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1. Introduction

LetA denote the class of functions of the form

f (z) = z +

∞∑
n=2

anzn (1.1)

which are analytic in the open unit disk D = {z : z ∈ C and |z| < 1}. Further, by S we shall denote the
class of all functions inA which are univalent in D.

For analytic functions f and g in D, f is said to be subordinate to g if there exists an analytic
function w such that

w(0) = 0, |w(z)| < 1 and f (z) = g(w(z)), z ∈ D.

This subordination will be denoted here by

f ≺ g, z ∈ D
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or, conventionally, by
f (z) ≺ g(z), z ∈ D.

In particular, when g is univalent in D,

f ≺ g (z ∈ D) ⇔ f (0) = g(0) and f (D) ⊂ g(D).

Let P denote the class of functions of the form

p(z) = 1 + p1z + p2z2 + p3z3 + · · · , z ∈ D (1.2)

which are analytic with < {p(z)} > 0. Here p(z) is called as Caratheodory functions [1]. It is well
known that the following correspondence between the class P and the class of Schwarz functions w
exists: p ∈ P if and only if p(z) = 1 + w(z) / 1 − w(z). Let P(β), 0 ≤ β < 1, denote the class of analytic
functions p in D with p(0) = 1 and<{p(z)} > β.

Recently, Sokół [2] and Dziok et al. [3] studied the classes SL( p̃) and KSL( p̃) of shell-like
functions and convex shell-like functions which are characterized by z f ′ / f (z) ≺ p̃(z) or
1 + z2 f ′′ / f ′(z) ≺ p̃(z), where p̃(z) = (1 + τ2z2) / (1 − τz − τ2z2), τ = (1 −

√
5) / 2 ≈ −0.618 [4, 5] and

the function p̃ is not univalent in D, but it is univalent in the disc |z| < (3 −
√

5) / 2 ≈ 0.38. For
example, p̃(0) = p̃ (−1 / 2τ) = 1 and p̃ (e∓ arccos (1/4)) = 1 /

√
5 and it may also be noticed that

1 / |τ| = |τ| / 1 − |τ| which shows that the number |τ| divides [0, 1] such that it fulfills the golden
section. The image of the unit circle |z| = 1 under p̃ is a curve described by the equation given by(
10x −

√
5
)

y2 =
(√

5 − 2x
) (√

5x − 1
)2
, which is translated and revolved trisectrix of Maclaurin. The

curve p̃
(
reit

)
is a closed curve without any loops for 0 < r ≤ r0 = (3 −

√
5) / 2 ≈ 0.38. For r0 < r < 1,

it has a loop and for r = 1, it has a vertical asymptote. Since τ satisfies the equation τ2 = 1 + τ, this
expression can be used to obtain higher powers τn as a linear function of lower powers, which in turn
can be decomposed all the way down to a linear combination of τ and 1. The resulting recurrence
relationships yield Fibonacci numbers un as

τn = unτ + un−1.

Also, Raina and Sokół [5] proved that

p̃(z) =
1 + τ2z2

1 − τz − τ2z2

=

(
t +

1
t

)
t

1 − t − t2

=
1
√

5

(
t +

1
t

) (
1

1 − (1 − τ)t
−

1
1 − τt

)
=

(
t +

1
t

) ∞∑
n=2

(1 − τ)n − τn

√
5

tn

=

(
t +

1
t

) ∞∑
n=2

untn
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= 1 +

∞∑
n=2

(un−1 + un+1) τnzn,

where

un =
(1 − τ)n − τn

√
5

, τ =
1 −
√

5
2

, n = 1, 2, · · · .

This shows that the relevant connection of p̃ with the sequence of Fibonacci numbers un, such that

u0 = 0, u1 = 1, un+2 = un + un+1, n = 0, 1, 2, 3, · · · .

Hence

p̃(z) = 1 +

∞∑
n=1

p̃nzn

= 1 + (u0 + u2) τz + (u1 + u3) τ2z2 +

∞∑
n=3

(un−3 + un−2 + un−1 + un) τnzn

= 1 + τz + 3τ2z2 + 4τ3z3 + 7τ4z4 + 11τ5z5 + · · · . (1.3)

We note that the function p̃ belongs to the class P(β) with β =

√
5

10
≈ 0.2236 [5].

