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1. Introduction

Offset curve is defined as locus of the points which are at a constant distant along the normal from
the main curve. Offset curves play an important role in computer aided design and manufacturing
(CAD/CAM). For example, offset curves are important in numerically controlled machining, where
they describe for example the shape of the cut made by a round cutting piece of a two-axis machine.
The shape of the cut is offset from the trajectory of the cutter by a constant distance in the direction
normal to the cutter trajectory at every point [22, 15, 2].

Except in the case of a line or circle, the offset curves have a complicated mathematical
structure [17]. In general, even if the main curve is rational, its offsets may not be rational [4]. For
example, the offsets curves of a parabola are rational curves, but the offset curves of an ellipse or of a
hyperbola are not rational [24]. On the other hand, the curves for which there exists constants A
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and B, such that
Aκ + Bτ = 1 (1.1)

are also known as Bertrand curves. Here κ is the curvature and τ is the torsion of the curve. And it is
well known that a curve α admits an offset curve α∗ which has the same principal normal as the curve
α if and only if α is a Bertrand curve in Euclidean 3-space [23].

In the literature, it is possible to reach many studies dealing with the characterizations of Bertrand
curves in different kind of spaces. In some cases, it was also necessary to provide a new definition.
In [1], a new type of Bertrand curve in four dimensional Minkowski space E4

1 (Minkowski space-time)
is introduced for a null curve with nonzero third curvature function, which is called (1, 3) Bertrand
curve. And differential geometric properties of these newly defined Bertrand curves are investigated.
In study [9] , the position vector of a null Cartan curve is stated by a linear combination of its pseudo
orthogonal frame with differentiable functions and Bertrand curve mate (timelike, spacelike or null)
of null Cartan curves are also examined. All kind of Bertrand mate of a given null cartan curve with
constant curvature function have also constant curvature functions. In some studies, Bertrand curves
in two different spaces are examined together. For example, the characterizations of Bertrand mate
(conjugate or couple) of the curve α : I → M3

q(c) ⊂ R4
v are deeply discussed where q = 0 or q = 1

(Riemann or Lorentzian, respectively) in [14]. Here M3
q(c) denotes the three dimensional space form of

the index q with nonzero constant curvature c. The classical results on Bertrand curves in Minkowski
3-space are stated in [20]. It is useful to express a few of these results.

• A spatial curve is a Bertrand curve in Minkowski 3-space E3
1 if and only if its curvature and

torsion satisfy aκ + bτ = 1 for some constants a and b.
• Let (γ, γ̃) be a Bertrand mate in Minkowski 3-space E3

1. Then τ(s)̃τ(s) is a constant.

Besides this, the relations between Frenet apparatus of γ and γ̃ are given by depending on these
constants a and b in [20]. Moreover, a representation formula of a Bertrand curve is obtained by using
the curves in pseudo hyperbolic space H2 in [20].

If the curvature and torsion functions of the curve α : I → R3 are different from zero, the curve α is
called a twisted curve. If the curvature and torsion functions of the curve α : I → R3 are constant, then
α is called W curve. The examples of W curves are circles, hyperbolas as planar W curves and helices
as non-planar W curves. Some of the studies have examined curves in Euclidean space while others
have examined curves in Minkowski space [16, 7, 25]. İlarslan and Arslan in their study, they stated
that the Bertrand curve mate can be spacelike, timelike or null curve [11]. Erdoğdu and Yavuz studied
the characterization of the position vector of the curve with constant curvatures in the Minkowski space
under different conditions and obtained differentiable functions in [8, 27].

Curvature functions of a curve include the answer to many questions about the character of the
curve [6]. Therefore, the cases where the curvature functions are constant have always been one of
the points of interest when studying the character of the curve. For this reason, studies examining the
character of curves with constant curvature are very common in the literature [21, 10, 3].

In [10], it is seen that whatever the values of curvature and torsion, it is possible to express the
characterization of W curve in one way in Euclidean 3-space. But uniquely characterization of the W
is not possible in Minkowski space. The relationship between curvature and torsion of the curve itself
also affects characterization of the curve. Because the solution of the system of differential equation
changes depending on the value τ2 − κ2 or τ2 + κ2. The sign of the value τ2 − κ2 or τ2 + κ2 actually
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corresponds to whether the ratio τ2/κ2 is greater than, equal to, or equal to 1 or -1, respectively [8,
27]. That is, the characterization of the nonlightlike W curve and its Bertrand mate also depend on the
constant value of the ratio τ/κ. For this reason, we chose to consider system of differential equations for
position vector as a different perspective to examine differential geometric properties of non-lightlike
Bertrand W curves in our study.

