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1. Introduction and preliminaries

In 1940, Ulam [20] suggested a problem of stability on group homomorphisms in metric groups.
Hyers is the first mathematician who answered the question of Ulam in 1941. He demonstrated the
following theorem in [8].

Theorem 1.1. Let X and Y be two Banach spaces and f : X → Y be a mapping such that

‖ f (x + y) − f (x) − f (y)‖ ≤ δ

for some δ > 0 and all x, y ∈ X. Next there is an exclusive additive mapping A : X → Y such that

‖ f (x) − A(x)‖ ≤ δ

for all x ∈ X.
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The Hyers’ stability theorem was developed by other mathematicians. Recently, numerous
consequences concerning the stability of various functional equations in different normed spaces and
various control functions have been obtained. The problem of stability of some functional equations
have been widely explored by direct methods and there are numerous exciting outcomes regarding
this problem ( [4, 7, 9–11, 13, 15, 17]). The fixed point approach has been used in other Hyers-Ulam
stability investigations. The relationship between Hyers-Ulam stability and fixed point theory has
been defined in ( [5, 6, 14, 16]).

The first definition of Riesz spaces was done by Riesz in 1930. In [18], Riesz introduced the vector
lattice spaces and their properties. A Riesz space (vector lattice) is a vector space which is also a
lattice, so that the two structures are compatible in a certain natural way. If, in addition, the space is a
Banach space (and, again, a certain natural compatibility axiom is satisfied), it is a Banach lattice. We
present some of the terms and concepts of the Riesz spaces used in this article, concisely. However,
we relegate the reader to [1, 12, 19, 24], for the fundamental notions and theorems of Riesz spaces and
Banach lattices.

A real vector space X is supposed to be a partially orderly vector space or an ordered vector space,
if it is equipped with a partial ordering “ ≤ ” that satisfies

1. x ≤ x for every x ∈ X.
2. x ≤ y and y ≤ x implies that x = y.
3. x ≤ y and y ≤ z implies that x ≤ z.

A Riesz space (or vector lattice) is an ordered vector space in which for all x, y ∈ X the infimum and
supremum of {x, y}, denoted by x ∧ y and x ∨ y respectively, exist in X . The negative part, the positive
part, and the absolute value of x ∈ X, are defined by x− := −x ∨ 0, x+ := x ∨ 0, and |x| := x ∨ −x,
respectively. Let X be a Riesz space. X is called Archimedean if inf{ x

n : n ∈ N} = 0 for all x ∈ X+. If
|x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ X, then ‖.‖ is called a lattice norm or Riesz norm on X.

1. x + y = x ∨ y + x ∧ y , − (x ∨ y) = −x ∧ −y.
2. x + (y ∨ z) = (x + y) ∨ (x + z) , x + (y ∧ z) = (x + y) ∧ (x + z).
3. |x| = x+ + x− , |x + y| ≤ |x| + |y|.
4. x ≤ y is equivalent to x+ ≤ y+ and y− ≤ x−.
5. (x ∨ y) ∧ z = (x ∧ y) ∨ (y ∧ z) , (x ∧ y) ∨ z = (x ∨ y) ∧ (y ∨ z).

Let X be a Riesz space. The sequence {xn} is called uniformly bounded if there exists an element
e ∈ X+ and sequence {an} ∈ l1 such that xn ≤ an · e. A Riesz space X is called uniformly complete if
sup{

∑n
i=1 xi : n ∈ N} exists for every uniformly bounded sequence xn ⊂ X+. Let X and Y be Banach

lattices. Then the function F : X → Y is called a cone-related function if F(X+) = {F(|x|) : x ∈ X} ⊂
Y+.

Theorem 1.2. [1] For a mapping F : X → Y defined between two Riesz spaces, the following
statements are equivalent:

1. F is a lattice homomorphism.
2. F(x)+ = F(x+) for all x ∈ X.
3. F(x) ∧ F(y) = F(x ∧ y), for all x, y ∈ X.
4. If x ∧ y = 0 in X, then F(x) ∧ F(y) = 0 in Y.
5. F(|x|) = |F(x)|, for every x ∈ X.

Definition 1.3. [23] The (real) vector lattice (Riesz space) X is named a lattice ordered algebra (Riesz
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algebra, concisely, l-algebra) if it is a linear algebra (not essentially associative) so that if a, b ∈ X+,
then ab ∈ X+. The latter property is equal to every of the following declarations:

(i) |ab| ≤ |a||b| for all a, b ∈ X;
(ii) (ab)+ ≤ a+b+ + a−b− for all a, b ∈ X;
(ii) (ab)− ≤ a+b− + a−b+ for all a, b ∈ X.