It is well known that every function f ∈ S has an inverse f −1, defined by

f −1( f (z)) = z, z ∈ D

and
f ( f −1(w)) = w, |w| < r0( f ); r0( f ) =

1
4
,

where
f −1(w) = w − a2w2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.4)

A function f ∈ A is said to be bi-univalent in D if both f (z) and f −1(z) are univalent in D. Let Σ

denote the class of bi-univalent functions in D given by (1.1) for more details one can refer [6–13] and
references therein. Also the various subclasses of bi-univalent functions related to shell-like curves
were studied in [14–16].

Recently, the initial coefficient estimates are found for functions in the class of bi-univalent
functions defined through certain polynomials like the Faber polynomial, the Lucas polynomial, the
Chebyshev polynomial, the Gegenbauer polynomial and the Meixner-Pollaczek polynomial.
Motivated in this line, in the present work, we introduce the following new subclass of bi-univalent
function, as follows:

Definition 1.1. A function f ∈ Σ of the form (1.1) belongs to the class BSLµ, δ, λ
Σ

( p̃), µ ≥ 0, λ ≥ 1,
δ ≥ 0, if the following conditions are satisfied:

(1 − λ)
(

f (z)
z

)µ
+ λ f ′(z)

(
f (z)
z

)µ−1

+ ξδz f ′′(z) ≺ p̃(z) =
1 + τ2z2

1 − τz − τ2z2 , z ∈ D
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and for g(w) = f −1(w)

(1 − λ)
(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

+ ξδwg′′(w) ≺ p̃(w) =
1 + τ2w2

1 − τw − τ2w2 , w ∈ D,

where τ =
1 −
√

5
2

≈ −0.618 and ξ =
2λ+µ

2λ+1 .

By suitably specializing the values of µ, λ and δ, the class BSLµ, δ, λ
Σ

( p̃) reduces to various new
subclasses, we illustrate the following subclasses:

1. For δ = 0, we get the class BSLµ, 0, λ
Σ

( p̃) ≡ NSLµ, λ
Σ

( p̃). A function f ∈ Σ of the form (1.1) is
said to be in NSLµ, λ

Σ
( p̃(z)), if the following conditions

(1 − λ)
(

f (z)
z

)µ
+ λ f ′(z)

(
f (z)
z

)µ−1

≺ p̃(z) =
1 + τ2z2

1 − τz − τ2z2 , z ∈ D

and for g(w) = f −1(w)

(1 − λ)
(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

≺ p̃(w) =
1 + τ2w2

1 − τw − τ2w2 , w ∈ D,

hold, where τ =
1 −
√

5
2

≈ −0.618.

2. For λ = 1 and δ = 0, we get the class BSLµ, 0, 1
Σ

(p̃) ≡ RSLµ
Σ
(p̃). A function f ∈ Σ of the

form (1.1) is said to be in RSLµ
Σ
( p̃), if the following conditions

f ′(z)
(

f (z)
z

)µ−1

≺ p̃(z) =
1 + τ2z2

1 − τz − τ2z2 , z ∈ D

and for g(w) = f −1(w)

g′(w)
(
g(w)

w

)µ−1

≺ p̃(w) =
1 + τ2w2

1 − τw − τ2w2 , w ∈ D,

hold, where τ =
1 −
√

5
2

≈ −0.618.

3. For µ = 1, we get the class BSL1, δ, λ
Σ

( p̃) ≡ WSLδ, λ
Σ

( p̃). A function f ∈ Σ of the form (1.1) is
said to be inWSLδ, λ

Σ
( p̃), if the following conditions

(1 − λ)
f (z)
z

+ λ f ′(z) + δz f ′′(z) ≺ p̃(z) =
1 + τ2z2

1 − τz − τ2z2 , z ∈ D

and for g(w) = f −1(w)

(1 − λ)
g(w)

w
+ λg′(w) + δwg′′(w) ≺ p̃(w) =

1 + τ2w2

1 − τw − τ2w2 , w ∈ D,

hold, where τ =
1 −
√

5
2

≈ −0.618.
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4. For λ = µ = 1, we get the class BSL1, δ, 1
Σ

(p̃) ≡ FSLΣ(δ, p̃). A function f ∈ Σ of the form (1.1)
is said to be in FSLΣ(δ, p̃), if the following conditions

f ′(z) + δz f ′′(z) ≺ p̃(z) =
1 + τ2z2

1 − τz − τ2z2 , z ∈ D

and for g(w) = f −1(w)

g′(w) + δwg′′(w) ≺ p̃(w) =
1 + τ2w2

1 − τw − τ2w2 , w ∈ D,

hold, where τ =
1 −
√

5
2

≈ −0.618.