The aim of this study is to obtain the characterization of the position vectors of non-lightlike
Bertrand W curve mate in Minkowski space due to differentiable functions. In accordance with this
scope, the position vector of a non-lightlike Bertrand W curve is stated by a linear combination of its
Frenet frame with differentiable functions. There exist also different cases for the curve depending on
the value of curvature and torsion. The relationships between Frenet apparatus of these curves are
presented separately for each case. Finally, the timelike and spacelike Bertrand W curve mate
visualized of given curves as examples, separately.

2. Preliminaries

2.1. Basic of non-lightlike curves in Minkowski space

In this section, we will give the necessary informations to understand the main subject of the study.
Furthermore, the characterization of a non-lightlike curve α : I → E3

1 given by arc length parameter
is given in terms of its curvature and torsion functions. At the same time the characterizations of the
position vector of twisted spacelike curve with timelike normal vector and the spacelike normal is
obtained with the differentiable functions. Similarly, characterizations of the position vector of twisted
timelike curve is given with the differentiable functions in the propositions.

The Minkowski 3-space is a Cartesian 3-space R3 equipped with Lorentzian inner product

〈u, v〉 = −u1v1 + u2v2 + u3v3 (2.1)

where u = (u1, u2, u3), v = (v1, v2, v3) ∈ E3
1.Lorentzian inner product characterizes the elements u =

(u1, u2, u3) of E3
1 as follows:

if 〈u, u〉 > 0 or u = 0 then u is called spacelike,
if 〈u, u〉 < 0 then u is called timelike,
if 〈u, u〉 = 0 and u , 0 then u is called lightlike or null.

The norm of u = (u1, u2, u3) ∈ E3
1 is

‖u‖ =
√
|〈u, u〉|. (2.2)

Lorentzian vector product of u = (u1, u2, u3) and v = (v1, v2, v3) ∈ E3
1 is defined by

u × v =

∣∣∣∣∣∣∣∣∣
−e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣ . (2.3)

For details, see [12, 18, 19, 26].
A curve α in E3

1 is called timelike, spacelike or null if and only if tangent vector field T of α is
timelike, spacelike or null, respectively. Let α(s) be a unit speed curve in E3

1, i,e., 〈α′, α′〉 = ε1 = ±1.
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The constant ε1 is called the causal character of α. A unit speed curve is also called an arclength
parametrized curve. A unit speed curve α is said to be a Frenet curve if ‖α′′‖ , 0. Every Frenet curve
admits a Frenet frame field {T,N, B} which is an orthonormal field along α satisfying the Frenet-Serret
equation:

d
ds


T
N
B

 =


0 ε2κ 0
−ε1κ 0 −ε3τ

0 ε2τ 0




T
N
B

 . (2.4)

The functions κ ≥ 0 and τ are called the curvature and torsion, respectively. The vector fields
T = α′, N and B are called, tangent, normal and binormal vector fields, respectively. The constants
ε2 = 〈N,N〉 and ε3 = 〈B,B〉 are called the second causal character and third causal character of α,
respectively. Note that ε3 = −ε1ε2, see [13, 5].

2.2. Position vector of non-ligtlike W curves

In this subsection, the position vectors of a non-lightlike W curves are expressed by a linear
combination of their Serret Frenet Frame with differentiable functions. Since non-lightlike W curves
have different kinds of frames, then we investigate the curves with respect to the Lorentzian causal
characters of the frame in following propositions.

Proposition ([27]) Let α : I ⊂ R → E3
1 be a twisted spacelike W curve with spacelike normal

vector, then the position vector α(s) can be written as linear combinations of their Serret-Frenet vectors
as follows

α(s) = p0(s)T (s) + p1(s)N(s) + p2(s)B(s) (2.5)

with the following differentiable functions depending on values of curvature and torsion.
a) For τ2 − κ2 = f 2 > 0, we obtain

p0(s) = −τc0 + c2κ sinh( f s) + c1κ sinh( f s) +
τ2

f 2 s, (2.6)

p1(s) = −c1 f sinh( f s) + c2 f cosh( f s) +
κ

f 2 , (2.7)

p2(s) = κc0 + c1τ cosh( f s) − c2τ sinh( f s) −
κτ

f 2 s. (2.8)

b) Differentiable functions are given for τ2 − κ2 = −g2 < 0

p0(s) = −c0τ − c1κ cos (gs) + c2κ sin (gs) −
τ2

g2 s, (2.9)

p1(s) = c1g sin (gs) + c2g cos (gs) −
κ

g2 , (2.10)

p2(s) = c0κ + c1τ cos (gs) − c2τ sin (gs) +
κτ

g2 s. (2.11)

c) For τ2 − κ2 = 0, the differentiable functions are examined in two separated cases κ = τ and κ = −τ.

