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1. Introduction

Let A denote the class of functions of the form
=2+ ) az (1.1)
n=2

which are analytic in the open unit disk D = {z : z € C and |z] < 1}. Further, by S we shall denote the
class of all functions in A which are univalent in D.

For analytic functions f and g in D, f is said to be subordinate to g if there exists an analytic
function w such that

w(0) =0, w@l <1 and  f(z) =gw(),  zeD.
This subordination will be denoted here by

f<eg, zeD
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or, conventionally, by
f@) <8, zeD.

In particular, when g is univalent in D,
f<g (zeD) & f(0)=g0) and f(D)c g(D).
Let # denote the class of functions of the form
p@)=1+piz+pd +pd+--, zeD (1.2)

which are analytic with R {p(z)} > 0. Here p(z) is called as Caratheodory functions [1]. It is well
known that the following correspondence between the class # and the class of Schwarz functions w
exists: p € Pifand only if p(z) = 1 + w(z)/ 1 — w(z). Let P(B), 0 < B < 1, denote the class of analytic
functions p in D with p(0) = 1 and R {p(z)} > B.

Recently, Sokét [2] and Dziok et al. [3] studied the classes SL(p) and KSL(p) of shell-like
functions and convex shell-like functions which are characterized by zf'/ f(z) < p(z) or
1+ 221"/ f'(2) < p(z), where p(2) = (1 + 228/ (1 — 12— 220, 7 = (1 — V5)/ 2 ~ —0.618 [4,5] and
the function p is not univalent in D, but it is univalent in the disc |z < (3 — V5)/2 ~ 0.38. For
example, p(0) = p(~1/27) = 1 and p(e¥ arccos (1/4)) = 1/ V5 and it may also be noticed that
1/|r] = |r|/ 1 —|7| which shows that the number |r| divides [0, 1] such that it fulfills the golden
section. The image of the unit circle |z] = 1 under p is a curve described by the equation given by

2
(le — \/5) y2 = (\/5 - Zx) ( Vax — 1) , which is translated and revolved trisectrix of Maclaurin. The
curve ﬁ(re”) is a closed curve without any loops for0 < r <ry = (3 — V3)/2~038. Forry<r<1,
it has a loop and for r = 1, it has a vertical asymptote. Since 7 satisfies the equation 7> = 1 + 7, this
expression can be used to obtain higher powers 7" as a linear function of lower powers, which in turn

can be decomposed all the way down to a linear combination of 7 and 1. The resulting recurrence
relationships yield Fibonacci numbers u,, as

T = U, T+ Uy
Also, Raina and Sokét [5] proved that

1 + 1272
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oo
= 1+ Z (tp—1 + Uni1) T'2",
n=2

where

u_(l—T)"—T” 1-+5
n ﬁ b 2 9

This shows that the relevant connection of p with the sequence of Fibonacci numbers u,, such that

n=1,2, ---

up =0, wur =1, Uy =ty + Uy, n=0,1,23,---.

Hence
PR = 1+ P

(o8]
= 1+ (up+ )tz + (uy +u3) 222 + Z (U3 + Upo + Uy +u,) T'Z"
n=3
1+ 12430722 +40°2 + 72 + 11092 + - (1.3)

— 5
We note that the function p belongs to the class P(8) with 8 = 1i0_ ~ (0.2236 [5].

It is well known that every function f € S has an inverse f~!, defined by

f'(f@)=2  zeD

and .
FFw) =w, wl < ro(f);  ro(f) 2 T

where
f‘l(w) =w—aw + (2a§ —ayw’ — (5a§ — 5ara; + agwt + -+ - . (1.4)

A function f € A is said to be bi-univalent in D if both f(z) and f~!(z) are univalent in D. Let X
denote the class of bi-univalent functions in D given by (1.1) for more details one can refer [6—13] and
references therein. Also the various subclasses of bi-univalent functions related to shell-like curves
were studied in [14—16].