5. For µ = 1 and δ = 0, we obtain the class BSL1, 0, λ
Σ

( p̃),≡ BSLΣ(λ, p̃). A function f ∈ Σ of the
form (1.1) is said to be in BSLΣ(λ, p̃(z)), if the following conditions

(1 − λ)
f (z)
z

+ λ f ′(z) ≺ p̃(z) =
1 + τ2z2

1 − τz − τ2z2 , z ∈ D

and for g(w) = f −1(w)

(1 − λ)
g(w)

w
+ λg′(w) ≺ p̃(w) =

1 + τ2w2

1 − τw − τ2w2 , w ∈ D,

hold, where τ =
1 −
√

5
2

≈ −0.618.

6. For λ = 1, µ = 1 and δ = 0, we have the class BSL1, 0, 1
Σ

( p̃) ≡ HSLΣ( p̃). A function f ∈ Σ of the
form (1.1) is said to be inHSLΣ( p̃), if the following conditions

f ′(z) ≺ p̃(z) =
1 + τ2z2

1 − τz − τ2z2 , z ∈ D

and for g(w) = f −1(w)

g′(w) ≺ p̃(w) =
1 + τ2w2

1 − τw − τ2w2 , w ∈ D,

hold, where τ =
1 −
√

5
2

≈ −0.618.

In order to prove our results for the functions in the class BSLµ, δ, λ
Σ

( p̃), we need the following lemma.

Lemma 1.1. [10] If p ∈ P, then |pi| 5 2 for each i, where P is the family of all functions p, analytic
in D, for which

<{p(z)} > 0 (z ∈ D),

where
p(z) = 1 + p1z + p2z2 + · · · (z ∈ D).

In this investigation, we find the estimates for the coefficients |a2| and |a3| for functions in the class
BSL

µ, δ, λ
Σ

(p̃) and its special cases. Also, Fekete-Szegö inequality for functions in this subclass.
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2. Coefficient estimates and Fekete-Szegö inequality

In the following theorem, we discuss coefficient estimates and Fekete-Szegö inequality for functions
in the class f ∈ BSLµ, δ, λ

Σ
( p̃).

Theorem 2.1. Let f (z) = z +
∞∑

n=2
anzn be in the class BSLµ, δ, λ

Σ
( p̃). Then

|a2| ≤ |τ|

√
2
M
, |a3| ≤

[
(2λ + µ) (µ − 1) τ + 2(1 − 3τ)(λ + µ + 2ξδ)2

]
|τ|

M (2λ + µ + 6ξδ)

and for ν ∈ R,

∣∣∣a3 − νa2
2

∣∣∣ ≤


|τ|

2λ + µ + 6ξδ
; 0 ≤ |ν − 1| ≤

M
2 (2λ + µ + 6ξδ) |τ|

2 |1 − ν| τ2

M
; |ν − 1| ≥

M
2 (2λ + µ + 6ξδ) |τ|

,

where

M =
[
τ
[
(2λ + µ)(µ + 1) + 12ξδ

]
+ 2(1 − 3τ)(λ + µ + 2ξδ)2

]
.

Proof. Since f ∈ BSLµ, δ, λ
Σ

(p̃), from the Definition 1.1, we have

(1 − λ)
(

f (z)
z

)µ
+ λ f ′(z)

(
f (z)
z

)µ−1

+ ξδz f ′′(z) = p̃(p(z)) (2.1)

and for g = f −1

(1 − λ)
(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

+ ξδwg′′(w) = p̃(q(w)), (2.2)

where z, w ∈ D. Using the fact the function p of the form (1.2) and p ≺ p̃. Then there exists an analytic
function p such that |p(z)| < 1 in D and p(z) = p̃(p(z)). Therefore, define the function

h(z) =
1 + p(z)
1 − p(z)