i) For κ = τ, the differentiable functions are obtained as follows
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p0(s) = −c0

(
κ2

2
s2 − 1

)
+ c1κs − c2

κ2

2
s2 −

κ2

6
s3 + s, (2.12)

p1(s) = −c0κs + c1 − c2κs −
κ

2
s2, (2.13)

p2(s) =
1
2

c0κ
2s2 − c1κs + c2(

κ2

2
s2 + 1) +

κ2

6
s3, (2.14)

ii) For κ = −τ, the differentiable functions are given by

p0(s) = −c0(
κ2

2
s2 − 1) + c1κs + c2

κ2

2
s2 −

κ2

6
s3 + s, (2.15)

p1(s) = −c0κs + c1 + c2κs −
κ

2
s2, (2.16)

p2(s) = −c0
κ2

2
s2 + c1κs + c2(

1
2

s2κ2 + 1) −
κ2

6
s3, (2.17)

where ci are arbitrary constants for 0 ≤ i ≤ 2.
Proposition ([27]) Let α : I ⊂ R→ E3

1 be a twisted spacelike W curve with timelike normal vector,
then the position vector α(s) is obtained with the following differentiable functions:

q0(s) = −c0τ + c1κ cosh (ts) + c2κ sinh (ts) +
τ2

t2 s, (2.18)

q1(s) = −c1t sinh (ts) − c2t cosh (ts) +
κ

t2 , (2.19)

q2(s) = κc0 + c1τ cosh (ts) + c2τ sinh (ts) −
κτ

t2 s, (2.20)

where τ2 + κ2 = t2 > 0 and ci are arbitrary constants for 0 ≤ i ≤ 2.
Proposition ([8]) Let α : I → E3

1 be a timelike twisted W curve given by arc length parameter as

α(s) = r0(s)T (s) + r1(s)N(s) + r2(s)B(s) (2.21)

where r0(s), r1(s), r2(s) differentiable functions depending on values of curvature and torsion
as following.
a) If κ2 − τ2 = b2 > 0, then the position vector α(s) is stated with the following differentiable functions

r0 (s) = c0τ + c1κ cosh(bs) + c2κ sinh(bs) −
τ2

b2 s (2.22)

r1 (s) = −c2b cosh(bs) − c1b sinh(bs) +
κ

b2 , (2.23)

r2 (s) = c0κ + c1τ cosh(bs) + c2τ sinh(bs) −
κτ

b2 s, (2.24)

where ci are arbitrary constants for 0 ≤ i ≤ 2.
b) If κ2 − τ2 = −a2 < 0, then the differentiable functions of α(s) are obtained
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r0 (s) = c0τ + κc1 cos(as) + κc2 sin(as) −
τ2

a2 s, (2.25)

r1 (s) = c1a sin(as) − c2a cos(as) +
κ

a2 , (2.26)

r2 (s) = c0κ + c1τ cos(as) + c2τ sin(as) −
κτ

a2 s. (2.27)

c) For τ2 − κ2 = 0, differentiable functions are obtained in two following separated cases κ = τ and
κ = −τ.

i) If τ = κ then the position vector α(s) is stated with the following differentiable functions

r0 (s) = c0

(
κ2

2
s2 + 1

)
− c1sκ − c2

κ2

2
s2 + s +

κ2

6
s3, (2.28)

r1 (s) = −c0κs + c1 + c2κs −
κ

2
s2, (2.29)

r2 (s) = c0
κ2

2
s2 − c1κs − c2

(
κ2

2
s2 − 1

)
+
κ2

6
s3. (2.30)

ii) If τ = −κ then differentiable functions are given by

r0 (s) = c0

(
κ2

2
s2 + 1

)
− c1κs + c2

κ2

2
s2 + s +

κ2

6
s3 (2.31)

r1 (s) = −c0κs + c1 − c2κs −
κ

2
s2, (2.32)

r2 (s) = −c0
κ2

2
s2 + c1κs − c2

(
κ2

2
s2 − 1

)
−
κ2

6
s3. (2.33)

where ci are arbitrary constants for 0 ≤ i ≤ 2.

3. Relations between Frenet apparatus of Bertrand W curve mate

In this section, Frenet Frame and curvature torsion of Bertrand W curve mate are obtained in two
separated subsections which are formed by causal character of Bertrand W curve couple. In the first
subsection, Bertrand W curve mate for spacelike curves with spacelike normal and timelike normal
vector are investigated. In second subsection, Bertrand W curve mate for timelike curves are examined
in terms of its curvature and torsion functions.

