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Abstract: Let R be a finite commutative unitary ring. An idempotent in R is an element e ∈ R with
e2 = e. The Erdős-Burgess constant associated with the ring R is the smallest positive integer ` such
that for any given ` elements (repetitions are allowed) of R, say a1, . . . , a` ∈ R, there must exist a
nonempty subset J ⊂ {1, 2, . . . , `} with

∏
j∈J

a j being an idempotent. In this paper, we give a lower bound

of the Erdős-Burgess constant in a finite commutative unitary ring in terms of all its maximal ideals,
and prove that the lower bound is attained in some cases. The result unifies some recently obtained
theorems on this invariant.
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1. Introduction

Let S be a nonempty commutative semigroup, endowed with a binary associative operation ∗. Let
E(S) be the set consisting of all idempotents of S, where e ∈ S is said to be an idempotent if e ∗ e =

e. Idempotent is one of central notions in Semigroup Theory and Algebra. One of our interest to
combinatorial properties concerning idempotents in semigroups comes from a question of P. Erdős to
D. A. Burgess (see [1] and [7]), which is stated as follows.

Let S be a finite nonempty semigroup of order n. A sequence of terms from S of length n must
contain one or more terms whose product, in some order, is an idempotent?

Burgess [1] in 1969 gave an answer to this question in the case when S is commutative or contains
only one idempotent. Note that every nonempty finite semigroup contains at least one idempotent
(see [8] Chapter I, Corollary 5.9). D. W. H. Gillam et al. [7] proved that a sequence T over any finite
semigroup S of length at least |S\E(S)|+1 must contain one or more terms whose product, in the order
induced from the sequence T , is an idempotent, and therefore, completely answered Erdős’ question.
The Gillam-Hall-Williams Theorem was extended to infinite semigroups by the author [14] in 2019.
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It was also remarked that the bound |S \ E(S)| + 1, although is optimal for general semigroups S, can
be improved, at least in principle, for specific classes of semigroups. Naturally, one combinatorial
invariant was aroused by Erdős’ question with respect to idempotents of semigroups. Since we deal
with the multiplicative semigroup of a commutative ring in this paper, we introduce only the definition
of this invariant for commutative semigroups here.

Definition A. ( [14], Definition 4.1) For a commutative semigroup S, define the Erdős-Burgess
constant of S, denoted by I(S), to be the least ` ∈ N ∪ {∞} such that every sequence T of terms from
S and of length ` must contain one or more terms whose product is an idempotent.

Note that if the commutative semigroup S is finite, Gillam-Hall-Williams Theorem definitely tells
us that the Erdős-Burgess constant ofS exists, i.e., I(S) ∈ N is finite and bounded above by |S\E(S)|+1.
In particular, when the semigroup S happens to be a finite abelian group, the Erdős-Burgess constant
reduces to a classical combinatorial invariant, the Davenport constant. The Davenport constant of a
finite abelian group G, denoted by D(G), is defined as the smallest positive integer ` such that every
sequence of terms from G of length ` must contain one or more terms with the product being the
identity element of G. This invariant was popularized by H. Davenport in the 1960’s, notably for its
link with algebraic number theory (as reported in [11]). For the progress about D(G), the reader may
consult e.g., [3, 6] on commutative groups, [4, 5] on noncommutative groups, and [2, 12, 13, 17, 18] on
commutative semigroups and commutative rings.

The author [15] obtained some conditions such that the Erdős-Burgess constant exists in general
commutative rings, which is stated in Theorem B below.

• For any commutative unitary ring R, let U(R) be the group of units and SR the multiplicative
semigroup of the ring R.

