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1. Introduction

Due to the engineering backgrounds and strong biological significance, Babcock and
Westervelt [1, 2] introduced an inertial term into the traditional multidirectional associative memory
neural networks, and established a class of second order delay differential equations, which was called
as the famous delayed inertial neural networks model. Arising from problems in different applied
sciences such as mathematical physics, control theory, biology in different situations, nonlinear
vibration, mechanics, electromagnetic theory and other related fields, the periodic oscillation is an
important qualitative property of nonlinear differential equations [3-9]. Consequently, assuming that
the activation functions are bounded and employing reduced-order variable substitution which convert
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the inertial systems into the first order differential equations, the authors in [10, 11] and [12] have
respectively gained the existence and stability of anti-periodic solution and periodic solution for
addressed inertial neural networks models. Manifestly, the above transformation will raise the
dimension in the inertial neural networks system, then some new parameters need to be introduced.
This will increase huge amount of computation and be attained hard in practice [13, 14]. For the
above reasons, most recently, avoiding the reduced order method, the authors in [15] and [16]
respectively developed some non-reduced order methods to establish the existence and stability of
periodic solutions for inertial neural networks with time-varying delays.

It has been recognized that, in neural networks dynamics touching the communication, economics,
biology or ecology areas, the relevant state variables are often considered as proteins and molecules,
light intensity levels or electric charge, and they are naturally anti-periodic [17-19]. Such neural
networks systems are often regarded as anti-periodic systems. Therefore, the convergence analysis and
stability on the anti-periodic solutions in various neural networks systems with delays have attracted the
interest of many researchers and some excellent results are reported in [20-27]. In particular, the anti-
periodicity on inertial quaternion-valued high-order Hopfield neural networks with state-dependent
delays has been established in [28] by employing reduced-order variable substitution. However, few
researchers have utilized the non-reduced order methods to explore such topics on the following high-
order inertial Hopfield neural networks involving time-varying delays:

X/ (1)
= —a (Dx(t) — bi(H)x(1) + Z Cij(DA j(x;(1)) + Z d;j(t)B(x(t — q;;(1)))
= =

0 Qe = mig N Qxa(t = £(D) + Ji(o), 120, (1.1)

j=1 I=1

associating with initial value conditions:

xi(8) = ¢i(s), xi(s) = ¢i(s), —1: <5 <0, ¢, ¢ € C([-7;, 01, R), (1.2)

where Z Cij(DA;(x;(0), Z dij(0)Bj(x(t — g;j(1))) and Z Z 0 Qj(x;(t — miji()) Qi(xi(r = &;ju(1))) are
J=1 J=li=
respectively the first- order term and the second-order term of the neural network, A;, Bjand Q; are the

nonlinear activation functions, 7; = n}ax{sup qi(®), sup nii(t), sup & (D)}, Ji, ¢ ,,a’, s Bijl, a,bi R >R
I<ljsn ter teR

and g;j, niji, &j © R — R* are bounded and contmuous functions, @, b;, g;; i» Miji» &iji are periodic
functions with period 7" > 0, the input term J; is T-anti-periodic (Ji(t + T) = —J;(¢) for all t € R), and
i,jyleD:={1,2,--- ,n}.

Motivated by the above arguments, in this paper, without adopting the reduced order method, we
propose a novel approach involving differential inequality techniques coupled with Lyapunov function
method to demonstrate the existence and global exponential stability of anti-periodic solutions for
system (1.1). Particularly, our results are new and supplement some corresponding ones of the existing
literature [19-28]. In a nutshell, the contributions of this paper can be summarized as follows. 1)
A class of anti-periodic high-order inertial Hopfield neural networks involving time-varying delays
are proposed; 2) Under some appropriate anti-periodic assumptions, all solutions and their derivatives
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in the proposed neural networks model are guaranteed to converge to the anti-periodic solution and
its derivative, respectively; 3) Numerical results including comparisons are presented to verify the
obtained theoretical results.

The remaining parts of this paper are organized as follows. In Section 2, we make some
preparations. In Section 3, the existence and the global exponential stability of the anti-periodic
solution are stated and demonstrated. Section 4 shows numerical examples. Conclusions are drawn in
Section 5.