Definition 1.4. [2] Assume that X be an l-algebra.

(i) If for all a, b ∈ X, a ∧ b = 0 implies ab = 0, then X is named an almost f -algebra.
(ii) If c(a ∨ b) = ca ∨ cb and (a ∨ b)c = ac ∨ ab for all a, b ∈ X and c ∈ X+, then X is named a

d-algebra.
(iii) If a∧ b = 0 implies ca∧ b = ac∧ b = 0 for all a, b ∈ X and c ∈ X+, then X is named an f -algebra.

Proposition 1.5. [2] For an l-algebra X, the following statements are equivalent:

(i) X is a d-algebra;
(ii) c|a| = |ca| and |a|c = |ac| for all a ∈ X and c ∈ X+;

(iii) for all a, b ∈ X and c ∈ X+, c(a ∨ b) = ca ∨ cb and (a ∧ b)c = ac ∧ bc.

Definition 1.6. [21] Any lattice ordered algebra X that is meantime a Banach lattice is named a Banach
lattice algebra when ‖ab‖ ≤ ‖a‖‖b‖ keeps for all a, b ∈ X+. Moreover, if X is an f -algebra next it is
named a Banach lattice f -algebra, explicitly, X is next a (real) Banach algebra.

It is explicit that every f -algebra is an almost f -algebra and a d-algebra. Every Archimedean
f -algebra is commutative and associative. It turns out that every Archimedean almost f -algebra is
commutative but not necessarily associative [2].

Theorem 1.7. For an l-algebra A with unit element e > 0, the following are equivalent:

(i) A is an f -algebra.
(ii) A is a d-algebra.

(iii) A is an almost f -algebra.
(iv) e is a weak order unit (i.e., a ⊥ e implies a = 0).
(v) For all a ∈ A, aa+ ≥ 0.

(vi) For all a ∈ A, a2 ≥ 0.

We gather several simple f -algebra properties. Let A be an f -algebra. In this case, for every
a, b ∈ A, we have the following:

(1) |ab| = |a||b|.
(2) a ⊥ b implies that ab = 0.
(3) a2 = (a+)2 + (a−)2 ≥ 0.
(4) 0 ≤ (a+)2 = aa+.
(5) (a ∨ b)(a ∧ b) = ab.
(6) If a2 = 0, then ab = 0.
(7) If A is semiprime (i.e., the only nilpotent element in A is 0 or, equivalently, a2 = 0 in A implies

a = 0), then a2 ≤ b2 if and only if |a| ≤ |b|.
(8) If A is semiprime, then a ⊥ b if and only if ab = 0.
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(9) Every unital f -algebra is semiprime.

See [3, 22, 23] for consider more properties of f -algebras.

Definition 1.8. Let X and Y be Banach f -algebras and F : X → Y be a cone-related function. We
describe the following:

(P1) Supremum preserving functional equation:

F(|x|) ∨ F(|y|) = F (|x| ∨ |y|) , for all x, y ∈ X.

(P2) Multiplication preserving functional equation:

F(|x|)F(|y|) = F (|x||y|) , for all x, y ∈ X.

(P3) Semi-homogeneity:

F (τ|x|) = τF(|x|), for all x ∈ Xand τ ∈ [0,∞).

(P4) Positive Cauchy additive functional equation:

F(|x|) + F(|y|) = F (|x| + |y|) , for all x, y ∈ X.

Definition 1.9. [16] A function d : X×X → [0,∞] is named a generalized metric on set X if d satisfies
the following conditions:

(a) for each x, y ∈ X, d(x, y) = 0 iff x = y;
(b) for all x, y ∈ X, d(x, y) = d(y, x);
(c) for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Notice that the just generalized metric significant difference from the metric is that the generalized
metric range contains the infinite.

Theorem 1.10. [16] Let (X, d) be a complete generalized metric space and J : X → X be a contractive
mapping with Lipschitz constant L < 1. Then for every x ∈ X, either

d(Jn+1x, Jnx) = ∞

for all nonnegative integers n or there exists an integer n0 > 0 such that
(a) For all n ≥ n0, d(Jnx, Jn+1x) < ∞;
(b) Jn(x)→ y∗, where y∗ is a fixed point of J;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0(x), y) < ∞};
(d) For each y ∈ Y, d(y∗, y) ≤ 1

1−Ld(Jy, y).

