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1. Introduction

Wilker [1] proposed two open problems as the following statements:
(@) If 0 < x < /2, then

(sinx)2+tanx >3 (L1
X X

(b) There exists a largest constant ¢ such that

. 2
t
(%) + A 4 e tanx (1.2)
X X
for0 < x < /2.

Sumner et al. [2] affirmed the truth of two problems above and obtained a further results as follows

16 i t 8
Ptanx <[22 + 22 22 Prany, 0<x< 2, (1.3)
o X X 45 2

where 16/7* and 8/45 are the best constants in (1.3).

Some refreshing proofs of inequalities (1.1) and (1.3) can be found in Pinelis [3]. In 2007, the
author of this paper [4] established a new Wilker-type inequality involving hyperbolic functions as
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follows:

inhx\*> tanh 8
simh x| tan x—2>—x3tanhx, x#0, (1.4)
X 45

where 8/45 can not be replaced by any larger number.
In 2011, Sun and Zhu [5] showed another new Wilker-type inequality involving hyperbolic
functions and obtained the following result.

X

x \? X 2
-2 < —x’sinh 1.
(sinhx) +tanhx < 45)C sinh.x, x # 0, (1.5

where 2/45 can not be replaced by any smaller number.
The purpose of this paper is to give three new inequalities of Wilker-type for hyperbolic functions.

Theorem 1. Let x # 0. Then

b\ h b )67
(sm x) Jtanhx (tan x) (1.6)
x x x

holds if and only if a < 8/45.

Theorem 2. The function

2
(sin);x) + tarichx - 2
x3 tanh x
has only one maximum point x, = 1.54471 ... on (0, ), so the function G(x) has the maximum value

G(x) =

G(xp) = n(lglx) G(x) =0.050244 ... = 6,.

Specifically, for x + 0,

( X )2+ X <6 tanh (1.7)
— X X .
sinh x tanh x
holds if and only if 6 > 6.
Theorem 3. Let x # 0. Then
2 tanh x\*”
(.x )+ X g cpat (RS (1.8)
sinh x tanh x X

holds if and only if B > 2/45.
2. A lemma

In order to prove Theorem 2, we need the following lemma. We introduce a useful auxiliary function
Hy,. For —co < a < b < oo, let f and g be differentiable on (a, b) and g’ # 0 on (a, b). Then the function
Hy, is defined by

f/
Hpo ' =—g—-f.
Ve Py
The function Hy, has some well properties and play an important role in the proof of a monotonicity

criterion for the quotient of power series.
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Lemma 1. ([6]) Let f(t) = X2 at* and g (1) = Dheo bit* be two real power series converging on
(=r,r) and b, > 0 for all k. Suppose that for certain m € N, the non-constant sequence {ay/by} is
increasing (resp. decreasing) for 0 < k < m and decreasing (resp. increasing) for k > m. Then the
function f|g is strictly increasing (resp. decreasing) on (0,r) if and only if Hy, (r™) > 0 (resp. < 0).
Moreover, if Hyo (r7) < 0 (resp. > 0), then there exists ty € (0,r) such that the function f/g is strictly
increasing (resp. decreasing) on (0, ty) and strictly decreasing (resp. increasing) on (ty, r).

3. Proofs of Theorems 1-3

3.1. Proof of Theorem 1

Since
sinhx\® tanh x 8 ,(tanhx o
+ -2>—x
X X 45 X
. 2 7 6/777
sinh x tanh x 8 ,(tanhx
+ =2 >|-=x
X X 45 X
2097 152 » p
= tanh® x,
373669453 125" %
we can let
sinhx\> tanhx 2097 152
F(x) =71 + -2|- 22 tanh® x|, 0.
) n[( x ) x ] n[373 669453125 " x] *=
Then ho)
, X
F/(x) = — ,
8x3 (tanh x) (cosh3 x) (%) + tahx _ 2]
where

h(x) = 18sinh3x — 18sinh5x + 36 sinh x + 88x? sinh 3x + 56x cosh x
—63xcosh 3x + 7xcosh 5x + 96x> cosh x + 967 sinh x.