3.1. Relations between Frenet apparatus of spacelike Bertrand W curve mate

Let α (s) be a spacelike curve with spacelike normal vector. Then T (s) is a spacelike unit tangent
vector, N(s) is a spacelike unit normal vector and B(s) is a timelike unit binormal vector of α. In this
situation, the following three possibilities arise for the Frenet vectors T̃ (s), Ñ (s), B̃ (s) of the curve
α̃ (s).
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i) T̃ spacelike, Ñ spacelike, B̃ timelike,
ii) T̃ timelike, Ñ spacelike, B̃ spacelike,
iii) T̃ null, Ñ spacelike, B̃ null.
Theorem Let α : I → E3

1 be a unit speed spacelike W curve with spacelike principal normal, then
Frenet frame, curvature and torsion of α̃ : I → E3

1 be a Bertrand W curve of α as follows:

T̃ (s) =
(1 − λκ)√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣T (s) +
λτ√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣B (s) , (3.1)

Ñ (s) = N(s), (3.2)

B̃ (s) =
λτ√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣T (s) +
(1 − λκ)√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣B (s) (3.3)

and

κ̃ =

∣∣∣∣∣∣ κ − λ(κ2 − τ2)
(1 − λκ)2

− λ2τ2

∣∣∣∣∣∣ , τ̃ =
τ

λ2τ2 − (1 − λκ)2 . (3.4)

Proof. Assume that α̃ : I → E3
1 is a Bertrand W curve of α, so we can define α̃ as

α̃ (s) = α (s) + λ (s) N (s) . (3.5)

Taking derivative of the above equation according to parameter s, we find

α̃′ (s) = T (s) (1 − λ (s) κ) + λ (s) τB (s) (3.6)

and the norm of the Eq 3.6 is given below

‖α̃′ (s̃)‖ =

√∣∣∣λ2τ2 − (1 − λκ)2
∣∣∣. (3.7)

Thus, we obtain

T̃ (s) =
(1 − λκ)√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣T (s) +
λτ√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣B (s) . (3.8)

We know that
Ñ (s) = N(s). (3.9)

Lastly, we can obtain B̃ (s) as follows:

B̃ (s) =
α̃′ (s̃) × α̃′′ (s̃)
‖α̃′ (s̃) × α̃′′ (s̃)‖

. (3.10)

Since we have

α̃′ (s̃) × α̃′′ (s̃) =
(
λτ

(
−κ + λ(κ2 − τ2

))
T (s) + (1 − λκ)

(
−κ + λ(κ2 − τ2

)
)B (s) (3.11)

and
‖α̃′ (s̃) × α̃′′ (s̃)‖ =

(
−κ + λ(κ2 − τ2

)
)
√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣ , (3.12)
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then we obtain
B̃ (s) =

λτ√∣∣∣λ2τ2 − (1 − λκ)2
∣∣∣T (s) +

(1 − λκ)√∣∣∣λ2τ2 − (1 − λκ)2
∣∣∣B (s) . (3.13)

By making some calculations, the curvature of the curve is obtained as follows

κ̃ =

(
κ − λ(κ2 − τ2

)
)
√∣∣∣λ2τ2 − (1 − λκ)2

∣∣∣( √
(1 − λκ)2

− λ2τ2
)3

=

∣∣∣∣∣∣ κ − λ(κ2 − τ2)
(1 − λκ)2

− λ2τ2

∣∣∣∣∣∣ (3.14)

and torsion of the curve is given by
τ̃ =

τ

λ2τ2 − (1 − λκ)2 . (3.15)

�

Theorem Let α : I → E3
1 be a unit speed W spacelike curve with timelike principal normal, then

the Frenet apparatus of Bertrand W curve mate α̃ : I → E3
1 are given by

T̃ (s) =
(1 + λκ)√

(1 + λκ)2 + λ2τ2
T (s) +

λτ√
(1 + λκ)2 + λ2τ2

B (s) , (3.16)

Ñ (s) = N(s), (3.17)

B̃ (s) =
−λτ√

λ2τ2 + (1 + λκ)2
T (s) +

− (1 + λκ)√
λ2τ2 + (1 + λκ)2

B (s) (3.18)

and

κ̃ =
κ + λ(κ2 + τ2)

(1 + λκ)2 + λ2τ2
, τ̃ =

τ

λ2τ2 + (1 + λκ)2 . (3.19)

Proof. Let α̃ (s) be a Bertrand W curve mate of α(s) which is a unit speed spacelike curve with timelike
principal normal. Thus following equality is satisfied