2. Main results

In this part, we will investigate the stability of lattice multiplication functional equation in Banach
f -algebra by using the fixed point method.
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Lemma 2.1. Let X and Y be Riesz spaces and F : X → Y be a cone-related mapping such that

F
(
|x| + |z|

2
∨ |y|

)
∨ 2F (|z| − |x| ∧ |y|) = F (|z|) ∨ F (|y|) (2.1)

or

F
(
|x| + |z|

2
∨ |y|

)
∨ 2F (|z| − |x| ∧ |y|) = F(|y| + |z| ∨ |x|) ∨ F(|z| + |y| ∧ |x|) (2.2)

for all x, y, z ∈ X. Then F satisfies (P1).

Proof. It is easy to indicate that F(0) = 0. Replacing z by x in (2.1), we get

F(|x| ∨ |y|) ∨ 2F(0 ∧ |y|) = F(|x|) ∨ F(|y|),

which means that F satisfies (P1). By the same reasoning, we can show that if (2.2) holds, then F
satisfies (P1). �

Lemma 2.2. Let X and Y be Riesz spaces. If F : X → Y is a cone-related mapping, which satisfies

F
(
|x| − |y| ∨ |x| + |z|

)
+ F

(
|y| − |z| ∨ |x|

)
= 2F

(
|y|

)
+ F

(
|z|

)
(2.3)

or
F
(
|x| + |y| ∨ |z|

)
+ 2F

(
|x| ∧ |y| − |z|

)
= F

(
|x|

)
+ F

(
|z|

)
(2.4)

or
F
(
|x| ∨ |y| + |z|

)
+ F

(
|x| − |y| ∨ |z|

)
= F

(
|x|

)
+ 2F

(
|z|

)
(2.5)

for all x, y, z ∈ X, then F : X → Y satisfies (P4).

Proof. Letting y = x in (2.3), we have

F
(
|x| + |z|

)
+ F

(
|x|

)
= 2F

(
|x|

)
+ F

(
|z|

)
,

for all x, y, z ∈ X and so F is a positive Cauchy additive mapping. Letting x = y = z = 0 in (2.4), we
get F(0) = 0. Now putting z = y in (2.4), we show that F satisfies (P2). Finally, letting y = x in (2.5),
we obtain that F is a positive Cauchy additive mapping. �

Theorem 2.3. Let X and Y be two Banach lattices. Consider a cone-related function F : X → Y with
F(0) = 0, that is,∥∥∥∥∥F

(
τ|x| + ν|z|

2
∨ η|y|

)
∨ 2F

(
ν|z| − τ|x| ∧ η|y|

)
− νF

(
|z|

)
∨ ηF

(
|y|

)∥∥∥∥∥ ≤ ϕ(τ|x|, η|y|, ν|z|) (2.6)

for all x, y, z ∈ X and τ, η, ν ∈ [1,∞). Suppose that a function ϕ : X3 → [0,∞) satisfies

ϕ(|x|, |y|, |z|) ≤ (την)
α
3 ϕ

(
|x|
τ
,
|y|
η
,
|z|
ν

)
(2.7)

for all x, y, z ∈ X, τ, η, ν ∈ [1,∞) and there is a number α ∈ [0, 1
3 ). Then there is an individual

cone-related mapping T : X → Y which satisfies the properties (P1), (P3) and

‖T (|x|) − F(|x|)‖ ≤
τα

τ − τα
ϕ(|x|, |x|, |x|) (2.8)

for all x ∈ X and τ ∈ [1,∞).
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Proof. Letting x = y = z and τ = η = ν in (2.6), we get

‖F(τ|x|) − τF(|x|)‖ ≤ ϕ(τ|x|, τ|x|, τ|x|).

By (2.7), we have
‖F(τ|x|) − τF(|x|)‖ ≤ ταϕ(|x|, |x|, |x|).

Dividing by τ in the above inequality, we get∥∥∥∥∥1
τ

F(τ|x|) − F(|x|)
∥∥∥∥∥ ≤ τα−1ϕ(|x|, |x|, |x|)

for all x ∈ X, τ ≥ 1 and α ∈ [0, 1
3 ).

Consider the set
∆ := {G | G : X → Y,G(0) = 0}

and the generalized metric on ∆ defined by

d(G,H) = inf{c ∈ R+ : ‖G(|x|) − H(|x|)‖ ≤ cϕ(|x|, |x|, |x|) for all x ∈ X},

where, as common, inf ∅ = ∞. It is easy to demonstrate that (∆, d) is a complete generalized metric
space (see [6, Theorem 3.1]).