Recently, the initial coefficient estimates are found for functions in the class of bi-univalent
functions defined through certain polynomials like the Faber polynomial, the Lucas polynomial, the
Chebyshev polynomial, the Gegenbauer polynomial and the Meixner-Pollaczek polynomial.
Motivated in this line, in the present work, we introduce the following new subclass of bi-univalent
function, as follows:

Definition 1.1. A function f € X of the form (1.1) belongs to the class BSLY "B u=01>1,
0 > 0, if the following conditions are satisfied:

(I1-2) (@) + /lf’(z)(

Z

@) )““ 1+ 722

—=|  +&67f"(2) < pr) = ———55. z€D
Z l-1z-1%2
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and for g(w) = f~'(w)

1 +7°w?
weD,

u—-1
(1—ﬂ>(g(w)) g (w )(g( )) + Ewg(9) < POw) = -

—Tw — w2’
- V5
LE ~0.618 and £ = 3%,

where T =

By suitably specializing the values of y, A and 6, the class BSLE o4 (p) reduces to various new
subclasses, we illustrate the following subclasses:

1. For 6§ = 0, we get the class BSLy O NSL’;/I(@. A function f € X of the form (1.1) is
said to be in NV SL’; A(Zi(z)), if the following conditions

u-1 1 2.2
(1—1)(]@) rra(L2) <po - 2 zen
and for g(w) = f~'(w)
pu-1
(1—A>(g( )) + 28w )(g( )) <Pow) = — T

5
2

hold, where T = ~ —0.618.

2. For A = 1 and § = 0, we get the class BSLY *' (p) = RSLLD). A function f € X of the
form (1.1) is said to be in RSL;(p), if the following conditions

u-1
f()(f(Z)) <p(z):—1+TZ >, 2€D

1—1z-1%¢

and for g(w) = f~1(w)

u-l 2,2
g'(w )(g( )) <P = —FTY L ep,

hold, where T = L= V5 ~ —0.618.

3. For u = 1, we get the class BSL; R E ‘WSL%” (p). A function f € X of the form (1.1) is
said to be in (WSL'SZ’ (), if the following conditions

_ 1 + 1272
(1—/1)@+1f(z)+5zf @ <PQ) = ————=,z€D
l-1z-1%2
and for g(w) = f~'(w)
(w) 1 +12w?
(1- >L+Ag<w)+6wg (W) <Pw) = ———————. weD,
hold, where T = ! _2\/5 ~ —0.618.
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4. For A = u = 1, we get the class BSL;’ *1(p) = FSLs(8, p). A function f € T of the form (1.1)
is said to be in F SLs (6, p), if the following conditions

, . _ 1 + 727
f@+0ef" (@) <pQ) =y ———55-2€D

-T2 — T2

and for g(w) = f~1(w)

, " — 1 +172w?
g w) +owg"(w) < p(w) = Tow_22 W€ D,
—Tw — 72w
1- V5
hold, where T = 2\/_ ~ —0.618.

5. For u = 1 and 6§ = 0, we obtain the class BSL;’ 0.4 (p),= BSLs(A, p). A function f € X of the
form (1.1) is said to be in BSLx (4, p(z)), if the following conditions

_ 1+ 1222
(1 —/1)@4‘/1]“(2) <p@@)= %, z€D
Z l-—1z-7%2
and for g(w) = f~'(w)
g(w) , _ 1 +1°w?
(I-D=—+2gW) <pw) = ————, weD,
w 1 —7tw—12w?
1 —
hold, where T = 2\/3 ~ —0.618.

6. For A =1, = 1 and § = 0, we have the class BSLy "' (p) = HSLs(p). A function f € X of the
form (1.1) is said to be in HS Ls(p), if the following conditions

— 1 + 7272
f@<Pp@) = ——, z€D
1-17—-1%2
and for g(w) = f~'(w)
_ 1+ 72n?
gw) <pw) = ———2 _ weD,
1—71w— 1202
hold, where T = _2\/5 ~ —0.618.

In order to prove our results for the functions in the class 8SLy >4 (), we need the following lemma.

Lemma 1.1. [I10] If p € P, then |p;| < 2 for each i, where P is the family of all functions p, analytic
in D, for which
Rip}>0  (zeD),

where
p@=1+piz+pZ+--  (zeD).

In this investigation, we find the estimates for the coefficients |a,| and |as| for functions in the class
BSLE o4 (p) and its special cases. Also, Fekete-Szego inequality for functions in this subclass.
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2. Coefficient estimates and Fekete-Szego inequality

In the following theorem, we discuss coeflicient estimates and Fekete-Szego inequality for functions

in the class f € BSLY > (p).