α̃ (s) = α (s) + λ (s) N (s) . (3.20)

Taking derivative of the Eq 3.20 according to parameter s, we have

α̃′ (s) = T (s) (1 + λ (s) κ) + λ (s) τB (s) . (3.21)

Therefore, we calculated

‖α̃′ (s̃)‖ =

√
(1 + λκ)2 + λ2τ2. (3.22)

As a result of some calculations, the tangent vector of the curve of the Bertrand W curve couple is
obtained as follows

T̃ (s) =
(1 + λκ)√

(1 + λκ)2 + λ2τ2
T (s) +

λτ√
(1 + λκ)2 + λ2τ2

B (s) . (3.23)
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We know by definition of Bertrand W curve mate that principal normal is the principal normal of
another curve, so we obtained

Ñ (s) = N(s). (3.24)

In order to obtain the binormal vector of Bertrand W curve couple, the vector product of the first
and second derivative of the curve with respect to s is given as follows

α̃′ (s̃) × α̃′′ (s̃) =
(
−λτ

(
κ + λ(κ2 + τ2

))
T (s) − (1 + λκ)

(
κ + λ(κ2 + τ2

)
B (s) (3.25)

and we get

‖α̃′ (s̃) × α̃′′ (s̃)‖ =
(
κ + λ(κ2 + τ2

)
)
√
λ2τ2 + (1 + λκ)2. (3.26)

Thus, we have binormal vector of Bertrand W curve mate in following form

B̃ (s) =
−λτ√

λ2τ2 + (1 + λκ)2
T (s) +

− (1 + λκ)√
λ2τ2 + (1 + λκ)2

B (s) . (3.27)

By using the formulas

κ̃ =
‖α̃′ (s̃) × α̃′′ (s̃)‖

‖α̃′ (s̃)‖3
, τ̃ =

〈α̃′ (s̃) × α̃′′ (s̃) , α̃′′′ (s̃)〉

‖α̃′ (s̃) × α̃′′ (s̃)‖2
(3.28)

we can easily find the curvature and torsion of the curve α̃ as follows

κ̃ =
κ + λ(κ2 + τ2)

(1 + λκ)2 + λ2τ2
, τ̃ =

τ

λ2τ2 + (1 + λκ)2 . (3.29)

�

3.2. Relations between Frenet apparatus of timelike Bertrand W curve mate

Theorem Let α be a unit speed timelike Bertrand W curve, then the Frenet Frame and curvature,
torsion of Bertrand W curve mate α̃ are given by

T̃ (s) =
(1 + λκ)√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣T (s) +
λτ√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣B (s) , (3.30)

Ñ (s) = N(s), (3.31)

B̃ (s) =
λτ√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣T (s) −
(1 + λκ)√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣B (s) (3.32)

and

κ̃ =

∣∣∣∣∣∣ κ + λ(κ2 − τ2)
λ2τ2 − (1 + λκ)2

∣∣∣∣∣∣ , τ̃ =
−τ + 2λτκ∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣ . (3.33)

Proof. Proof of the theorem can be obtained by making calculations similar to the proof of the previous
two theorems. �
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4. Characterization of Bertrand W curve mate

In this section, the situations, which are changed according to curvature and torsion values, are
given as propositions. These situations arise because of the eigenvalue and eigenvector problems in the
solution of the differential equations while obtaining the characterization of the curves. In this section,
all results are obtained by considering these situations.

4.1. Spacelike Bertrand W curves mate

Theorem Let α : I → E3
1 be a twisted spacelike Bertrand W curve with spacelike normal vector

and α̃ (s) be a Bertrand W curve mate of α(s) such that α(s) = p0(s)T (s) + p1(s)N(s) + p2(s)B(s) and
α̃(s) = p̃0(s)T̃ (s) + p̃1(s)Ñ(s) + p̃2(s)B̃(s) where τ2 − κ2 = f 2 > 0 and ci are arbitrary constants for
0 ≤ i ≤ 2. The differentiable functions given as follows

p̃0(s) =
1√

(1 − λκ)2
− λ2τ2

 −τc0 + (c1 + c2)
(
κ sinh( f s) + κ2λ

)
−

λτ2 (c1 cosh( f s) − c2 sinh( f s)) + τ2

f 2 s

 , (4.1)

p̃1(s) = −c1 f sinh( f s) + c2 f cosh( f s) +
κ

f 2 + λ, (4.2)

p̃2(s) =
1√

(1 − λκ)2
− λ2τ2

 κc0 + c1τ cosh( f s) − c2τ sinh( f s) − κτ
f 2 s

+λc0

(
τ2 − κ2

)
− (λτ) (s + c1κ (cosh( f s) − sinh( f s)))