Now, we define the operator J : ∆→ ∆ by

JG(|x|) =
1
τ

G(τ|x|) for all x ∈ X.

Given G,H ∈ ∆, let c ∈ [0,∞) be a desired constant with d(G,H) ≤ c, that means

‖G(|x|) − H(|x|)‖ ≤ cϕ(|x|, |x|, |x|).

Then we have

‖JG(|x|) − JH(|x|)‖ =
1
τ
‖G(τ|x|) − H(τ|x|)‖

≤
1
τ

cϕ(τ|x|, τ|x|, τ|x|)

= τα−1cϕ(|x|, |x|, |x|).

By Theorem 1.10, there is a mapping T : X → Y such that the following hold.

(1) T is a fixed point of J, that means
T (τ|x|) = τT (|x|) (2.9)

for all x ∈ X. Also the mapping T is an individual fixed point of J in the set

Z = {G ∈ ∆; d(G,T ) < ∞},

this implies that T is an individual mapping satisfying (2.9) such that there exists c ∈ (0,∞)
satisfying

‖T (|x|) − F(|x|)‖ ≤ cϕ(|x|, |x|, |x|)

for all x ∈ X.
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(2) d (JnF,T )→ 0, as n→ ∞. This implies the equality

lim
n→∞

F(τn|x|)
τn = T (|x|)

for all x ∈ X.
(3) d(F,T ) ≤ 1

1−Ld(JF, F), which implies the inequality

d(F,T ) ≤
τα−1

1 − τα−1 =
τα

τ − τα
.

So we obtain
‖F(|x|) − T (|x|)‖ ≤

τα

τ − τα
ϕ(|x|, |x|, |x|)

for all x ∈ X, τ ≥ 1 and α ∈ [0, 1
3 ). Accordingly the inequality (2.8) holds.

Next, we show that (P1) is satisfied. Putting τ = η = ν := τn in (2.6), we get∥∥∥∥∥F
(
τn|x| + τn|z|

2
∨ τn|y|

)
∨ 2F

(
τn|z| − τn|x| ∧ τn|y|

)
− τnF

(
|z|

)
∨ τnF

(
|y|

)∥∥∥∥∥ ≤ ϕ(τn|x|, τn|y|, τn|z|
)

and so∥∥∥∥∥F
(
τn

(
|x| + |z|

2
∨ |y|

))
∨ 2F

(
τn(|z| − |x| ∧ |y|)

)
− τnF

(
|z|

)
∨ τnF

(
|y|

)∥∥∥∥∥ ≤ τ3nαϕ
(
|x|, |y|, |z|

)
.

Substituting x, y, z by τny, τny, τnz, respectively, in the above inequality, we get∥∥∥∥∥F
(
τn

(
τn|x| + τn|z|

2
∨ τn|y|

))
∨ 2F

(
τn(τn|z| − τn|x| ∧ τn|y|)

)
− τnF

(
τn|z|

)
∨ τnF

(
τn|y|

)∥∥∥∥∥
≤ τ3nαϕ

(
τn|x|, τn|y|, τn|z|

)
and thus ∥∥∥∥∥F

(
τ2n

(
|x| + |z|

2
∨ |y|

))
∨ 2F

(
τ2n(|z| − |x| ∧ |y|)

)
− τnF

(
τn|z|

)
∨ τnF

(
τn|y|

)∥∥∥∥∥
≤ τ6nαϕ

(
|x|, |y|, |z|

)
(2.10)

for all x, y, z ∈ X, τ ≥ 1 and α ∈ [0, 1
3 ). Dividing both sides of (2.10) by τ2n, we obtain∥∥∥∥∥ 1

τ2n F
(
τ2n

(
|x| + |z|

2
∨ |y|

))
∨

2
τ2n F

(
τ2n(|z| − |x| ∧ |y|)

)
−

1
τn F

(
τn|z|

)
∨

1
τn F

(
τn|y|

)∥∥∥∥∥
≤ τ6nα−2nϕ

(
|x|, |y|, |z|

)
.

Since lattice operations are continuous, by (2), as n→ ∞, we get∥∥∥∥∥T
(
|x| + |z|

2
∨ |y|

)
∨ 2T (|z| − |x| ∧ |y|) − T (|z|) ∨ T (|y|)

∥∥∥∥∥ ≤ 0.