Theorem B. [15] Let R be a commutative unitary ring. If I(SR) is finite, then one of the following
two conditions holds:
(i) The ring R is finite;

(ii) The Jacobson radical J(R) is finite and R�J(R) � B×
t∏

i=1
Fqi , where B is an infinite Boolean unitary

ring, and Fq1 , . . . ,Fqt are finite fields with 0 ≤ t ≤ I(SR) − 1 and prime powers q1, . . . , qt > 2.
The above Theorem B asserts that the Erdős-Burgess constant exists only for finite commutative

rings except for a family of infinite commutative rings with very special forms given as (ii) above.
That is, to study this invariant in the realm of commutative rings, we may consider it only for finite
commutative rings. Recently, J. Hao et al. obtained a sharp lower bound of the Erdős-Burgess constant
in two classes of finite commutative rings, i.e., in the residue class ring Z�nZ and in the quotient ring
Fq[x]�K of the polynomial ring Fq[x] modulo a nonzero proper ideal K, which are stated as Theorem
C and Theorem D below.

Theorem C. [16] Let q be a prime power, and let Fq[x] be the ring of polynomials over the finite
field Fq. Let R = Fq[x]�K be a quotient ring of Fq[x] modulo any nonzero proper ideal K. Then
I(SR) ≥ D(U(R)) + Ω(K) − ω(K), where Ω(K) is the number of the prime ideals (repetitions are
counted) and ω(K) the number of distinct prime ideals in the factorization when K is factored into a
product of prime ideals. Moreover, equality holds for the case when K is factored into either a power
of some prime ideal or a product of some pairwise distinct prime ideals.

Theorem D. [9] Let n > 1 be an integer, and let R = Z�nZ be the ring of integers modulo n. Then
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I(SR) ≥ D(U(R)) + Ω(n) − ω(n), where Ω(n) is the number of primes occurring in the prime-power
decomposition of n counted with multiplicity, and ω(n) is the number of distinct primes. Moreover,
equality holds if n is a prime power or a product of pairwise distinct primes.

Note that both the ring Fq[x] of polynomials over a finite field and the ring Z of integers are principal
ideal domains and definitely are Dedekind domains, in which every nonzero proper ideal has a unique
factorization as a product of prime ideals (which are also maximal ideals). N. Kravitz et al. [10]
completely generalized Theorems C and D to the finite quotient ring of any Dedekind domain. For a
Dedekind domain D and a nonzero proper ideal K of D, let Ω(K) be the total number of prime ideals
in the prime ideal factorization of K (with multiplicity), and let ω(K) be the number of distinct prime
ideals in this factorization.

Theorem E. [10] Let D be a Dedekind domain and K a nonzero proper ideal of D such that R = D�K
is a finite ring. Then I(SR) ≥ D(U(R)) + Ω(K) − ω(K). Moreover, equality holds if K is either a power
of a prime ideal or a product of distinct prime ideals.

In this paper, we shall obtain a sharp lower bound for the Erdős-Burgess constant of a general
finite commutative unitary ring, which generalizes Theorem E, and definitely deduces Theorem C and
Theorem D as consequences. To give the theorem, we need one notion as follows.

Let R be a finite commutative unitary ring, and let N be an ideal of R. For any nonnegative integer
i, let N i be the i-th power of the ideal N. In particular, we define N0 = R. Define the index of the
ideal N, denoted by Ind(N), to be the least nonnegative integer k such that Nk = Nk+1, equivalently, the
descending chain of ideals N0 ) N1 ) · · · ) Nk = Nk+1 = Nk+2 = · · · becomes stationary starting from
Nk. Now we are in a position to give the theorem of this paper.

Theorem 1.1. Let R be a finite commutative unitary ring. Then

I(SR) ≥ D(U(R)) +
∑

M

(Ind(M) − 1)

where M is taken over all distinct maximal ideals of R. Moreover, equality holds if R is a local ring or
all its maximal ideals have the indices one.

Remark. Since any ideal K is prime if and only if it is maximal in a finite commutative unitary ring,
we can restate Theorem 1.1 in terms of prime ideals of R as the following theorem. Moreover, we will
show that Theorem 1.1 implies Theorem E, and therefore Theorem C and Theorem D as consequences
in the final Concluding remarks section.