2. Preliminaries

To study the existence and uniqueness of anti-periodic solutions to system (1.1), we first require the
following assumptions and some key lemmas:
Assumptions:

(Fy) For 1i,jl € D, Aju),Bj(u),Qj(u) are all non-decreasing functions with
A;(0) = B;j(0) = Q;(0) = 0, and there are nonnegative constants L‘?, Lf, LJQ and MJQ such that

A () = A ()] < L} = vl, |Bj(w) = B;)| < Lilu =], 10,(u) = Q;(v)| < LYJu — v,

Q)| < MJQ, it + TA (u) = —¢:j(DA;(—u), d;ij(t + T)Bj(u) = —d;;(t)Bj(—u),
and
0t + T)Q () Qi(v) = —=8;(H) Q;(—u)Qi(—v),

forall u, v € R.
(F,) There are constants 8; > 0 and «; > 0, y; > 0 obeying

E() <0, 4E,(0H)G;() > Hiz(t), YteR, i€ D, 2.1)
where
Ei(t) = ayy; — a(na? + 1a? _Zl(lz'ij(t)lL? + |Czij(f)|Lf)
j:

Lo i i 0,0I(MOLE + L2MP),

ta@
]: :

Gi(1) = =bi(Dayyi + 3 Z(ICU(I)ILA+|d,,(t)|LB)|a%|

3 Ol + ELE =

+1 éqcﬂ(mv + il )l

+5 3 3l MPL + LEM)
+% é JZZ: (a/l + |C¥171|)91+],MQL1Q1 if*

N

+
=

~
Il

~
Il

—

(aj + |aj'}/j|)9j+llLQMlQ1 177 ),
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Hi(1) = Bi + v} — ai(Dayy; — bi(n)es, q;; = SUP q;,(0),
M= = sup (0, & = SUPf,ﬂ(f) q;; = Sup qu(t) M= Sup 1 (0),
SUP &), & = sup (0l df; = sup Idl,(t)l i, Jil c D

l]l

(F3) For i, j,l € D, g;j, n;;; and &;j; are continuously differentiable, ¢, j(t) = q;i(t) < 1, n;jl(t) =
mip(t) < 1 and &,(1) = &n() < 1forallr €R.
We will adopt the following notations:

o7

ijl —

max |0,,,(t)| i, j,leD.

Remark 2.1. Since (1.1) can be converted into the first order functional differential equations. In view
of (F1) and ([29], p176, Theorem 5.4), one can see that all solutions of (1.1) and (1.2) exist on [0, +00).
Lemma 2.1. Under (F;), (F,) and (F3), label x(r) = (x1(8),x(t),---,x,(¢) and
y() = 1(8), y2(2), - - - , yu(2)) as two solutions of system (1.1) satisfying

xi(s) = @7 (5), x{(s) = i (9), yi(s) = ¢} (5), ¥i(s) = ¥ (s), (2.2)

where —7; < s <0, i € D, ¢\, ¥F, ¢, ¢ € C([-7;,0],R). Then, there are two positive constants A and
M = M(¢*, ¢y, ¢, ) such that

Ixi(t) — yi(H)] < Me™, |x)(t) — y}(t)] < Me™, forallt >0, i € D.

Proof. Denote x(t) = (x1(?), x2(2), - - - , x,(t)) and y(¢) = (y1(¥), y2(2), - - - , y,(t)) as two solutions of (1.1)
and (1.2). Let w;(¢) = y;(¢) — xi(¢), then

wi'(t) = —a(Owi(t) — bi(O)wi(t)

+ Z Ei(DA(w,(1) + Z di/(1)Bj(w(t = gi/(1)))

* Z Z Ou(DLQ, (1 = Mg ON Vit = &) = Q¢ = (1))

FET
XOi(x)(t = &ju(D)) + Qi (vt — miju(0)) Oi(x,(t = & (1))
=Q(x;(t — ;) Oi(x(t = Eijy(D))], (2.3)

where i, j € D, Xj(wj(t)) = A;(y;j(t)) — Aj(x;(t)) and
Ej(wj(t —qij()) = B;(y;j(t — q;(1))) — Bj(x;(t — g;;(D))).
According to (F3) and the periodicity in (1.1), one can select a constant A > 0 such that
EXNH <0, 4EN0GH D) > (HA (D)%, VteR, (2.4)
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where .
END) = A0 + apy; — ai(Dag + 307 Y, (lEij(t)lL;‘ + |C?ij(t)|Lf)
=1