Therefore,

T
(
|x| + |z|

2
∨ |y|

)
∨ 2T (|z| − |x| ∧ |y|) = T (|z|) ∨ T (|y|)

for all x, y, z ∈ X. Accordingly, by Lemma 2.1, T satisfies (P1). �
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Theorem 2.4. Let F : X → Y be a cone-related mapping with F(0) = 0 in two uniformly complete
Banach f -algebras X and Y. Assume that∥∥∥∥∥F

(
τ|x| + ν|z|

2
∨ η|y|

)
∨ 2F

(
ν|z| − τ|x| ∧ η|y|

)
− νF

(
|z|

)
∨ ηF

(
|y|

)∥∥∥∥∥ ≤ ϕ(τ|x|, η|y|, ν|z|)
and

‖F(|x||y|) − F(|x|)F(|y|)‖ ≤ ψ(|x|, |y|),

where ϕ : X3 → [0,∞) and ψ : X2 → [0,∞) satisfy

ϕ(τ|x|, η|y|, ν|z|) ≤ (την)
α
3 ϕ(|x|, |y|, |z|)

and
ψ(τn|x|, τn|y|) = O(τ2n) (2.11)

for all x, y, z ∈ X, τ, η, ν ∈ [1,∞), α ∈ [0, 1
3 ). Then there exists an individual cone-related mapping

T : X → Y satisfying (P1), (P2), (P3) and

‖F(|x|) − T (|x|)‖ ≤
τα

τ − τα
ϕ(|x|, |x|, |x|). (2.12)

Proof. In the previous theorem, we proved that there exists an individual cone-related mapping T :
X → Y such that

T (|x|) = lim
n→∞

F(τn|x|)
τn , ‖F(|x|) − T (|x|)‖ ≤

τα

τ − τα
ϕ(|x|, |x|, |x|) (2.13)

for all x ∈ X and τ ∈ [1,∞). Moreover, we showed that T satisfies (P1) and (P3). It follows from
(2.11),(2.12) and (2.13) that

‖T (|x||y|) − T (|x|)T (|y|)‖ = lim
n→∞

∥∥∥∥∥F(τ2n|x||y|)
τ2n −

F(τn|x|)
τn

F(τn|y|)
τn

∥∥∥∥∥
= lim

n→∞

1
τ2n ‖F(τ2n|x||y|) − F(τn|x|)F(τn|y|)‖

≤ lim
n→∞

1
τ2nψ(τn|x|, τn|y|) = 0.

Thus T satisfies (P2). �

Corollary 2.5. Suppose that τ > 1, α < 1
3 and θ < 1 are nonnegative real numbers. Let X and Y be

two uniformly complete Banach f -algebras and F : X → Y be a cone-related mapping with F(0) = 0.
If F satisfies∥∥∥∥∥F

(
τ|x| + ν|z|

2
∨ η|y|

)
∨ 2F

(
ν|z| − τ|x| ∧ η|y|

)
− νF

(
|z|

)
∨ ηF

(
|y|

)∥∥∥∥∥ ≤ θ (‖x‖α + ‖y‖α + ‖z‖α)

and
‖F(|x||y|) − F(|x|)F(|y|)‖ ≤ θ (‖x‖α + ‖y‖α)

for all x, y, z ∈ X and τ, η, ν ∈ [0,∞), then there exists an individual cone-related mapping T : X → Y
satisfying (P1), (P2), (P3) and

‖T (|x|) − F(|x|)‖ ≤
2θτα

τ − τα
‖x‖

for all x ∈ X.
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Proof. Letting
ϕ(x, y, z) = θ (‖x‖α + ‖y‖α) , ψ(x, y) = θ (‖x‖α + ‖y‖α)

in the above theorem, we get the desired result. �

Theorem 2.6. Suppose that r, θ, τ, η and ν are nonnegative real numbers with θ > 0, r ∈ [0, 1
3 ) and

τ, η, ν ∈ [1,∞). If X is a Banach lattice and Y is Banach f -algebra and F : X → Y is a mapping such
that ∥∥∥∥∥F

(
τ|x| − η|y| ∨ τ|x| + ν|z|

)
+ F

(
η|y| − ν|z| ∨ τ|x|

)
− 2ηF

(
|y|

)
− νF

(
|z|

)∥∥∥∥∥ ≤ θ‖τx‖r‖ηy‖r‖νz‖r (2.14)

for all x, y, z ∈ X, then there exists an individual mapping T : X → Y such that the next properties
hold:

(1) For all x ∈ X,

‖F(|x|) − T (|x|)‖ ≤
τ3rθ

τ3 − τr+2 ‖x‖
r.