Theorem. Let R be a finite commutative unitary ring. Then I(SR) ≥ D(U(R)) +
∑
M

(Ind(M) − 1) where

M is taken over all distinct prime ideals of R. Moreover, equality holds if R has a unique prime ideal
or all its prime ideals have the indices one.

2. The proof

To prove Theorem 1.1, we need to introduce some necessary notation and terminology, and follow
the notation of A. Geroldinger, D. J. Grynkiewicz and others used for sequences over groups (see [5]
for example). For integers a, b ∈ Z, we set [a, b] = {x ∈ Z : a ≤ x ≤ b}. Let R be a finite commutative
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unitary ring with multiplication *, an element e in R is called an idempotent if e ∗ e = e. A sequence T
of terms from R is a multi-set for which the repetitions of terms are allowed, denoted as

T = a1a2 · . . . · a` = •
i∈[1,`]

ai (2.1)

where ai ∈ R for each i ∈ [1, `]. By · we denote the concatenation of sequences which differs from the
notation * used for the multiplication of the ring R. By |T | we denote the length of the sequence T . In
particular, |T | = ` for the sequence T in (2.1). Since the ring R is commutative and the order of terms
of T does not matter for the combinatorial property of sequences which will be investigated here, then
for any permutation τ of [1, `] we always identify aτ(1)aτ(2) · . . . ·aτ(`) with the sequence T given in (2.1).
For any subset X ⊆ [1, `], we say T ′ = •

i∈X
ai is a subsequence of T , denoted by T ′ | T , and in particular

we call T ′ a proper [resp. nonempty] subsequence of T if X , [1, `] [resp. if X , φ]. By ε we denote
the empty sequence with |ε| = 0, which is a proper subsequence of every nonempty sequence. Let
π(T ) =

∏
i∈[1,`]

ai = a1 ∗ a2 ∗ · · · ∗ a` be the product of all terms of T . We adopt the convention that

π(ε) = 1R. By
∏

(T ) we denote the set of elements of R that can be represented as a product of one or
more terms from T , i.e.,∏

(T ) = {π(T ′) : T ′ is taken over all nonempty subsequences of T }.

We call T an idempotent-product free sequence provided that no idempotent of R can be represented
as a product of one or more terms from T , i.e.,

∏
(T ) contains no idempotent.

Proof of Theorem 1.1. Let M1, . . . ,Mr be all maximal ideals of R with indices k1, . . . , kr respectively,
where r ≥ 1. For each i ∈ [1, r], since Mki−1

i ) Mki
i , we can take some element xi of Mki−1

i \ Mki
i . Since

xi is a finite sum of products of the form a1 ∗ a2 ∗ · · · ∗ aki−1 where a1, a2, . . . , aki−1 ∈ Mi, it follows that
there exist ki − 1 elements, say yi,1, . . . , yi,ki−1 ∈ Mi such that

yi,1 ∗ · · · ∗ yi,ki−1 ∈ Mki−1
i \ Mki

i .

Note that ∏
j∈Ji

yi, j ∈ M |Ji |

i \ M|Ji |+1
i for any i ∈ [1, r] and any subset Ji ⊆ [1, ki − 1]. (2.2)

Since Mk1
1 , . . . ,M

kr
r are pairwise coprime ideals of R, by the Chinese Remainder Theorem, for any

i ∈ [1, r] and j ∈ [1, ki − 1], we can find an element ỹi, j of R such that

ỹi, j ≡ yi, j (mod Mki
i ) (2.3)

and
ỹi, j ≡ 1R (mod Mkt

t ) where t ∈ [1, r] \ {i}. (2.4)

By the definition of the Davenport constant, we can take a sequence V of terms from the group U(R)
with length

|V | = D(U(R)) − 1 (2.5)

such that the identity element 1R of the group U(R) can not be represented as a product of one or more
terms from V , i.e.,

1R <
∏

(V). (2.6)
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Let
T = V · ( •

j∈[1,k1−1]
ỹ1, j) · . . . · ( •

j∈[1,kr−1]
ỹr, j). (2.7)

