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1. Introduction

The ν-weighted arithmetic mean−geometric mean inequality or ν-weighted AM −GM inequality
is the following statement: If a, b ≥ 0 and 0 ≤ ν ≤ 1, then

aνb1−ν ≤ νa + (1 − ν)b (1.1)

holds with equality if and only if a = b. The inequality (1.1) for ν = 1/2 reduces to the arithmetic
mean-geometric mean inequality or AM −GM inequality

√
ab ≤

a + b
2

. (1.2)

The Heinz mean, introduced in Bhatia and Davis [2], is defined by

Hν(a, b) =
aνb1−ν + a1−νbν

2
(1.3)

for 0 ≤ ν ≤ 1 and a, b ≥ 0. We know that

√
ab ≤ Hν(a, b) ≤

a + b
2

. (1.4)
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In [3], Bhatia defined the weighted mean of arithmetic mean and geometric mean as Heron means,
wrote it as

Fα(a, b) = (1 − α)G(a, b) + αA(a, b) = (1 − α)
√

ab + α
a + b

2
, (1.5)

and got the following result about Heinz and the Heron means.

Proposition 1.1. Let a, b ≥ 0, 0 ≤ ν ≤ 1, and α (ν) = 1 − 4
(
ν − ν2

)
. Then

Hν(a, b) ≤ Fα(ν)(a, b). (1.6)

Kittaneh, Moslehian and Sababheh come to the above conclusion from the main one
(see [4, Theorem 2.1]), which is handled skillfully and is also used by Sababheh [5] on other means.
The first objective of this paper is to sharpen the above inequality and obtain the result.

Theorem 1.1. Let a, b > 0, a , b, 0 < ν < 1, and θ = 1 − 2ν. Then

Hν(a, b) < Fθ2(a, b) (1.7)

holds, where θ2 can not be replaced by any smaller number.

We can find that (1.7) contains (1.6) and indicates that θ2 is the best constant in (1.7).
In addition, recently, in [1] Shi gave a lower bound for Heinz mean.

Proposition 1.2. Let a, b > 0, a , b, 0 ≤ ν ≤ 1, α = 1 − 2t, β = 1 − 2s, and β2 > α2/3. Then

Hs(a, b) ≥
a1−tbt − atb1−t

(1 − 2t) (ln a − ln b)
1
√

ab
(1.8)

holds.

We find that there are two issues in above result. First, there should be no
√

ab on the right hand
side of (1.8). This judgement is verified by calculation. Second, under the condition β2 > α2/3, [1]
draw the following conclusion:

cosh βx = 1 +
β2x2

2!
+
β4x4

4!
+ · · · ≥ 1 +

α2x2

3!
+
α4x4

5!
· · · =

sinhαx
αx

.

In fact, the coefficients of the same power in the left-hand side series are not greater than or equal to
the right one, for example, the relationship β4/4! ≥ α4/5! is not true.

The second objective of this paper is to reconstruct relevant results about (1.8) as follows.

Theorem 1.2. Let a, b > 0, a , b, α = 1 − 2t, and β = 1 − 2s. Then
(i) when β2 ≥ α2, we have

a1−tbt − atb1−t

(1 − 2t) (ln a − ln b)
< Hs(a, b); (1.9)

(ii) when β2 ≤ α2/3, we have

a1−tbt − atb1−t

(1 − 2t) (ln a − ln b)
> Hs(a, b). (1.10)
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2. Lemmas

Lemma 2.1 ( [6] ). Let an and bn (n = 0, 1, 2, · · ·) be real numbers, and let the power series A(x) =∑∞
n=0 anxn and B(x) =

∑∞
n=0 bnxn be convergent for |x| < R (R ≤ +∞). If bn > 0 for n = 0, 1, 2, · · ·, and

if cn = an/bn is strictly increasing ( or decreasing ) for n = 0, 1, 2, · · ·, then the function A(x)/B(x) is
strictly increasing ( or decreasing ) on (0,R) (R ≤ +∞).

Lemma 2.2. Let x , 0, and |θ| , 1. Then
(i) when |θ| < 1 the double inequality

0 <
cosh θx − 1
cosh x − 1

< θ2 (2.1)

holds with the best constants 0 and θ2;
(ii) when |θ| > 1 the inequality

cosh θx − 1
cosh x − 1

> θ2 (2.2)

holds with the best constant θ2.