 . (4.3)

Proof. According to assumptions, we have α̃(s) = p̃0(s)T̃ (s) + p̃1(s)Ñ(s) + p̃2(s)B̃(s) and α̃ (s) =

α (s) + λ (s) N (s) . Using the relations between Frenet Frames, we obtain

p̃0(s) =
1√∣∣∣(1 − λκ)2
− λ2τ2

∣∣∣ [p0(s) (1 − λκ) − p2(s)λτ
]

(4.4)

p̃1(s) = p1(s) + λ (4.5)

p̃2(s) =
1√∣∣∣(1 − λκ)2
− λ2τ2

∣∣∣ [(1 − λκ) p2(s) − p0(s)λτ
]

(4.6)

If we write the p0(s), p1(s), p2(s) values in the Proposition 3, then we complete the proof. �

Theorem Let α : I → E3
1 be a twisted spacelike Bertrand W curve with spacelike normal vector,

and α̃ (s) is a Bertrand W curve mate of α(s) where τ2 − κ2 = −g2 < 0 and ci are arbitrary constants for
0 ≤ i ≤ 2.The p̃0(s), p̃1(s), p̃2(s) differentiable functions obtained as follows

p̃0(s) =
1√∣∣∣(1 − λκ)2
− λ2τ2

∣∣∣
(
(λ − κ) (c1 cos (gs) − c2 sin (gs)) (g2 − τ2

)
, (4.7)

p̃1(s) = c1g sin (gs) + c2g cos (gs) −
κ

g2 + λ, (4.8)

p̃2(s) =
1√∣∣∣(1 − λκ)2
− λ2τ2

∣∣∣
(
κ2 − τ2

)
((λ + τ) (c1 cos (gs) − c2 sin (gs)) + c0κ) + κτs. (4.9)
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Proof. If the Frenet Frame of the Bertrand W curve mate obtained in Eqs 3.1–3.3, the differential
functions obtained in Eqs 2.6–2.8 are written in place of Eqs 4.4–4.6, the proof of the theorem is
obtained. �

Theorem Let α be a twisted spacelike curve with spacelike normal vector and α̃ (s) be a Bertrand
W curve mate of α(s). The differentiable functions in the Bertrand W curve mate α̃(s) are given as

p̃0(s) =
1

√
1 − 2λκ

(
−
κ2

2
s2 − λκ

)
(c0 + c2) + κs (c1 − λ) + c0 −

s3κ2 − 6s
6

, (4.10)

p̃1(s) = −κs (c0 + c2) + c1 −
κ

2
s2 + λ, (4.11)

p̃2(s) =
1

√
1 − 2λκ

(
κ2

2
s2 − λκ

)
(c0 + c2) − κs (c1 + λ) +

s3κ2 + 6c2

6
(4.12)

where κ = τ and

p̃0(s) =
1

√
1 − 2λκ

((
κ2s2

2
+ λκ

)
(c2 − c0) + κs (c1 − λ) + c0 + s −

κ2s3

6

)
, (4.13)

p̃1(s) = −c0κs + c1 + c2κs −
κ

2
s2 + λ, (4.14)

p̃2(s) =
1

√
1 − 2λκ

((
κ2s2

2
− λκ

)
(c2 − c0) + κλ (c1 + s) + c2 −

κ2s3

6

)
(4.15)

and where κ = −τ and ci are arbitrary constants for 0 ≤ i ≤ 2.

Proof. Proof of the theorem can be obtained by making calculations similar to the proof of the previous
two theorems. �

Theorem Let α : I → E3
1 be a twisted spacelike curve with timelike normal vector, and α̃ (s) is a

Bertrand W curve mate of α(s) where τ2 + κ2 = t2 > 0 and ci are arbitrary constants for 0 ≤ i ≤ 2.The
differentiable functions in the Bertrand W curve mate α̃(s) are given as follows

q̃0(s) =
1√

(1 + λκ)2 + λ2τ2

((
λ
(
τ2 + κ2

)
− κ

)
(c1 cosh (ts) + c2 sinh (ts)) − c0τ +

τ2

t2 s
)
, (4.16)

q̃1(s) = −c1t sinh (ts) − c2t cosh (ts) +
κ

t2 + λ, (4.17)

q̃2(s) =
1√

(1 + λκ)2 + λ2τ2

 λ (
τ2 + κ2

) (
c0 + τs

t2

)
+ κc0 + c1τ cosh (ts)