= 1 + p1z + p2z2 + · · ·

is in the class P. It follows that

p(z) =
h(z) − 1
h(z) + 1

=
p1

2
z +

(
p2 −

p2
1

2

)
z2

2
+

(
p3 − p1 p2 +

p3
1

4

)
z3

2
+ · · ·

and

p̃(p(z)) = 1 + p̃1

(
p1

2
z +

(
p2 −

p2
1

2

)
z2

2
+

(
p3 − p1 p2 +

p3
1

4

)
z3

2
+ · · ·

)
+p̃2

(
p1

2
z +

(
p2 −

p2
1

2

)
z2

2
+

(
p3 − p1 p2 +

p3
1

4

)
z3

2
+ · · ·

)2
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+p̃3

(
p1

2
z +

(
p2 −

p2
1

2

)
z2

2
+

(
p3 − p1 p2 +

p3
1

4

)
z3

2
+ · · ·

)3

+ · · ·

= 1 +
p̃1 p1

2
z +

(
1
2

(
p2 −

p2
1

2

)
p̃1 +

p2
1

4
p̃2

)
z2

+

(
1
2

(
p3 − p1 p2 +

p3
1

4

)
p̃1 +

1
2

p1

(
p2 −

p2
1

2

)
p̃2 +

p3
1

8
p̃3

)
z3 + · · · . (2.3)

Similarly, there exists an analytic function v such that |q(w)| < 1 in D and p(w) = p̃(q(w)).
Therefore, the function

k(w) =
1 + q(w)
1 − q(w)

= 1 + q1w + q2w2 + · · ·

is in the class P. It follows that

q(w) =
k(w) − 1
k(w) + 1

=
q1

2
w +

(
q2 −

q2
1

2

)
w2

2
+

(
q3 − q1q2 +

q3
1

4

)
w3

2
+ · · ·

and

p̃(q(w)) = 1 + p̃1

(
q1

2
w +

(
q2 −

q2
1

2

)
w2

2
+

(
q3 − q1q2 +

q3
1

4

)
w3

2
+ · · ·

)
+p̃2

(
q1

2
w +

(
q2 −

q2
1

2

)
w2

2
+

(
q3 − q1q2 +

q3
1

4

)
w3

2
+ · · ·

)2

+p̃3

(
q1

2
w +

(
q2 −

q2
1

2

)
w2

2
+

(
q3 − q1q2 +

q3
1

4

)
w3

2
+ · · ·

)3

+ · · ·

= 1 +
p̃1q1

2
w +

(
1
2

(
q2 −

q2
1

2

)
p̃1 +

q2
1

4
p̃2

)
w2

+

(
1
2

(
q3 − q1q2 +

q3
1

4

)
p̃1 +

1
2

q1

(
q2 −

q2
1

2

)
p̃2 +

q3
1

8
p̃3

)
w3 (2.4)

+ · · · .

By virtue of (2.1), (2.2), (2.3) and (2.4), we have

(λ + µ + 2ξδ) a2 =
p1τ

2
, (2.5)

(2λ + µ)
[(
µ − 1

2

)
a2

2 +

(
1 +

6δξ
2λ + µ

)
a3

]
=

1
2

(
p2 −

p2
1

2

)
τ +

3p2
1

4
τ2, (2.6)

− (λ + µ + 2ξδ) a2 =
q1τ

2
, (2.7)

and

(2λ + µ)
[(
µ + 3

2
+

12δξ
2λ + µ

)
a2

2 −

(
1 +

6δξ
2λ + µ

)
a3

]
=

1
2

(
q2 −

q2
1

2

)
τ +

3q2
1

4
τ2. (2.8)

From (2.5) and (2.7), we obtain
p1 = −q1,
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and

2 (λ + µ + 2ξδ)2 a2
2 =

(p2
1 + q2

1)τ2

4

a2
2 =

(p2
1 + q2

1)τ2

8 (λ + µ + 2ξδ)2 . (2.9)

By adding (2.6) and (2.8), we have

[(2λ + µ)(µ + 1) + 12ξδ]a2
2 =

1
2

(p2 + q2) τ −
1
4

(
p2

1 + q2
1

)
τ +

3
4

(
p2

1 + q2
1

)
τ2. (2.10)