Assertion. The sequence T is idempotent-product free.
Proof. Assume to the contrary that T contains a nonempty subsequence T ′ such that π(T ′) is an
idempotent. Since 1R is the unique idempotent in U(R), it follows from (2.6) that at least one term of
( •

j∈[1,k1−1]
ỹ1, j) · . . . · ( •

j∈[1,kr−1]
ỹr, j) appears in the sequence T ′, then by rearranging the indices i ∈ [1, r]

and j ∈ [1, ki − 1] we may assume without loss of generality that

T ′ = V ′ ·W ′ · ( •
j∈[1,n]

ỹ1, j) (2.8)

where V ′ | V ,
W ′ | ( •

j∈[1,k2−1]
ỹ2, j) · . . . · ( •

j∈[1,kr−1]
ỹr, j) (2.9)

and
1 ≤ n ≤ k1 − 1. (2.10)

Note that V ′ and W ′ in (2.8) are allowed to be empty sequences ε. By (2.2), we have that

π( •
j∈[1,n]

y1, j) ∈ Mn
1 \ Mn+1

1 . (2.11)

It follows from (2.3), (2.4) and (2.9) that for any h ∈ [0, k1],

π(W ′ · ( •
j∈[1,n]

ỹ1, j)) = π(W ′) ∗ π( •
j∈[1,n]

ỹ1, j) ≡ 1R ∗ π( •
j∈[1,n]

y1, j) = π( •
j∈[1,n]

y1, j) (mod Mh
1). (2.12)

Since π(V ′) ∈ U(R), it follows from (2.8) that π(T ′) = π(V ′) ∗ π(W ′ · ( •
j∈[1,n]

ỹ1, j)) is an associate of

π(W ′ · ( •
j∈[1,n]

ỹ1, j)). Combined with (2.11) and (2.12), we conclude that

π(T ′) ∈ Mn
1 \ Mn+1

1 . (2.13)

Since π(T ′) is an idempotent, it follows from (2.10) that π(T ′) = π(T ′) ∗ π(T ′) ∈ M2n
1 ⊆ Mn+1

1 , a
contradiction with (2.13). This proves the assertion. �

By (2.5), (2.7) and the assertion above, we have I(SR) ≥ |T |+ 1 = D(U(R)) +
r∑

i=1
(ki−1) = D(U(R)) +

r∑
i=1

(Ind(Mi) − 1) proved. It remains to show the equality I(SR) = D(U(R)) +
r∑

i=1
(ki − 1) in the case when

R is a local ring or all maximal ideals of R have the indices one, i.e., when r = 1 or k1 = · · · = kr = 1.

Since R is Artinian, we know that the Jacobson radical J(R) =
r⋂

i=1
Mi =

r∏
i=1

Mi is nilpotent (also as

remarked in Section 1 since R is finite then M1, . . . ,Mr are all distinct prime ideals of R and
r⋂

i=1
Mi =⋂

P is a prime ideal of R
P = nil(R) is the nilradical of R), i.e., (

r∏
i=1

Mi)N = 0 for some positive integer N. This

implies that
r∏

i=1

Mki
i = 0 (2.14)
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is the zero ideal of R.
Now we suppose r = 1, i.e., M1 is the unique maximal ideal. To prove I(SR) = D(U(R))+

r∑
i=1

(ki−1) =

D(U(R)) + k1 − 1, take an arbitrary sequence L of terms from R of length D(U(R)) + k1 − 1, it suffices
to show that L is not idempotent-product free. Since U(R) = R \ M1, we have a partition L = L1 · L2

where L1 is a sequence of terms from U(R) and L2 is a sequence of terms from M1. By the pigeonhole
principle, we have that either (i) |L1| ≥ D(U(R)), or (ii) |L2| ≥ k1. If (i) holds, then 1R ∈

∏
(L1) ⊆

∏
(L),

and so L is not idempotent-product free. Otherwise, (ii) |L2| ≥ k1 holds, by (2.14), then π(L2) ∈ Mk1
1 = 0

which implies that π(L2) = 0R is an idempotent, done.