+5a7 P 0 OI(MPLY + LYMP),

Gﬁ(f) —bi(Dayy; + AB; + /1)’,2 + % Z, (|5ij(f)|L;‘ + |67ij(f)|Lf)|CYi)’i|

+1 le Qi OIL + dyLE e

+1 éqcﬂ(t)w* FaLLP e”qu)m i
+ Jé Xl ,-yiueiﬂ(r)KM,.QLlQ +12MD)
#13: 5at + lanyo ML
+ 3 :i(a gy DO LEMEe i),

II
—_

H(®) = ﬁl +v; + 24y - aiOay; - bi(na}, i, j€D.
Define the Lyapunov function by setting

K@) = 2Zﬂ,w (e + > Z(awmww (0>

1Y, o 2. ' 2 [
+= (a7d; + |y |a’+)e quLB wi(s)——e"ds
2 ,21: ]Z; / t—q;j(t) / 1- qi+j
1
SIS @+ e MLEE f W) s
i=1 =1 j=1 &1ji(0) l_flji

1 & & ) 00 2 f ) 1 .
+§ Z Z Z(a'] + |ij’)/j )gjllL M Jil ) Wi (S)We dS.

i=1 =1 =1 Jil

Straightforward computation yields that
’ _ 1 C 2 2t 1 C ’ 2 20t
K@) = 2105 Zﬁ,-wi (e + 52(mw,-(t>+y,-wl-<r)> e

+ Zﬁm(r)w (De*" + Z(a W) + YO aw] (1) + i (D)e™"

+ 1
2 Z Z(a?df, +laaylderts s L}

i=1 j=1 1y
X[wit)e* — wi(t — qi (1)) (1 — g,(1)]

l & e 5 )
EPIIY G G s
ji

i=1 =1 j=1
X[wi ()e*" = wi(t — &) O (1 = &.(1)]
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1
+ 71040 2/177‘
2 tzl“ ; ;(a + |a’ﬂ’J|)0mL M, il ———— = nﬂl

X[W,‘ (t)eﬂt - W; (t - njil(t))€2/l(t_njil(t))(1 - leﬂ(l))]

= 2&[% ;ﬁiwfmew * % ;miw;m +ymwi(n)’e]
+ Z(ﬁi +yHwiwi (e + Z ai(awi(1) + yiwi(1)e™"
i=1 i=1
X[=a(OW,(1) = iOwilt) + > E(OA;0w,(0) + > dij(O)B;(w;(t = gij())
j=1 j=1

£ 3 D 05Dt = mig (NIt = £i(1))
j=1 I=1

—Q;(yi(t = niu(0))) Qi(xi(t — &ju(1))) + Qj()’j(f = i) Oi(x(t = &iju(1)))
—Q;(xj(t = 1;ju(1))) Qu(x)(t — & ju(1))] + Z ayi(wi(t)) e

2 74,2497, 1 B
3 S0 + L

i=1 j=1
=40
X[wj (1) 1 Y= wir - Qij(t))eZA(f—qz/(f))l_—% 1
ij y
]l &
i) Z Z Zw% + ], MOLLe 5
— &0
[W (l) - W (l — é‘:l] (t))eZ/l(l‘—§1,,(t)) {+ 1
é‘:l]l 1-— é:]jl'
*5 ZZZ(& + |a,y,|)9]+,,LQMQ 240,
i=1 j=1 I=1
1- 77'~,-1(f)
X[w; (t) AU Ujil(t))ewt"’ﬁ’(f))l—fdr]
’7],1 ~ i

Y (B + 7 + 2ary; — @By — b wiOwi (1)

i=1

+Z<Aa + aiyi = @D} (wi(0)’ —Z(b (Daiy; = AB; = W)Wl (D)