+c2τ sinh (ts) − κτ
t2 s

 . (4.18)

Proof. Similarly to the proof of previous theorem, we see that

q̃0(s) =
1√

(1 + λκ)2 + λ2τ2
((1 + λκ) q0(s) + (λτ) q2(s)) , (4.19)

q̃1(s) = q1(s) + λ, (4.20)

q̃2(s) =
1√

(1 + λκ)2 + λ2τ2
((−λτ) q0(s) + (1 + λκ) q2(s)) . (4.21)

So we rewrite functions q0(s), q1(s), q2(s) in proposition 2 to Eqs 4.19–4.21, the theorem is proved
after some calculations. �
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4.2. Timelike Bertrand W curve mate

Theorem Let α be a timelike twisted Bertrand W curve given by arc length parameter and α̃ be a
Bertrand W curve mate of α(s) with κ2 − τ2 = b2 > 0. The position vector of α̃(s) can be written as
follows

α̃(s) = r̃0(s)T̃ (s) + r̃1(s)Ñ(s) + r̃2(s)B̃(s)

such that

r̃0 (s) =
1√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣
(
−λ

(
κ2 − τ2

)
− κ

)
(c1 cosh (bs) + c2 sinh (bs)) + c0τ −

τ2

b2 s, (4.22)

r̃1 (s) = −c2b cosh (bs) − c1b sinh (bs) +
κ

b2 + λ, (4.23)

r̃2 (s) =
1√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣
 c0

(
λb2 + κ

)
+τ

(
c1 cosh (bs) + c2 sinh (bs) − sλ − κ

b2 s
)  (4.24)

where ci are arbitrary constants for 0 ≤ i ≤ 2.

Proof. Bertrand W curve mate α̃(s) can be written as linear combinations of their Serret-Frenet vectors
as follows

α̃(s) = r̃0(s)T̃ (s) + r̃1(s)Ñ(s) + r̃2(s)B̃(s) (4.25)

and

α̃(s) = α(s) + λN(s) (4.26)
= r0(s)T (s) + (r1(s) + λ) N(s) + r2(s)B(s).

Thus we have

r̃0(s)T̃ (s) + r̃1(s)Ñ(s) + r̃2(s)B̃(s) = r0(s)T (s) + (r1(s) + λ) N(s) + r2(s)B(s). (4.27)

If we rewrite value of T̃ (s), Ñ(s), B̃(s) in Eqs 3.30–3.32, then we get

r̃0 (s) =
1√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣ (− (1 + λκ) r0 (s) + λτr2 (s)) ,

r̃1 (s) = r1 (s) + λ,

r̃2 (s) =
1√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣ (−λτr0 (s) + (1 + λκ) r2 (s)) .

We rewrite equality of r̃0 (s) , r̃1 (s) , r̃2 (s) in proposition 3, the theorem is proved. �
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Theorem Let α̃ is a Bertrand W curve mate of timelike curve α(s) with κ2 − τ2 = −a2 < 0, then the
position vector α̃(s) is given with the following differentiable functions

r̃0 (s) =
1√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣


(
λa2 + κ

)
(c1 cos (as) + c2 sin (as))
+τ

(
c0 + τ

κ2−τ2 s
)  , (4.28)

r̃1 (s) = c1a sin (as) − c2a cos (as) −
κ

a2 + λ, (4.29)

r̃2 (s) =
1√∣∣∣−λ2τ2 + (1 + λκ)2

∣∣∣
 c0

(
−λa2 + κ

)
+τ

(
c1 cosh (as) + c2 sinh (as) − sλ − κ

a2 s
)  . (4.30)

Proof. The proof can be done similar to the proof previous theorem. �

Theorem Let α : I → E3
1 be a timelike twisted Bertrand W curve given by arc length parameter and

α̃ (s) be a Bertrand W curve mate of α(s) with κ2 − τ2 = 0, then the position vector α̃(s) is stated with
the following differentiable functions

r̃0 (s) =
1

√
|1 + 2λκ|

((
κ2s2

2
− λκ

)
(c0 − c2) − sκ (λ + c1) + c0 + s +

κ2

6
s3
)
, (4.31)

r̃1 (s) = −c0κs + c1 + c2κs −
κ

2
s2 + λ, (4.32)

r̃2 (s) =
1

√
|1 + 2λκ|

((
κ2s2

2
− λκ

)
(c0 − c2) − sκ (λ + c1) + c0 +

κ2

6
s3

)
(4.33)

where τ = κ and

r̃0 (s) =
1

√
|1 + 2λκ|

((
κ2s2

2
− λκ

)
(c0 + c2) − sκ (λ + c1) + c0 + s +

κ2

6
s3
)
, (4.34)

r̃1 (s) = −c0κs + c1 − c2κs −
κ

2
s2 + λ, (4.35)

r̃2 (s) =
1

√
|1 + 2λκ|

((
λκ −

κ2s2

2

)
(c0 + c2) + sκ (λ + c1) + c2 −

κ2

6
s3

)
(4.36)

where τ = −κ and ci are arbitrary constants for 0 ≤ i ≤ 2.