Theorem 2.1. Let f(z) =z + Z a,z" be in the class BSLY o4 (p). Then

|+ ) (= D)7+ 21 = 30)(A + 1 + 26)? ]

|az| < 7] \/

las| <
and forv € R,
|7
— :0<
o | 20+ u+ 688 Y
|Cl3—Va2|S 2|1_V|7.2
e — %
M
where

-1/ >

M (21 + 1 + 6£0)

M
-1 <
2QA+ u+6£9) |1
M

202+ pu+ 6£0) It

= [T [QA+ )+ 1)+ 1266] + 2(1 = 31) (A + pu + 256)2] )

Proof. Since f € BSLY 4 (), from the Definition 1.1, we have

u-1
(1-2) (f (Z)) +Af(z )(f (Z)) + £5217(2) = P(p(2)

and for g = !

u-1
(1—1)(g(w)) g (w )(g( )) + wg”(w) = Pla(w)),

2.1)

(2.2)

where z, w € D. Using the fact the function p of the form (1.2) and p < p. Then there exists an analytic
function p such that |[p(z)| < 1 in D and p(z) = p(p(z)). Therefore, define the function

I+ p2)

WD) = — 2 = 1t pizt padt o+

1-p@)

is in the class P. It follows that

h(z) -1 _ p P\ 2 P\ 2
= = + -—|= - +— =+
p(2) o+l 2 =z ( 2|7 T\t )5
and
2 2 3 3
~ P1 P\ z Pi\z
= 1+ —z+ — = - — =+
p(p(2) D1 ( 573 (p 2) > (P3 DiD2 4) > )
2
PN I R A ¥ PR A E A
P2 2 P 7 |2 D3 — pPip2 4|32
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2\ 2 3\ .3 3
+7 &Z'F _& Z_+ — +& Z_+ RN
pP3 > P2 > 13 pP3 —Pip2 2|3

2 1 P P
= 1+ p12p12+(§ (Pz— ?l)Pl + —1172)

4

| p\_ 1 P\~  Pi-)
- - — - - — — SR ST 2.3
+(2(P3 P1P2+4)P1+2P1(P2 S|Pt gpsfet (2.3)
Similarly, there exists an analytic function v such that |g(w)| < 1 in D and p(w) = p(g(w)).
Therefore, the function
1+ qgw)

1 —gq(w)

k(w) =

is in the class P. It follows that

k(w) — 1 qr\ w* q;\ w?
q(w) = =QW+(qz——1)—+ &= qgp+ o |5+

=1+qw+gw +--

kw)y+1 2 2] 2 4] 2
and
2 2 3 3
— — q;\w q;\w
plgw) = 1+p %W+ 612—31)74' 613—611612+Zl)7
a1 q;\ w2 ;)\ w? ’
D2 5W+ Q2—5)7+ 613—Q1Q2+Z 7+
q1 C]% w? CI? w? ’
D3 5W+ 92—5)74' Q3—Q1QQ+Z)7 IR
D 1 i\~ -
=1 p12q1W+(§(Q2 ?1)19 +ZIP2 w?
1 q; q
+(2( 416124'—) 2—?1)P2+§1P3) . (2.4)
+..
By virtue of (2.1), (2.2), (2.3) and (2.4), we have
A+ +266)ay = P17 ; (2.5)
QA + ) Bt Y L. DA o T+3—p%7’2 (2.6)
W\ )% )BT 2\ P27 4 ‘
—(A+u+2§5)a2:%, 2.7)
and ) X
p+3 1206 66& 1 q 341
24+ —(1+— =—|gp— = |7+ —1". 2.8
( “)(2 2/1+,1“2 M+ B T2\ BT 28)
From (2.5) and (2.7), we obtain
P1 = —q1,
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and
2 L )2
DA rpr2esfad = TITIT 4q1)
2 4+ )2
g = T (2.9)
8 (A + u+ 2£0)
By adding (2.6) and (2.8), we have
2 1 1 2 2 3 2 2\ .2
[QA+ @)+ 1) + 1280105 = 5 (p2+ @) T = 3 (Pt +4qi)T+ 7 (p}+4i) 7 (2.10)
By substituting (2.9) in (2.10), we reduce that
2
ag _ (P2+q)T @2.11)

2[4+ p)(u + 1) + 1285] + 2(1 = 30) (A + p + 260)2]

Now, applying Lemma 1.1, we obtain

laz] < V21 2.12)

VEIQA+ ) + 1) + 1285] + 2(1 — 30)(A + p + 286)2

By subtracting (2.8) from (2.6), we obtain

e = (p2—g2)7 + a2
ST 4QA+u+685) ¥

(2.13)