IA

o1 .
+3 Z Z(afd; + |a,yi|d;j)1__éﬁequij LEw(1)
ij

i=1 j=1

1 n n n 5 Q Q z/lf
+5 E E E (a; + layih0;M7 L e iw; (t)1 —fl
Jl

i=1 I=1 j=1
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ISV 2 Qg0 2277, 2
+§ Z Z Z(aj + |aj7’j|)0;ill’i Me™ itw; (1) "

i=1 j=1 I=1 - Mji

1 n n ~ _
=5 D D@l + layld LEwi (e = ;1)

=1 j=1
1 n n n
5 D000 D@t + layihoMELEwH (e = &i(0)
=1 I=1 j=1
1 n n n
) Z Z Z(Cﬁ + |ajyj|)01+'ilLiQMlQW?(t — ()
i=1 j=1 I=1

+ ) > @MW+ leayilwiODIE OIA v (0)]

i=1 j=1

£ @MW+ leayilwi DI OIBw (e = qiy)))

i=1 j=1

+ ) (@WjO] + layilwio))
i=1

X > D 0uOIMELLIw(t = &)+ Lw (¢ = nip()IMP))

=1 I=1

= D (Bi+ v} + 24y — at)ary; — b wiw](1)
i=1

+ > (A} + ary — @) Wi
i=1

Jt

S 1 v - - 1 "
+ Z[_bi(t)a'i% + AB; + Ay} + 3 Z(G’idﬁ + |‘Yj7’j|d;i)l_—(,]temqﬁL?
P =

v v, o, L1
+— @ + |ay o M2LE ™ —
> ;;( |+ layDO ML e -,

j=1 I=1 Jjil

LYY 2 04,0 2005, 1 2
i) Z Z(af +lajy Do L M e nﬂll—..,.]wi (®)

1 n n _ _
3 D 2 @il + layld) LEwi (e — ;1)

i=1 j=1

1 n n n
) D00 D (@} + a8 MOLEWH (¢ - &;i(1)

i=1 I=1 j=1

- Z Z ZW? + v DO LEMEW? (t = 1u(D))

i=1 j=1 I=1

| =
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+° > @ W]+ leayilwiODIE OIA v (0)]

i=1 j=1
+ 3 D @Wi0] + layillwiODIdOIIB (w (¢ = gi( O}

i=1 j=1
+ ) @MW1+ laylwiD D > 160

i=1 j=1 I=1
X(MELIwit = En()| + Lt = i (D))MP)}, V1 € [0, +00). (2.5)

It follows from (F;) and PQ < 3(P* + Q*)(P, Q € R) that

D D @MW1+ laylwi DI I (ow(0)]

i=1 j=1

IA

RS
3 2 2, Al OILS o) +wi(e)
i=1 j=1

1 C C - A 2 2
+3 Z] Z] @ yille(OILAW2 () + W)
=1 j=
011-2|Eij(t)|L?(W;(f))2
i=1 j=1

+

1
5 (laiyilléij(t)lL? + a?léji(t)lL? + |aj7j||5ji(t)|LlA)W[2(t)’
; ]

i=1 j=

n n

CAAGIEE |C¥i7i||Wi(t)|)|67ij(l‘)||§j(wj(f = qi;(D))]

Il
—_

~

Il
—_

@} 1di(OILE (W) + w3t — gi5(1)))

IA

il di (DILE W7 (1) + w3t = gij(0)
. 1 o -
GO WO + 5 > D leaylld OILIwi (@)
i=1 j=1 i=1 j=1

@7\ (OILY + laryilld; (DL W1 — gi(1)),
i=1 j=1

and

> @il + layllwio))

i=1
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ZZIH,]z(t)I(MQLQlwl(t &N+ LEw;(t = niz()MP)
1 n n
3 Za 0 OIMELE(W[ () + Wit = &(1)

i=1 j=1

IA

1 n
52 Z Z @O OIMELEOwi(D) + Wt = &)

i=1 j=1
n n

1
) Z Z Z @;16; ]z(t)ILQMQ((w ()" + w3t = ;D))

+% Z Z D@2+l IMELEW? (2 = £(1)
(@ + layiDIOOILE MP W3t = 7;j(1))
0 (DMLY + LEMP)(w; (1))
l2yllOiu(IMELE + LI MP)(wi(0))?
- Z Z i(al + eyl OMF LEWE (e = &)