Suppose k1 = · · · = kr = 1. To prove I(SR) = D(U(R)) +
r∑

i=1
(ki − 1) = D(U(R)), we take an arbitrary

sequence L of terms from R and of length D(U(R)). It suffices to show that L is not idempotent-product
free. By the Chinese Remainder Theorem, for any term a of L we can take an element a′ ∈ R such that
for each i ∈ [1, r],

a′ ≡
{

1R (mod Mi) if a ∈ Mi;
a (mod Mi) otherwise.

(2.15)

It follows that a′ < M1 ∪ · · · ∪ Mr and so a′ ∈ U(R). Since | •
a|L

a′| = |L| = D(U(R)), it follows that

1R ∈
∏

( •
a|L

a′), i.e., there exists a nonempty subsequence W of L such that
∏
a|W

a′ = 1R. Combined with

(2.15), we derive that for each i ∈ [1, r], either π(W) ≡ 0R (mod Mi) or π(W) ≡
∏
a|W

a′ = 1R (mod Mi),

which implies π(W) ∗ π(W) ≡ π(W) (mod Mi) in any case. Then π(W) ∗ π(W) ≡ π(W) (mod
r⋂

i=1
Mi).

By (2.14),
r⋂

i=1
Mi =

r∏
i=1

Mi = 0, we have that π(W) ∗ π(W) = π(W) and so L is not idempotent-product

free. This completes the proof of the theorem. �

3. Concluding remarks

To show that Theorem 1.1 implies Theorem E, we shall prove the fact that in Theorem E the quantity
Ω(K) − ω(K) coincides with

∑
M

(Ind(M) − 1), where M is taken over all distinct maximal ideals of the

quotient ring D�K. The arguments are as follows.
Proof. Since D is a Dedekind domain, then the nonzero proper ideal K has a prime factorization,
say K = Pk1

1 ∗ Pk2
2 ∗ · · · ∗ Pkr

r where r > 0, P1, P2, . . . , Pr are distinct prime ideals (maximal ideals)
and k1, k2, . . . , kr > 0. Let θ : D → D�K be the canonical epimorphism of D onto the quotient ring
D�K. Since P1, . . . , Pr are all maximal ideals containing Ker(θ) = K in the ring D , we know that
θ(P1), θ(P2), . . . , θ(Pr) are all distinct maximal ideals of D�K. We see that Pi ) P2

i ) · · · ) Pki
i , Pti

i ⊇ K
and θ(Pi)ti = θ(Pti

i ) where i ∈ [1, r] and ti ∈ [1, ki]. It follows that θ(Pi) ) θ(Pi)2 ) · · · ) θ(Pi)ki , and so

Ind(θ(Pi)) ≥ ki for each i ∈ [1, r]. (3.1)

On the other hand, for each i ∈ [1, r] we have that θ−1(θ(Pki+1
i )) = Pki+1

i + K = Pki+1
i +

∏
j∈[1,r]

Pk j

j =

Pki
i ∗ (Pi +

∏
j∈[1,r]\{i}

Pk j

j ) = Pki
i ∗R = Pki

i = Pki
i +
∏

j∈[1,r]
Pk j

j = Pki
i + K = θ−1(θ(Pki

i )). Since θ is surjective, we

derive that θ(Pki+1
i ) = θ(Pki

i ) and so θ(Pi)ki+1 = θ(Pi)ki . Combined with (3.1), we have that Ind(θ(Pi)) =
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ki for each i ∈ [1, r]. Then Ω(K) − ω(K) =
r∑

i=1
ki − r =

r∑
i=1

(Ind(θ(Pi)) − 1) =
∑
M

(Ind(M) − 1) where M is

taken over all distinct maximal ideals of D�K, done. �
We close this paper with the following problem.

Problem. Let R be a finite commutative unitary ring. Determine when I(SR) = D(U(R))+
∑
M

(Ind(M)−1)

where M is taken over all distinct maximal ideals of R.
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