By substituting (2.9) in (2.10), we reduce that

a2
2 =

(p2 + q2) τ2

2
[
τ
[
(2λ + µ)(µ + 1) + 12ξδ

]
+ 2(1 − 3τ)(λ + µ + 2ξδ)2] . (2.11)

Now, applying Lemma 1.1, we obtain

|a2| ≤

√
2 |τ|√

τ
[
(2λ + µ)(µ + 1) + 12ξδ

]
+ 2(1 − 3τ)(λ + µ + 2ξδ)2

. (2.12)

By subtracting (2.8) from (2.6), we obtain

a3 =
(p2 − q2) τ

4 (2λ + µ + 6ξδ)
+ a2

2. (2.13)

Hence by Lemma 1.1, we have

|a3| ≤
(|p2| + |q2|) |τ|

4 (2λ + µ + 6ξδ)
+ |a2|

2
≤

|τ|

2λ + µ + 6ξδ
+ |a2|

2 .

Then in view of (2.12), we obtain

|a3| ≤
|τ|

{
(2 λ + µ) (µ − 1) τ + 2 (1 − 3 τ) (λ + µ + 2 δξ)2

}
(2 λ + µ + 6 δ ξ)

[[
(2 λ + µ) (µ + 1) + 12 δ ξ

]
τ + 2 (1 − 3 τ) (2 δ ξ + λ + µ)2

]
From (2.13), we have

a3 − νa2
2 =

(p2 − q2) τ
4 (2λ + µ + 6ξδ)

+ (1 − ν) a2
2. (2.14)

By substituting (2.11) in (2.14), we have

a3 − νa2
2 =

(p2 − q2) τ
4 (2λ + µ + 6ξδ)

+
(1 − ν) (p2 + q2) τ2

2
[
τ
[
(2λ + µ)(µ + 1) + 12ξδ

]
+ 2(1 − 3τ)(λ + µ + 2ξδ)2]

=

(
h(ν) +

|τ|

4 (2λ + µ + 6ξδ)

)
p2 +

(
h(ν) −

|τ|

4 (2λ + µ + 6ξδ)

)
q2, (2.15)
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where

h(ν) =
(1 − ν) τ2

2
[
τ
[
(2λ + µ)(µ + 1) + 12ξδ

]
+ 2(1 − 3τ)(λ + µ + 2ξδ)2] .

Thus by taking modulus of (2.15), we conclude that

∣∣∣a3 − νa2
2

∣∣∣ ≤


|τ|

2λ + µ + 6ξδ
; 0 ≤ |h(ν)| ≤

|τ|

4 (2λ + µ + 6ξδ)

4 |h(ν)| ; |h(ν)| ≥
|τ|

4 (2λ + µ + 6ξδ)
.

�

3. Corollaries and consequences

In this section, we give coefficient estimates and Fekete-Szegö inequalities for the subclasses of
BSL

µ, δ, λ
Σ

(p̃).

Corollary 3.1. Let f (z) = z +
∞∑

n=2
anzn be in the class NSLµ, λ

Σ
( p̃). Then

|a2| ≤ |τ|

√
2

M1
, |a3| ≤

|τ|
{
(2 λ + µ) (µ − 1) τ + 2 (1 − 3 τ) (λ + µ)2

}
M1 (2 λ + µ)

and for ν ∈ R,

∣∣∣a3 − νa2
2

∣∣∣ ≤


|τ|

2λ + µ
; 0 ≤ |ν − 1| ≤

M1

2 (2λ + µ) |τ|
2 |1 − ν| τ2

M1
; |ν − 1| ≥

M1

2 (2λ + µ) |τ|
,

where

M1 = τ(2λ + µ)(µ + 1) + 2(1 − 3τ)(λ + µ)2.