(@5 + layDI0a(OILE MWt = nju(t)),
which, together with (2.4) and (2.5), entails that

K0 < @M (Bi+ 7} +2dany; — adaiy; = b wi)wi (@)

i=1

+ 107 + ayy; - ()l + a S ey 0L + 1,01

i=1 j=1

1
+30] Zwa(r)KMQLQ + LEMO 0w (1))

j=1 I=1
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n

[=bi(Day; + i + Ay} + 5 Z(ICU(I)ILA + 1 (DIL)leyyil

=1 j=1
1 "
Za (Ol + TGP )
=g,
j=1 Ji
Zq%(mﬂ* # L e lay)

]

+5 Z Z lilbuOI(MOLE + L2MO)

J=1 =1

o ZZ(a, + lapyho};MPLLe Mfzﬂ_
=1 j=1 _fzﬂ

1
+o ZZ(a +lay DO LEMPe I (1)

=1 = T

H}\(1)
2Eﬂ( )

(H}\(1)?
AEN(1)

= Z EX(wi() + WD)

< 0, Vte[O, +00).

wi(0)? + Z(G*()—

This indicates that K(7) < K(0) for all ¢ € [0, +00), and
1 n 1 n
5 2 BN+ 2 Y (@wi(n) + ywi0)’ e < K(0), 1 € [0, +00).
i=1 i=1

Note that

(Cl/iW;(f)eh + ')’iWi(t)e/U)Z = (awi(t) + %‘Wi(l‘))zeut

and
1 1 1 1
awi@®)le” < lawi (e + ywi)e'| + lywi(t)e],

one can find a constant M > 0 such that
W) < Me™, |wi()| < Me™, t>0,i€D,

which proves Lemma 2.1.

Remark 2.2. Under the assumptions adopted in Lemma 2.1, if y(¢) is an equilibrium point or a periodic
solution of (1.1), one can see y(¢) is globally exponentially stable. Moreover, the definition of global
exponential stability can be also seen in [13, 16].

3. Anti-periodicity of system (1.1)

Now, we set out the main result of this paper as follows.
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Theorem 3.1. Under assumptions (F;)—(F3), system (1.1) possesses a global exponential stable 7'-
anti-periodic solution.
Proof. Denote k(1) = (ki(t), k2(2), - - - , k,(t)) be a solution of system (1.1) satisfying:

ki(8) = ¢i(s), K(s)=yi(s), -7 <s<0, ¢,y € C([-71:,0],R), i € D. (3.1
With the aid of (F;), one can see that
ai(t+T)=a(t), bit+T)=Dbi(r), qit+T) = q0),
it +T) =n;@), Eu+T)=Ep@), Jt+T)=-J1),
(—l)mHE‘ij(t +(m+ DT)Aj(kij(t + (m + 1)T)) = E‘ij(t)Aj((—l)m+1Kj(t +(m+ 1)T)),
(=1)"™'d(t + (m+ DT)B(k;(t + (m + DT — q;;(1))) = dij(OB;(—=1)" 'kt + (m + DT — q;;(1))),

and

(=1)"™10;(t + (m + DT)Q(k;(t + (m + DT — m;z(D) skt + (m + DT — &(1)))

= 0,0 (1) k;(t + (m + DT = nipONQ((=1)" kit + (m + DT = &(D)),

where t e Rand i, j,/ € D.
Consequently, for any nonnegative integer m,

(1" ki(t + (m + DT))"
= —a(O(=1)"" kit + (m + DT)) = b(t)((=1)"" k(1 + (m + 1)T))

+ D GOA=D" Kyt + (m + DT))
=1

# Y dOB (= 1" kit + (m+ DT = gi0) + D > 61(0)
j=1

=1 =1
XQ, (=1 Kyt + (m + DT = (1))
XQU(=1)"" sy + (m + DT = &(0)))
+Ji(t), foralli e D,t + (m+ 1)T > 0. (3.2)

Clearly, (=1)"*'k(t + (m + 1)T) (t + (m + 1)T > 0) satisfies (1.1), and v(f) = —«(t + T) is a solution of
system (1.1) involving initial values:

@i (s) = —ki(s + T), ¢! (s) = —=k.(s + T), forall s € [-7;,0],i € D.
Thus, with the aid of Lemma 2.1, we can pick a constant M = M(¢*, Y~ ¢",¥") satisfying
k(1) —vi(t)] < Me™, |Ki(t) = Vi(t)] < Me™, forallt>0,i€ D.