(2) T : X → Y satisfies (P4).

Proof. By induction on n, we can easily show that the following inequality holds.∥∥∥∥∥ 1
τn F(τn|x|) − F(|x|)

∥∥∥∥∥ ≤ τ2θ

n∑
i=3

τi(r−1)‖x‖r. (2.15)

Moreover, for all x ∈ X, we have∥∥∥∥∥ 1
τn F(τn|x|) −

1
τm F(τm|x|)

∥∥∥∥∥ = τ−m
∥∥∥∥∥ 1
τn−m F(τn−mF(τm|x|)) − F(τm|x|)

∥∥∥∥∥
≤ θτ2−m

n−m∑
i=3

τi(r−1)‖τmx‖r

= θτ2
n∑

i=m+3

τi(r−1)‖x‖r

for all m, n ∈ N with n ≥ m and all x ∈ X. As m→ ∞, the right side term in the above inequality tends

to 0 and so the sequence
{

1
τn F(τn|x|)

}
is a Cauchy sequence. Hence it converges since Y is complete.

Therefore we can define an operator T : X → Y by

T (|x|) := lim
n→∞

1
τn F(τn|x|) (2.16)

for all x ∈ X. Then we obtain

‖T (|x|) − F(|x|)‖ ≤
τ3rθ

τ3 − τr+2 ‖x‖
r

by (2.15).
Next, we show that (2) is satisfied. Putting τ = ν = η = τn in (2.14), we have∥∥∥∥∥F

(
τn(|x| − |y| ∨ |x| + |z|)

)
+ F

(
τn(|y| − |z| ∨ |x|)

)
− 2τnF

(
|y|

)
− τnF

(
|z|

)∥∥∥∥∥ ≤ θτ3nr‖x‖r‖y‖r‖z‖r.
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Replacing x by τnx, y by τny and z by τnz in the above inequality, we obtain∥∥∥∥∥F
(
τ2n(|x| − |y| ∨ |x| + |z|)

)
+ F

(
τ2n(|y| − |z| ∨ |x|)

)
− 2τnF

(
τn|y|

)
− τnF

(
τn|z|

)∥∥∥∥∥ ≤ θτ6nr‖x‖r‖y‖r‖z‖r.

Dividing the last inequality by τ2n, we have∥∥∥∥∥ 1
τ2n F

(
τ2n(|x| − |y| ∨ |x| + |z|)

)
+

1
τ2n F

(
τ2n(|y| − |z| ∨ |x|)

)
− 2

1
τn F

(
τn|y|

)
−

1
τn F

(
τn|z|

)∥∥∥∥∥
≤ θτ2n(3r−1)‖x‖r‖y‖r‖z‖r.

Since lattice operations are continuous, as n→ ∞ we obtain

T
(
|x| − |y| ∨ |x| + |z|

)
+ T

(
|y| − |z| ∨ |x|

)
= 2T

(
|y|

)
− T

(
|z|

)
by (2.16). Therefore, by Lemma 2.2, T is a positive Cauchy additive mapping. �

Corollary 2.7. Suppose that r < 1
3 and θ are nonnegative real numbers and that X,Y are Banach

f -algebras. If F : X → Y is a cone related mapping satisfying (2.14) such that

‖F(|x||y|) − F(|x|)F(|y|)‖ ≤ θ‖x‖r‖y‖r (2.17)

for all x, y ∈ X, then there is an individual cone-related mapping T : X → Y such that satisfies (P2)
and (P4).

Proof. In the above proof, we demonstrate that T : X → Y exists and satisfies (P4). It follows from
(2.16) and (2.17) that∥∥∥∥∥T (|x||y|) − T (|x|)T (|y|)

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥F(τ2n|x||y|)
τ2n −

F(τn|x|)
τn .

F(τn|y|)
τn

∥∥∥∥∥
= lim

n→∞

1
τ2n

∥∥∥F(τ2n|x||y|) − F(τn|x|)F(τn|y|)
∥∥∥

≤ lim
n→∞

θτ2n(r−1)‖x‖r‖y‖r

= 0.

Thus T (|x||y|) = T (|x|)T (|y|) and so T satisfies (P2). �

3. Conclusion

In this paper, we have proved the Hyers-Ulam stability of supremum, infimum and multiplication
preserving functional equations in Banach f -algebras.
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