=I+1 k k
Since e(") 0.5 and e(”) 0.6, let I3 = 4 and I = 5. We have the following cases.

e ForO<t<03andte E;"), we have

@
“ 0
((n)(f)) Wg'f) ( k;l)(t,t)+f] &kgl)(s,t)ds]
t
(n)
d 0
<) 1)) ¢! D
+W§2 [—Eb(z () =k, >(t,t)+I 6_th (s,t)ds)

I3
‘ 0 0
—(n) )] —(n) 1
+ E (wkl ‘fggﬂ (9tk2 (s,0)ds + W), - \fEE) (9tk4 (s, t)ds]

k=I+1
Iy a a
_(”1) . _ (1) —(l’l) o (3)
" k;—l (Wkl fEf(”) atkz (8, s + Wy - fE,ﬁn) (9[k4 (s, t)ds)
+ i W(n) X f 0 k(3)(S t)dS + W(n) f 2]{(3)(& t)dS
k=I4+1 . 6t E;{”) 81. 4

and
(n) ()

W) = w - f KOs, s + @ - ( b(1) + f |
t t

3
+ Z (Wﬁﬁ) f k;l)(s, Nds + W,({Z) f kil)(s, t)ds]
E—;n) E;n)

k(s t)ds]

k=I+1
Iy
) [wg?. f K (s, nds + - f ka)(s,t)ds)
E" E"
k=l3+1 k k
n
+ ) [w,(:i) f KD (s, 0ds + w® - f K (s, t)ds)
(n) (n)
k=I4+1 E, £y

e For0.3 <7<0.5and € E", we have

(n)
n _(n ‘9
(~ () = w)) [ KD, 1) + f ak;“(s,z)ds]
t

(n)
d 0
(1) (1) @ @)
+w, - [_dtb2 () —k,”(t,1) +[ _8tk4 (s, t)ds)

I3
0 0
—(n) (1) — (1) 2
+ E (wkl fEi”) _(9tk2 (s,ds +w,, - ‘fEi”) _Otk4 (s, t)ds]

k=I+1
I
+ 2 w . 6k(1)(s tyds + ' - k(4)(s fds
k=lz+1 . () at at
=3
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- 0 0
E : —(n) (3) — (1) “
+ (wkl fEL k (s,0)ds + w \fégﬂ tk4 (s, t)ds)

k:l4+1

and

) )

7 —(n ! n 1 !
(@) = wyy f, k5 (s, yds +w}y - (—b(z)(t)+ft

I3
() (€] () @)
) (w,d fE K (s ds + fE K (s,t)ds]
k

kf)(s, t)ds)

k=1+1
Iy
S L f KV (s, s + - f K (s, nds
E_(") E—(n)
k=l3+1 k k
n
( 3) 4)
) (w,;? f (s, 0ds + g f R, t)ds)
k=ly+1 E! Ey

e For0.5<t<06andt e El(”), we have

oM

o | 4 )
(~ (t)) ( k; (t,t)+[ 8tk2 (s, t)ds]
(n)
—(n d 2 4 € 6 4
+ Wﬁz) [_Eb(z (1) - ki (t,1) + fl 8_th )(s,0)ds
N 9
W M () @)
Z( f()atk (s, D)ds + W f I, t)ds)
c d
g (3) (n) O @
Z ( fk Ht (s,Dds +w,, féjﬁ 8tk4 (s, t)ds)

and

o )

— 1 l
K@) = wi - f K (s, H)ds + Wiy - (—b;2>(z)+ f
t t

(n) (1) (n) 4)
+ Z (w,d f (s, )ds + W fE ' K (s, t)ds]

KV (s, t)ds)

k=I+1
n
+ Z (w,(("l) f kf)(s, t)ds+wl(£) f kf')(s, t)ds)
(1) (1)
k=I4+1 £y £y

e For0.6 <tr<0.7andte€ El("), we have

()
P o [ _,® KNG
dt(' (1) = Wiy - [—k2 (t,1) + ft ks (s,t)ds]
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o)

n d 0
+ W?z) : [_Eb(zz)(t) - kf)(t, )+ [ Ekf)(s, t)ds]

0
—(n) (3) (n) 4)
+ E ( f k"’ (s, t)ds + w5 fE;” 0tk4 (s, t)ds)

k=I+1

and

() ()

“) €1
K@) = w f ks, Hds + Wiy - ( b3(1) + f
t 14

(n) JAQ) — (1) “
+ Z (w,d f (s, )ds + W - fE kG, t)ds)
k

k=I+1

KV (s, t)ds]

e For0.7<t<1landte EE"), we have

(n)

<">(r)) i [ KO0 + f !

()
n d 0
+ - ( b0 = kw0 + ft s, t)ds)

0
o) @ e )
+ E (Wkl f@ ks (s, 0ds + W - fég” 2.k s, t)ds)

k=I+1

%kg‘”(s, t)ds]

and

D) )

0w = W f KOs, s + @ - ( B0 + f |
t t

(n) “ — (1) “
+ Z (w,d f KV, nds + ), fE kG, t)ds)
k

k=I+1

kf)(s, t)ds)

Now, in the following table, for different values of n*, we present the error bounds €, and &, by

T
V(CLP,) = f a(t) "z (t)dt
0

0 < V(CLP) - V(CLP,) < &,

and

0 < V(CLP,) - V(P,) < V(CLP) - V(P,) < &,.

using the computational procedure that does not need to solve the dual problem (D,)). We also present
the tighter error bound &, by using the computational procedure that needs to solve the dual problem
(D,,)). We denote by

the approximate optimal objective value of problem (CLP). Theorem 4.1 and Proposition 4.2 say that
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n* n=n"-8 &, &, &, V(P,) V(CLP,)
2 16 0.0903604 0.0812054 0.0264411 0.0309126 0.0334230
10 80 0.0212548 0.0207730 0.0055320 0.0376025 0.0381911
50 400 0.0044324 0.0044117 0.0011428 0.0391086 0.0392302
100 800 0.0022285 0.0022232 0.0005738 0.0393012 0.0393622
200 1600 0.0011173 0.0011160 0.0002875 0.0393979 0.0394284
300 2400 0.0007456 0.0007450 0.0001918 0.0394302 0.0394505
400 3200 0.0005594 0.0005591 0.0001439 0.0394463 0.0394616
500 4000 0.0004477 0.0004475 0.0001151 0.0394560 0.0394682

The numerical results are obtained by using MATLAB in which the simplex method is used to solve
the primal problem (P,) and the active set method is used to solve the dual problem (D,). The reason
is that there are some warning messages from MATLAB when the active set method is used to solve
the primal problem (P,) and the simplex method is used to solve the dual problem (D,) for large n.

As we can see that the error bounds €,, €, and g, satisfies (6.11), the computational procedure for
obtaining the tighter upper error bound &, needs much CPU time, and the computational procedure for
obtaining the upper error bound ¢, saves the CPU time.

Suppose that the decision-maker can tolerate the error e = 0.0005. Then we see that n* = 100
is sufficient to achieve this error € by referring to the tighter upper error bound &,. However, if we
consider the error bounds €, or g,, we need to take n* = 400 in order to achieve this error €. As a
matter of fact, taking n* = 400 is over-estimating the error. As we can see from the tighter upper error
bound g, for n* = 400, the error bound can be reduced to 0.0001439.

In order to achieve the error € = 0.0005, it is sufficient to solve problem (P,) for n* = 100 (i.e.,
n = 800) rather than solving problem (P,) for taking n* = 400 (i.e., n = 3200). The trade-off between
CPU time and error bound should be carefully evaluated by the decision-makers based on their actually
working environment.
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