Proof Because the functions involved in this lemma are all even functions, we can assume that
x ∈ (0,∞). Let

A(x) = cosh θx − 1 =

∞∑
n=1

θ2n

(2n)!
x2n :=

∞∑
n=1

anx2n,

B(x) = cosh x − 1 =

∞∑
n=1

1
(2n)!

x2n :=
∞∑

n=1

bnx2n,

where

an =
θ2n

(2n)!
,

bn =
1

(2n)!
> 0.

Then
cn :=

an

bn
= θ2n.

Since {cn}n≥1 is decreasing for |θ| < 1 and increasing for |θ| > 1, by Lemma 2.1 we have that the
function (cosh θx − 1) / (cosh x − 1) is decreasing on (0,∞) for |θ| < 1 and increasing on (0,∞) for
|θ| > 1. In view of

lim
x→0+

cosh θx − 1
cosh x − 1

= c1 = θ2,

lim
x→∞

cosh θx − 1
cosh x − 1

= lim
n→∞

cn = lim
n→∞

θ2n =

{
0, |θ| < 1
∞, |θ| > 1

,

the proof of Lemma 2.2 is complete.
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Lemma 2.3. Let t , 0. Then the double inequality

cosh
1
√

3
t <

sinh t
t

< cosh t (2.3)

holds with the best constants 1/
√

3 and 1.

Proof Using the power series expansions

sinh kt =

∞∑
n=0

k2n+1

(2n + 1)!
t2n+1, cosh kt =

∞∑
n=0

k2n

(2n)!
t2n

we have

cosh t −
sinh t

t
=

∞∑
n=1

1
(2n + 1)!

t2n > 0,

sinh t
t
− cosh

1
√

3
t =

∞∑
n=2

3n − (2n + 1)
3n (2n + 1)!

t2n > 0.

For the reason

cosh
1
√

3
t <

sinh t
t

< cosh t ⇐⇒
1
√

3
<

arccosh
(

sinh t
t

)
t

< 1,

we complete the proof of Lemma 2.3 when proving

lim
t→0+

arccosh
(

sinh t
t

)
t

=
1
√

3
,

lim
t→∞

arccosh
(

sinh t
t

)
t

= 1.

In fact, since

arccoshx = ln
(
x +
√

x2 − 1
)
,[

arccosh
(
sinh t

t

)]′
t

=
t cosh t − sinh t

t
√

sinh2 t − t2
,

by l’Hospital’s rule we have

lim
t→0+

arccosh
(

sinh t
t

)
t

= lim
t→0+

[
arccosh

(
sinh t

t

)]′
t′

= lim
t→0+

t cosh t − sinh t

t
√

sinh2 t − t2
=

1
√

3
,

lim
t→∞

arccosh
(

sinh t
t

)
t

= lim
t→∞

[
arccosh

(
sinh t

t

)]′
t′

= lim
t→∞

t cosh t − sinh t

t
√

sinh2 t − t2
= 1.

AIMS Mathematics Volume 5, Issue 1, 723–731.



727

3. Proofs of main results

3.1. The proof of Theorem 1.1

Since

Hν(a, b) < Fθ2(a, b)⇐⇒
1
2

(b
a

)ν
+

(
b
a

)1−ν < (
1 − θ2

) (b
a

)1/2

+
θ2

2

(
1 +

b
a

)
,

when letting
√

b/a = et the last inequality is equivalent to

e2(1−ν)t + e2νt

2
<

(
1 − θ2

)
et + θ2 1 + e2t

2
⇐⇒

e(1−2ν)t + e(2ν−1)t

2
<

(
1 − θ2

)
+ θ2 et + e−t

2
⇐⇒

cosh (1 − 2ν) t <
(
1 − θ2

)
+ θ2 cosh t ⇐⇒

cosh (1 − 2ν) t − 1
cosh t − 1

< θ2.

Letting θ = 1 − 2ν in Lemma 2.2 we can obtain the above inequality. This completes the proof of
Theorem 1.1.

3.2. The proof of Theorem 1.2

With transformations

α = 1 − 2t, β = 1 − 2s,

x =
1
2

ln
a
b
,

we may come to the conclusions

a1−sbs + asb1−s

2
√

ab
=

(
a
b

)1−s
+

(
a
b

)s

2
√ a

b

=
e2x(1−s)+e2xs

2ex =
e(1−2s)x + e−(1−2s)x

2
(3.1)

=
eβx + e−βx

2
= cosh βx,

a1−tbt − atb1−t

(1 − 2t) ln a
b

1
√

ab
=

(
a
b

)1−t
−

(
a
b

)t

(1 − 2t) ln a
b

1√a
b

=
e2x(1−t)−e2xt

(1 − 2t) ln a
b

1
ex (3.2)

=

[
e(1−2t)x − e−(1−2t)x

]
/2

(1 − 2t)
(

1
2 ln a

b

) =
[eαx − e−αx] /2

αx
=

sinhαx
αx

.