Proof. Proof of the theorem can be obtained by making calculations similar to the proof of the previous
two theorems. �
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5. Some numerical examples

In this section, we give examples of timelike and spacelike Bertrand W curve mate, separately.
Example: Consider the unit speed spacelike curve α : I → E3

1 with the parametrization

α(s) = (
1
2

sinh s,
1
2

cosh s,

√
5

2
s). (5.1)

We obtain the Frenet frame fields as follows:

T (s) = (
1
2

cosh s,
1
2

sinh s,

√
5

2
), (5.2)

N(s) = (sinh s, cosh s, 0), (5.3)

B(s) = (

√
5

2
cosh s,

√
5

2
sinh s,

1
2

) (5.4)

where the curvature and torsion of the curve α are

κ(s) =
1
2

and τ(s) =

√
5

2
, λ =

1
2

(5.5)

respectively. Since τ2 − κ2 > 0, then Frenet apparatus of the curve α̃ (s) are given by

T̃ (s) = (2 cosh s, 2 sinh s,
√

5) (5.6)

Ñ (s) = (sinh s, cosh s, 0) (5.7)

B̃ (s) = (
√

5 cosh s,
√

5 sinh s, 2) (5.8)

κ̃ = 4, τ̃ = −2
√

5 (5.9)

So we get

α̃ (s) = α (s) + λ (s) N (s)

= (
1
2

sinh s,
1
2

cosh s,

√
5

2
s) +

1
2

(sinh s, cosh s, 0)

=

sinh s, cosh s,

√
5

2
s
 (5.10)

Bertrand W curve mate α̃ (s) of unit speed spacelike curve α is given in Figure 1.

Figure 1. Bertrand W curve mate α̃ (s) of unit speed spacelike curve α.
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Example: Let α : I → E3
1 be a timelike curve with following parametric expression

α(s) = (
√

2 sinh s,
√

2 cosh s, s). (5.11)

Then the Frenet frame is obtained

T (s) = (
√

2 cosh s,
√

2 sinh s, 1), (5.12)
N(s) = (sinh s, cosh s, 0), (5.13)

B(s) = (cosh s, sinh s,
√

2) (5.14)

where the curvature and torsion of the curve are

κ(s) =
√

2 and τ(s) = −1, (5.15)

respectively. Thus we get
m0 (s) = −s, m1 (s) =

√
2, m2 (s) =

√
2s (5.16)

and Frenet apparatus of curve α̃ (s) is obtained as follows

T̃ (s) = (
2
7

√
14 cosh s,

2
7

√
14 sinh s

1
7

√
7), (5.17)

Ñ (s) = (sinh s, cosh s, 0), (5.18)

B̃ (s) = (−
5
7

√
7 cosh s,−

5
7

√
7 sinh s,−

4
7

√
2
√

7), (5.19)

κ̃ =
1
7

√
2, τ̃ = −

3
7
. (5.20)

So by using Frenet apparatus of curve α̃ (s) , we get

α̃ (s) =
(
2
√

2 sinh s, 2
√

2 cosh s, s
)
. (5.21)

Bertrand W curve mate α̃ (s) of unit speed timelike curve α is shown in Figure 2.

Figure 2. Bertrand W curve mate α̃ (s) of unit speed timelike curve α.
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6. Conclusions

In this paper, authors obtained the characterization of the position vectors of non-lightlike Bertrand
W curve mate in Minkowski space due to differentiable functions. In accordance with this scope, the
position vector of a non-lightlike Bertrand W curve was stated by a linear combination of its Frenet
frame with differentiable functions. There existed also different cases for the curve depending on
the value of curvature and torsion. The relationships between Frenet apparatus of these curves were
presented separately for each case. This study will accompany the scientists who will conduct new
studies on similar subjects as a basic resource since it is one of the important studies on this subject.

Acknowledgments

The authors are thankful to the referees for their careful reading of the manuscript and insightful
comments.

Conflict of interest

The author declares no conflicts of interest in this paper.

References
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24. J. R. Sendra, F. Winkler, S. Pérez-Diaz, Rational algebraic curves: A computer algebra approach,
Springer Science Business Media, 2007.
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