Hence,
|(=1)?ki(t + pT) — (=1)P*' kit + (p + DT)|
= |ki(t + pT) — vi(t + pT)| < Me~At+PD),
=1yt + pT)Y = (1)t + (p + DT)Y|
= IK;(Z‘ + pT) — vlf([ + pT)| < Me—/l(t+pT),

VieD, t+pT > 0. (3.3)
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Consequently,

(=)™ it + (m + DT) = ki(t) + Z[(—D”“m(f +(p+ DT) - (-D’ki(t + pT)] (i € D)

p=0
and
(=)™ 'kt + (m + DT)Y

= KN+ Z[((_l)p+]Ki(t +(p+ 1)) = (=Dt + pT))'] (i € D).
p=0

Therefore, (3.3) suggests that there exists a continuous differentiable function y(¢) = (y;(¢), y2(?),
-+, yu()) such that {(—1)"«(t + mT)},»; and {((—1)"«(t + mT))’},»; are uniformly convergent to y(r)
and y’(7) on any compact set of R, respectively.

Moreover,

yit+T)= lim (-1)"k(@t+T +mT) = - lll)m (=)™ k(t + (m + DT) = —y(1)
m—+o00 m+1)—+c0
involves that y(¢) is T—anti-periodic on R. It follows from (F)-(F3) and the continuity on (3.2) that
{("(t + (m + 1)T)},;>1 uniformly converges to a continuous function on any compact set of R.
Furthermore, for any compact set of R, setting m — +o00, we obtain

Y6 = —ai0)yi(t) - bit)y(r) + Z Cij(DA;(y;(1) + Z d;; (B (y(t — qi(1)))
=1 =1

+ 20 D 0500t = (DN Qe = £u() + (1), i € D,

j=1 I1=1

which involves that y(7) is a T—anti-periodic solution of (1.1). Again from Lemma 2.1, we gain that
y(t) is globally exponentially stable. This finishes the proof of Theorem 3.1.
Remark 3.1. For inertial neural networks without high-order terms respectively, suppose

la; — b;| <2, A; and B; are bounded, i € D, (3.4)

and
la,—b;+ 1| < 1,ie D, 3.5

the authors gained the existence and stability on periodic solutions in [10, 11] and anti-periodic
solutions in [12]. Moreover, the reduced-order method was crucial in [10-12] when anti-periodicity
and periodicity of second-order inertial neural networks were considered. However, (3.4) and (3.5)
have been abandoned in Theorem 3.1 and the reduced-order method has been substituted in this paper.
Therefore, our results on anti-periodicity of high-order inertial Hopfield neural networks are new and
supplemental in nature.
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4. Examples and numerical simulations

Example 4.1. Let n = 2, and consider a class of high-order inertial Hopfield neural networks in the
form of

x{ (1)

= —14.92x/(t) — 27.89x,(?) + 2.28(sin A, (x,(?))
+2.19(cos H)A,(x2(1))
—0.84(cos 21)B; (x;(r — 0.2 sin” 1)) + 2.41(cos 2£) By (x,(¢ — 0.3 sin® 1))
+4(sin 26)Q; (x; (¢ — 0.4 sin” 1)) Q2 (x2(¢ — 0.5 sin’ 1)) + 55 sin ¢,

. 4.1)
(1)
= —15.11x5(2) — 31.05x,(¢) — 1.88(sin 1)A(x, (1))

—2.33(cos 1)A,(x(1))

—2.18(sin 2¢) B, (x;(t — 0.2 cos® 1)) + 3.18(cos 2£) By (x,(t — 0.3 cos? 1))
+3.8(sin 26) 0, (x;(t — 0.4 cos? 1)) Q2 (x»(t — 0.5 cos? 1)) + 48 sint,

where 1 > 0, A;(u) = Ay(u) = 3=lul, By(u) = Bo(u) = su, Q1(u) = Qx(u) = 3¢ arctan u.