Via (3.1) and (3.2), letting t = αx in Lemma 2.3 we can complete the proof of Theorem 1.2.
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4. Corollary, comparation, and inequalities related to the Heinz operator mean

4.1. Corollary

At the beginning of this section, we want to draw some useful inferences of Theorem 1.2.
(a) Let β = α in (1.9), that is s = t := ν. Then we have

a1−νbν − aνb1−ν

(1 − 2ν) (ln a − ln b)
< Hν(a, b).

(b) Let β = −α in (1.9), that is 1 − t = s := ν. Then we obtain

a1−νbν − aνb1−ν

(1 − 2ν) (ln a − ln b)
=

aνb1−ν − a1−νbν

(2ν − 1) (ln a − ln b)
< Hν(a, b).

(c) Let
√

3β = α or
√

3 (1 − 2s) = 1 − 2t in (1.10), and

√
3 − 1
2

= κ1,

√
3 + 1
2

= κ2,

that is

t =
√

3s −

√
3 − 1
2

=
√

3s − κ1 :=
√

3ν − κ1.

Then we obtain

aκ2−
√

3νb
√

3ν−κ1 − a
√

3ν−κ1bκ2−
√

3ν

√
3 (1 − 2ν) (ln a − ln b)

> Hν(a, b).

Similarly, letting
√

3β = −α in (1.10) gives the above inequality too.
In this way, from Theorem 1.2, we can get the following corollary.

Corollary 4.1. Let a, b > 0, a , b, 0 ≤ ν ≤ 1, ν , 1/2, and

√
3 − 1
2

= κ1,

√
3 + 1
2

= κ2. (4.1)

Then
a1−νbν − aνb1−ν

(1 − 2ν) (ln a − ln b)
< Hν(a, b), (4.2)

and

Hν(a, b) <
aκ2−

√
3νb

√
3ν−κ1 − a

√
3ν−κ1bκ2−

√
3ν

√
3 (1 − 2ν) (ln a − ln b)

(4.3)

hold.
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4.2. Comparation

In fact, we see that (4.2) gives a lower bound for Hν(a, b), while (1.6) or (1.7) and (4.3) show
different upper bounds for Hν(a, b). Here, we get the following result by transforming t = a/b : (1.6)
or (1.7) and (4.3) are equivalent to

tν + t1−ν

2
<

1 + t
2
− 2ν (1 − ν)

(
1 −
√

t
)2

:= r1(ν, t), (4.4)

and
t1−ν + tν

2
<

tκ2−
√

3ν − t
√

3ν−κ1

√
3 (1 − 2ν) (ln t)

= r2(ν, t), (4.5)

respectively, where κ1 and κ2 are defined as (4.1). Since ri(ν, t) = ri(1 − ν, t) for i = 1, 2, we want to
compare the advantages and disadvantages of these two inequalities above as long as we discuss them
in this case ν ∈ (0, 1/2). Numerical experiments show that

r2(ν, t) < r1(ν, t) (4.6)

holds for all t > 0 and 0 < ν < 1/2. So the inequality (4.6) holds for all t > 0 and 0 < ν < 1. Then we
have the following note.

Remark 4.1. The inequality (4.3) is better than the one (1.6) or (1.7).

4.3. Inequalities related to the Heinz operator mean

Now that we have the fact above, we can apply our conclusions to Heinz operator mean on Hilbert
spaces.

Let B+ denotes the set of all positive invertible operators on a Hilbert space H . For A, B ∈ B+ and
ν ∈ [0, 1], the weighted arithmetic operator mean A∇νB, geometric mean A]νB, and the Heinz operator
mean Hν(A, B) are defined as

A∇νB = (1 − ν)A + νB,

A]νB = A1/2
(
A−1/2BA−1/2

)ν
A1/2,

Hν(A, B) =
(
A]νB + A]1−νB

)
/2.

Let ν ∈ [0, 1] and define the function Kν : R+ −→ R by

Kν(x) =

{
xν−x1−ν

ln x , x > 0 and x , 1
2ν − 1, x = 1

.

The function above was first introduced by Kittaneh and Krnic in [7].
Kittaneh and Krnic [7], Zhao, Wu, Cao, and Liao [8] obtained the following result.