Hence by Lemma 1.1, we have

2 |7] 2
+ <——+ )
@l < 24 + pu+ 6£6 2|

(Ipal + 1g2D) I7]
424+ + 6£5)

las] <

Then in view of (2.12), we obtain

{QA+ ) (- 1T +2 (1 =37)(A+p+2068)
QA+p+668)|[QA+m) (u+1)+126€]T+2 (1 =37) 26+ A+ p)|

las| <

From (2.13), we have

ar — Va2 = (P2—q)7
PR T 400 + p+ 6€0)

+(1-v)dl. (2.14)

By substituting (2.11) in (2.14), we have

o — v = (P2—q)T + (1-v)(p2+q)T°
P T 40QA+u+686)  2[T[RA+ p)(u + 1) + 1286] + 2(1 = 31)(A + p + 2€0)2]

q2, (2.15)

|7
42+ 1+ 6£5)

|7l

L RToy 6§6))p2 * (h(v) -
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where

(1-v1°

") = e+ i + 1)+ 1280] + 21— 301 + 1 + 26077

Thus by taking modulus of (2.15), we conclude that

Ll |7l
—— ;0<|h(v)| <
24+ 1+ 666 NS o 1+ 6e0)

: |l
41h()| s1h()| 2 Tt 1168

|a3 - va%| <

3. Corollaries and consequences

In this section, we give coeflicient estimates and Fekete-Szego inequalities for the subclasses of

BSLE " (p).

Corollary 3.1. Let f(z) =z + Z a,z" be in the class NSLy (D). Then

| T{QA+w (- DT +2 (1 =37)(A+p)’)
| <[ \/7 las] < M, A+ )
and forv € R,
M'iﬂ ;0§|v—1|32(2;wf1ﬂ)|7|
las = vadl <4 2l e 1> — M
M, ’ T2QA+wl’
where

My =1QA+ )+ 1) +2(1 - 30)( + p.

Corollary 3.2. Let f(z) =z + Z a,z" be in the class RSLy(p). Then

el {( +2) (= D7+ 2(1 = 3)(1 + p)?)
las| < |7 \/ las| <

M, (u+2)
and forv € R,
I O<py-1<—21
_) 2+ 22+ w1
|a3 va2|_ 211 —v|7? 1| M,
— -z,
M, 22+
where

M, =2(1 + u)* = (1 + )4 + Sp)t.
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Remark 3.1. For u = 1, results discussed in Corollaries 3.2 is coincides with bounds obtained in [14,
Corollary 1, p.78].

Corollary 3.3. Let f(z) =z + i a,7" be in the class (WSL% Y (D). Then

7| 2 (1 =37)(1 + A+ 2(5)2
lay| < , laz| <
VM5 2M5 (1 + 24 + 66)
and forv € R,
M
S L B O v—1]< :
) 1+21+66 (I +24+60)|7]
|a3 - va2| S -y 5 M;
- . >
M, Ol = e T
where

My =71(1+21+66)+ (1 =37)1+ A+ 26)>°.

Corollary 3.4. Let f(z) =z + § a,7" be in the class ¥ SLs(6, p). Then
n=2

7| 8l (1 =37)(1+ 6)2
|aZ| S ’ |a3| S
VM, 6M, (1 + 25)
and forv € R,
M
7 0<py—1]< ——t —
_ vl < 3+ 60 B +69) |1
jas —vas| <3 )2 . M,
- ey = > - 00
U e
where

M, =37(1 +26) +4(1 = 37)(1 + 6)°.

Corollary 3.5. Let f(z) =z + § a,7" be in the class BSLs(A, p). Then
n=2

7] It (1 = 37)(1 + 2)?
lay| < , las| <
VM (1 +22)Ms
and forv € R,
M
i 0<py-1]< —3
» 1422 (1 +22)|7]
jas = var] <9 T2 | Ms
- ey = > -
AL T an iy
where

Ms=71(1+22) + (1 =37)(1 + 2>
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Corollary 3.6. Let f(z) = z + f} a,7" be in the class HSLs(p). Then
n=2

|l |7l {4 — 127}
las| <€ ————+

VA= o7 3(4-91)

la,| <

and forv € R,
T 4-971
u 0<|v—1]<
| 2|< 3 37
BVBIZY 1=y 4 -91
slv=11>
4-971 37|

4. Conclusions

In this investigation, we obtain upper bounds for the coefficients |a,|, |as| and Fekete-Szego
inequality |a; — va%l for functions in the class BSLy o4 (p). Also, certain special cases are also
discussed.
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