Using a direct calculation, one can check that (4.1) satisfies (2.4) and (F;) — (F3). Applying
Theorem 3.1, it is obvious that system (4.1) has a globally exponentially stable m-anti-periodic
solution. Simulations reflect that the theoretical anti-periodicity is in sympathy with the numerically
observed behavior (Figures 1 and 2).

Figure 1. Numerical solutions x(#) to system (4.1) with initial values:
((pl(s)a (PZ(S)’ lﬁl(s), wZ(s)) = (_1’ 3’ 07 O)a (_2a 1’ Ov 0)’ (2’ _3’ 07 O)a s € [_5, 0]
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Figure 2. Numerical solutions x'(f) to system (4.1) with initial value
(Sol (S)’ SOZ(S)a lr//] (S)’ wZ(s)) = (_1, 3’ 07 O)’ (_2’ 17 07 O)a (27 _3’ 07 0)’ s € [_5’ 0]'

Example 4.2. Regard the following high-order inertial Hopfield neural networks involving
time-varying delays and coefficients:

x((0)

= —(14 + 0.9] sin #)x () — (27 + 0.8] cos #])x; (?) + 2.28(sin 1)A; (x, (7))
+2.19(cos 1)A»(x2(1))
—0.84(cos 21)B; (x;(t — 0.2 8in” 1)) + 2.41(cos 2£) By (x,(¢ — 0.3 sin® 1))
+4(sin 1) (x; (¢ — 0.4 sin® £)) Q2 (x2(t — 0.5 sin’ 7)) + 100 sin ¢,

x5 (1)

= —(15 + 0.1] cos f))x,(£) — (31 + 0.1 sin #])x,(¢) — 1.88(sin £)A, (x; (£))
—2.33(cos 1A, (x,(¢))
—2.18(sin 2¢) B, (x;(t — 0.2 cos® 1)) + 3.18(cos 21)B,(x,(t — 0.3 cos® 1))
+3.8(sin £)Q; (x (¢ — 0.4 cos? 1)) Q2 (x»(t — 0.5 cos? 1)) + 200 sin 7,

(4.2)

where 1 > 0, A;(u) = Ax(u) = 5=ul, Bi(w) = By(u) = 35u, Q1(u) = Qx(u) = 75(Ix + 1] =[x — 1]). Then,
by Theorem 3.1, one can find that all solutions of networks (4.2) are convergent to a m-anti-periodic
solution (See Figures 3 and 4).

Remark 4.1. From the figures 1-4, one can see that the solution is similar to sinusoidal oscillation,
and there exists a m-anti-periodic solution satisfying x(¢ + m) = —x(¢#). To the author’s knowledge,
the anti-periodicity on high-order inertial Hopfield neural networks involving time-varying delays has
never been touched by using the non-reduced order method. Manifestly, the assumptions (3.4) and
(3.5) adopted in [10, 11] are invalid in systems (4.1) and (4.2). In addition, the most recently papers
[10, 11] only considered the polynomial power stability of some proportional time-delay systems, but
not involved the exponential power stability of the addressed systems. And the results in [35-82] have
not touched on the anti-periodicity of inertial neural networks. This entails that the corresponding
conclusions in [10-82] and the references cited therein can not be applied to show the anti-periodic
convergence for systems (4.1) and (4.2).
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Numerical

solutions x'(f) to system (4.2) with initial value

(@1(5), 92(5), ¥1(5), Y2()) = (6,-8,0,0),(7,-6,0,0),(=7,7,0,0), s € [-0.5,0].

5. Conclusion

In this paper, abandoning the reduced order method, we apply inequality techniques and Lyapunov
function method to establish the existence and global exponential stability of anti-periodic solutions
for a class of high-order inertial Hopfield neural networks involving time-varying delays and
anti-periodic environments. The obtained results are essentially new and complement some recently
published results. The method proposed in this article furnishes a possible approach for studying
anti-periodic on other types high-order inertial neural networks such as shunting inhibitory cellular
neural networks, BAM neural networks, Cohen-Grossberg neural networks and so on.
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