Proposition 4.1. Let A and B be two positive and invertible operators. Then

Hν(A, B) ≤ Fα(ν)(A, B)

for ν ∈ [0, 1], where α(ν) = 1 − 4(ν − ν2), and Fα(A, B) is defined by

Fα(A, B) = (1 − α)A]1/2B + αA∇1/2B.
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From Theorem 1.1, we can obtain that

Theorem 4.1. Let A and B be two positive and invertible operators, and θ = 1 − 2ν. Then

Hν(A, B) ≤ Fθ2(A, B) (4.7)

holds, where θ2 can not be replaced by any smaller number.

As for the application of Theorem 1.2 on the same topic, it is not difficult to get the following
results.

Theorem 4.2. Let A and B be two different positive and invertible operators, α = 1−2t, and β = 1−2s.
Then

(i) when β2 ≥ α2, we have

1
2t − 1

A1/2Kt

(
A−1/2BA−1/2

)
A1/2 < Hs(A, B); (4.8)

(ii) when β2 ≤ α2/3, we have

1
2t − 1

A1/2Kt

(
A−1/2BA−1/2

)
A1/2 > Hs(A, B). (4.9)

Remark 4.2. Let s = t. Then β = α, and by (4.8) we have

1
2t − 1

A1/2Kt

(
A−1/2BA−1/2

)
A1/2 < Ht(A, B), (4.10)

which is the result of Remark 2.6 in [1].

Remark 4.3. (4.9) is to correct the conclusion of Theorem 2.5 in [1]. The conclusion of Theorem 2.5
comes from (1.8) which is wrong.

Remark 4.4. For further results of Heinz operator inequalities, interested readers can refer to [9–13].

Acknowledgments

The author is thankful to reviewers for reviewers’ careful corrections and valuable comments on
the original version of this paper. This paper is supported by the Natural Science Foundation of China
grants No.61772025.

Conflict of interest

The author declares no conflict of interest in this paper.

References

1. G. Shi, Generalization of Heinz operator inequalities via hyperbolic functions, J. Math. Inequal.,
13 (2019), 715–724.

AIMS Mathematics Volume 5, Issue 1, 723–731.



731

2. R. Bhatia, C. Davis, More matrix forms of the arithmetic–geometric mean inequality, SIAM J.
Matrix Anal. Appl., 14 (1993), 132–136.

3. R. Bhatia, Interpolating the arithmetic–geometric mean inequality and its operator version, Linear
Algebra Appl., 413 (2006), 355–363.

4. F. Kittaneh, M. S. Moslehian, M. Sababheh, Quadratic interpolation of the Heinz means, Math.
Inequal. Appl., 21 (2018), 739–757.

5. M. Sababheh, On the matrix harmonic mean, J. Math. Inequal., 12 (2018), 901–920.

6. M. Biernacki, J. Krzyz, On the monotonicity of certain functionals in the theory of analytic
functions, Ann. Univ. M. Curie–Sklodowska, 2 (1955), 134–145.

7. F. Kittaneh, M. Krnic, Refined Heinz operator inequalities, Linear Multilinear A., 61 (2013),
1148–1157.

8. J. G. Zhao, J. L. Wu, H. S. Cao, et al. Operator inequalities involving the arithmetic, geometric,
Heinz and Heron means, J. Math. Inequal., 8 (2014), 747–756.

9. M. Bakherad, M. S. Moslehian, Reverses and variations of Heinz inequality, Linear Multilinear
A., 63 (2015), 1972–1980.

10. T. H. Dinh, R. Dumitru, J. A. Franco, The matrix power means and interpolations, Adv. Oper.
Theory, 3 (2018), 647–654.

11. Y. Kapil, C. Conde, M. S. Moslehian, et al. Norm inequalities related to the Heron and Heinz
means, Mediterr. J. Math., 14 (2017), 213.

12. M. Ito, Estimations of the Lehmer mean by the Heron mean and their generalizations involving
refined Heinz operator inequalities, Adv. Oper. Theory, 3 (2018), 763–780.

13. M. Singh, Inequalities involving eigenvalues for difference of operator means, Electron. J. Linear
AL., 27 (2014), 557–568.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 1, 723–731.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Lemmas
	Proofs of main results  
	The proof of Theorem 1.1
	The proof of Theorem 1.2

	Corollary, comparation, and inequalities related to the Heinz operator mean
	Corollary
	Comparation
	Inequalities related to the Heinz operator mean