Corollary 3.2. Let f (z) = z +
∞∑

n=2
anzn be in the class RSLµ

Σ
( p̃). Then

|a2| ≤ |τ|

√
2

M2
, |a3| ≤

|τ|
{
(µ + 2) (µ − 1) τ + 2(1 − 3τ)(1 + µ)2

}
M2 (µ + 2)

and for ν ∈ R,

∣∣∣a3 − νa2
2

∣∣∣ ≤

|τ|

2 + µ
; 0 ≤ |ν − 1| ≤

M2

2 (2 + µ) |τ|
2 |1 − ν| τ2

M2
; |ν − 1| ≥

M2

2 (2 + µ) |τ|
,

where
M2 = 2(1 + µ)2 − (1 + µ)(4 + 5µ)τ.
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Remark 3.1. For µ = 1, results discussed in Corollaries 3.2 is coincides with bounds obtained in [14,
Corollary 1, p.78].

Corollary 3.3. Let f (z) = z +
∞∑

n=2
anzn be in the classWSLδ, λ

Σ
(p̃). Then

|a2| ≤
|τ|
√

M3
, |a3| ≤

2 |τ| (1 − 3τ)(1 + λ + 2δ)2

2M3 (1 + 2λ + 6δ)

and for ν ∈ R,

∣∣∣a3 − νa2
2

∣∣∣ ≤


|τ|

1 + 2λ + 6δ
; 0 ≤ |ν − 1| ≤

M3

(1 + 2λ + 6δ) |τ|
|1 − ν| τ2

M3
; |h(ν)| ≥

M3

(1 + 2λ + 6δ) |τ|
,

where
M3 = τ (1 + 2λ + 6δ) + (1 − 3τ)(1 + λ + 2δ)2.

Corollary 3.4. Let f (z) = z +
∞∑

n=2
anzn be in the class FSLΣ(δ, p̃). Then

|a2| ≤
|τ|
√

M4
, |a3| ≤

8 |τ| (1 − 3τ)(1 + δ)2

6M4 (1 + 2δ)

and for ν ∈ R,

∣∣∣a3 − νa2
2

∣∣∣ ≤

|τ|

3 + 6δ
; 0 ≤ |ν − 1| ≤

M4

(3 + 6δ) |τ|
|1 − ν| τ2

M4
; |ν − 1| ≥

M4

(3 + 6δ) |τ|
,

where
M4 = 3τ (1 + 2δ) + 4(1 − 3τ)(1 + δ)2.

Corollary 3.5. Let f (z) = z +
∞∑

n=2
anzn be in the class BSLΣ(λ, p̃). Then

|a2| ≤
|τ|
√

M5
, |a3| ≤

|τ| (1 − 3τ)(1 + λ)2

(1 + 2λ) M5

and for ν ∈ R,

∣∣∣a3 − νa2
2

∣∣∣ ≤


|τ|

1 + 2λ
; 0 ≤ |ν − 1| ≤

M5

(1 + 2λ) |τ|
|1 − ν| τ2

M5
; |ν − 1| ≥

M5

(1 + 2λ) |τ|
,

where
M5 = τ (1 + 2λ) + (1 − 3τ)(1 + λ)2.
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Corollary 3.6. Let f (z) = z +
∞∑

n=2
anzn be in the classHSLΣ(p̃). Then

|a2| ≤
|τ|

√
4 − 9τ

, |a3| ≤
|τ| {4 − 12τ}

3(4 − 9τ)

and for ν ∈ R,

∣∣∣a3 − νa2
2

∣∣∣ ≤

|τ|

3
; 0 ≤ |ν − 1| ≤

4 − 9τ
3 |τ|

|1 − ν| τ2

4 − 9τ
; |ν − 1| ≥

4 − 9τ
3 |τ|

.

4. Conclusions

In this investigation, we obtain upper bounds for the coefficients |a2|, |a3| and Fekete-Szegö
inequality |a3 − νa2

2| for functions in the class BSLµ, δ, λ
Σ

( p̃). Also, certain special cases are also
discussed.
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7. M. Çağlar, H. Orhan, N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions,
Filomat, 27 (2013), 1165–1171.

AIMS Mathematics Volume 5, Issue 5, 4412–4423.



4423

8. J. M. Jahangiri, S. G. Hamidi, S. Abd. Halim, Coefficients of bi-univalent functions with positive
real part derivatives, Bull. Malays. Math. Sci. Soc., 37 (2014), 633–640.

9. H. Orhan, N. Magesh, V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda bi-
univalent functions, Afr. Mat., 27 (2016), 889–897.

10. C. Pommerenke, Univalent functions, Vandenhoeck Ruprecht, Göttingen, 1975.
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