By substituting the power series expansions of all hyperbolic functions involved in the above
formula into 4(x), we obtain that

_ (3x)2n+1 (Sx)2n+l 2n+1
) = 182(2 A (2n Z(2n+1)'
(3x)2n+l x (3.X)2n
+88x Z e 0 2 % 2 Gy
(SX) 3 s x2 2n+1
2t YO iy Z 2n+ 1)
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b 32n+1 o 52n+1 ) 1
= 8 T Pl 2n+1 +36 2n+1
Zi2n+ Dl Zi2n+ Dl ;(2n+1)!x
b 32n+1 © 1 co 32n
+88 - 2n+3 + 56 _ - 2n+1 _ 63 2n+1
;(2n+1)!x ;(2n)!x ;(2,1)1"

o 5 2n+1 N 1 2n+3 N 1 2n+3
+7;—(2n)!x +96;(2n>!x +96;(2n+1)!x

& 18(32"+l — 5o+l g 2) +2n+ 1)(56 —63-32+7- 52") )
- Z:; 2n+ 1) x
= 24(11-32"+4)+96(2n+1) )
+; Qn+ D! x
o 18(32+1 = 52 4 2) 4+ (2n + 1) (56 — 63 - 3% + 7 - 57) )
- Z; Qn+ 1) x

24(11 .32 4) +96(2n—1)
2n+

1
) 2n-1D! X

L) oun
3Qn+ T

n

where
I(n) =3(14n - 83)5*" + (352n2 -202n — 27) 37 4 (23o4n3 +1152n% + 336n + 276) )

Since [(5) = 77856768 > 0 and forn > 6,

14n-83 > 14-6-83=1>0,
352n = 202n—27 > 352-6>-202-6-27 =11433 >0,
2304n° + 11521 + 336n + 276 > 0,

we have that [ (n) > O forn > 5. So h(x) > 0 and F’(x) > O for x > 0. Then the function F(x) is strictly
increasing on (0, c0). Therefore, F(x) > F(0*) = 0. At the same time, we find that

() o2 g
er(l;I" ﬁ(mfﬁ _E.

X

Then the proof of Theorem 1 is complete.

AIMS Mathematics Volume 5, Issue 1, 376-384.



380

3.2. Proof of Theorem 2
Let

G(x) — (sin);x)z + tanjilx B 2

0<x<oo.
x3 tanh x ’

Rewrite G(x) as

2

cosh x X xcosh x 2)

Gx) = . (

x3 sinh x

. 2 + :
sinh® x sinh x

(x2 + x cosh x sinh x — 2 sinh? x) (cosh x)

X3 sinh® x
(x sinh 3x — 2 cosh 3x + 2 cosh x + x sinh x + 4x* cosh x)
3—‘x3 (sinh 3x — 3 sinh x)
xsinh 3x — 2 cosh 3x + 2 cosh x + x sinh x + 4x2 cosh x
x3 (sinh 3x — 3 sinh x)

1
4

£
g(x)’

By substituting the power series expansions of the hyperbolic functions involved in the above formula
into f(x) and g(x) we have

& 32n+1x2n+2 & 32n 2n 2n+2

= Y =2
1 = @n+ D! i (2n)! Z (2n)' (2n + 1!
i x2n+2
+4
; 2n)!
B E Gl ET U I
T Lear D! T4am T4 T 4t D!
o x2n+2
= (2n)!
B 232”+1+1+4(2n+1) - i 2(3 -1 )
= £ 2n+ 1)! (2n)!

2n+ 1! (2n +2)!

n +2) (32"+1 +1+4Qn+ 1)) - 2(32"+2 - 1) )
= ) (2n +2)! X

2

n=2
(3n — 6)3%" + 8n* + 13n+6

=2

i 3+ 1+4Q2n+ 1)x2n+2 _ i wxz’”z

2 [ o
= 2 2n+2)! =) ax,

n n=2
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and
) ) 2n+1 2n+4
(3x)2n+1 2 (3 _ 3) ¥
gx) = X (2 Z Z
n+1)' 2n+1)! oy 2n+ 1)!
oo (22041 _ 7Y (2n+4 -1 _ oo
Z 3 3)x _ Z (3 3) 22 Z 2l
= 2n+ 1)! = 2n-1)! — )
Let 2[(3n—6)3%"+8n2+13n+6
L _ [Gn- )(2,;2’;,* ] _ 2[(3n-6)3% +8n® + 130 + 6|
" b, (3'-3) Qn+2)Q2n+1)2n (321 =3)"
=)
We can calculate that
2 < 2 S 206
Cr = — Cy = — Cyp = ——,
2745 ° 9 735 7™ T 4095

and show that {c,},>4 1s decreasing:

Cn 2 Cpyl

¢ 2(Bn-6)3"+8n2+13n+6)

T DT nr2nt D203 3)
§ 2(Bn-3)3""2+8(m+ 1)’ +13(n+1)+6) [
= Qn+4)@2n+3)2n+2)(31'=3)  F
In fact,
CF - DE = %p(n),
where

p(m) = (108n” - 189n — 324) 3"
+ (128114 + 11041° + 952n% + 10260 + 648) 32
_ (144n3 + 61212 + 837n + 324).

Since for n > 4, we have 1081 — 1891 — 324 > 648 > 0. By mathematical induction it is easy to prove

that
14413 + 612n* + 837n + 324

128n* + 1104n3 + 952n% + 1026n + 648
holds for n > 4. So p(n) > 0 for n > 4. This leads to {c,},>4 1s decreasing. Therefore

37 >

Cr < C3>C4>C5> "
We compute to get
. (S
Hyg (00) = }L@o(?g —fl=-

By Lemma 1 we obtain that there exists x, € (0, o) such that the function G(x) = f/g is strictly
increasing on (0, xy) and strictly decreasing on (xy, c0). That is, xj is the only maximum point of the
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function G(x) on (0, c0). Let us determine the maximum point x, and the maximum value G(xp). We
compute

r(x)
G'(x) = -2 ,
) x* (15 cosh 2x — 6 cosh 4x + cosh 6x — 10)
where
r(x) = —10x— 15sinh2x + 12 sinh4x — 3 sinh 6x + 8x> cosh 2x + 4x> cosh 4x
—12x% sinh 2x + 6x° sinh 4x + 15x cosh 2x — 6x cosh 4x + x cosh 6x — 12x°.
We find out that

G'(1.54471) = 1.1086 x 1077, G'(1.54472) = —2.2292 x 10~°.

So xg = 1.54471 ... and
G(xp) = rr(lglx) G(x) =0.050244....
x€(V,00

Considering the reasons

2
lim G(x) = 15 0.044444 ..., lim G(x) =

x—0*

we have
min G(x) =

x€(0,00)

The proof of Theorem 2 is completed.

3.3. Proof of Theorem 3

Let
128 x>

2
inh* x| = 7In (=) + —— 2],
373669453 125 cosh’ x x] n[ sinhx) " tanhx

H(x) = ln[
where 0 < x < co. Then

q(x)

H'(x) = >
8x (coshxsinh3 x) (Sm);]x) + == - 2]

where

g(x) = 15x+ 96sinh2x — 48 sinh4x + 56x° cosh 2x + 84x* sinh 2x
—32xcosh2x + 17xcosh4x + 88x°.

By substituting the power series expansions of the hyperbolic functions involved in the above
formula into g(x), we have

b 2n+l 2n+1 42n+1 2n+1 & 2n 2n

g(x) = 15x+96zm—48 e Gy
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22n+1 2n+1 & 2n 2n & 2n 21’1
+84x° S en+ D! s T Z Gy 88
22n+1 2n+1 42n+l 2n+1 22nx2n+l
= 9% Z Qn+ 1) m_3znzs 2n)!
+17i 2n 2n+1 o 2n 2n+3 + 22n+1x2n+3
2n)! 2n)! i 2n+ 1)!

2n+3 22n+1 x2n+3

I e
+56Z EOIAAPSRC T

i (34n — 175) 4°" — (64n — 160) 2> e i 112 (n + 2) 2% 23

£ 2n+1)! Qn+1)!
_ i (34n — 175) 4% — (64n — 160) 22")(2,1+1 . i 28(n+1)2% , .,
s Q2n+1)! — (2n-1)!
~ i (34n - 175)4" — (64n — 160) 2"  28(n+1)2*] ,,
T 4 n + 1)! (2n—-1)!
o (34n - 175) 47" — (64n — 160) 2% + 28 (2n + 1) 2n) (n + 1) 2> 2
- L 2n + 1)!
=\ (34n - 175)4% + 8(14n° + 21> —n +20) 2>
- Z 2n+1)! *

Il
o)}

n

d’l 2n+1

b

I
Ngk

~
[\
S

+

[—
=

n=5

where
d, = (34n —175)4%" + 814n® + 21n* = n + 20, n > 5.

We can find ds = 13516800 > 0 and d,, > 0 holds for n > 6 due to

34n - 175 > 34x6-175=29 >0,
14 + 210 = n+20 > 14-6>+21-6°—=6+20 = 3794 > 0.

So H’(x) >0. Then H(x) is increasing on (0, o). Therefore, H(x) > H(0") = 0. At the same time, we
find that

lim (Sin);x)z T o2 2
= (w)m 45

X

Then the proof of Theorem 3 is complete.
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