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1. Introduction

Wilker [1] proposed two open problems as the following statements:
(a) If 0 < x < π/2, then (

sin x
x

)2

+
tan x

x
> 2. (1.1)

(b) There exists a largest constant c such that(
sin x

x

)2

+
tan x

x
> 2 + cx3 tan x (1.2)

for 0 < x < π/2.
Sumner et al. [2] affirmed the truth of two problems above and obtained a further results as follows

16
π4 x3 tan x <

(
sin x

x

)2

+
tan x

x
− 2 <

8
45

x3 tan x, 0 < x <
π

2
, (1.3)

where 16/π4 and 8/45 are the best constants in (1.3).
Some refreshing proofs of inequalities (1.1) and (1.3) can be found in Pinelis [3]. In 2007, the

author of this paper [4] established a new Wilker-type inequality involving hyperbolic functions as
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follows: (
sinh x

x

)2

+
tanh x

x
− 2 >

8
45

x3 tanh x, x , 0, (1.4)

where 8/45 can not be replaced by any larger number.
In 2011, Sun and Zhu [5] showed another new Wilker-type inequality involving hyperbolic

functions and obtained the following result.( x
sinh x

)2
+

x
tanh x

− 2 <
2

45
x3 sinh x, x , 0, (1.5)

where 2/45 can not be replaced by any smaller number.
The purpose of this paper is to give three new inequalities of Wilker-type for hyperbolic functions.

Theorem 1. Let x , 0. Then (
sinh x

x

)2

+
tanh x

x
− 2 > αx4

(
tanh x

x

)6/7

(1.6)

holds if and only if α ≤ 8/45.

Theorem 2. The function

G(x) =

(
x

sinh x

)2
+ x

tanh x − 2

x3 tanh x
has only one maximum point x0 = 1.54471 . . . on (0,∞), so the function G(x) has the maximum value

G(x0) = max
x∈(0,∞)

G(x) = 0.050244 . . . = θ0.

Specifically, for x , 0, ( x
sinh x

)2
+

x
tanh x

− 2 < θx3 tanh x (1.7)

holds if and only if θ ≥ θ0.

Theorem 3. Let x , 0. Then ( x
sinh x

)2
+

x
tanh x

− 2 < βx4
(
tanh x

x

)4/7

(1.8)

holds if and only if β ≥ 2/45.

2. A lemma

In order to prove Theorem 2, we need the following lemma. We introduce a useful auxiliary function
H f ,g. For −∞ ≤ a < b ≤ ∞, let f and g be differentiable on (a, b) and g′ , 0 on (a, b). Then the function
H f ,g is defined by

H f ,g :=
f ′

g′
g − f .

The function H f ,g has some well properties and play an important role in the proof of a monotonicity
criterion for the quotient of power series.
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Lemma 1. ([6]) Let f (t) =
∑∞

k=0 aktk and g (t) =
∑∞

k=0 bktk be two real power series converging on
(−r, r) and bk > 0 for all k. Suppose that for certain m ∈ N, the non-constant sequence {ak/bk} is
increasing (resp. decreasing) for 0 ≤ k ≤ m and decreasing (resp. increasing) for k ≥ m. Then the
function f /g is strictly increasing (resp. decreasing) on (0, r) if and only if H f ,g (r−) ≥ 0 (resp. ≤ 0).
Moreover, if H f ,g (r−) < 0 (resp. > 0), then there exists t0 ∈ (0, r) such that the function f /g is strictly
increasing (resp. decreasing) on (0, t0) and strictly decreasing (resp. increasing) on (t0, r).

3. Proofs of Theorems 1–3

3.1. Proof of Theorem 1

Since (
sinh x

x

)2

+
tanh x

x
− 2 >

8
45

x4
(
tanh x

x

)6/7

⇔

(sinh x
x

)2

+
tanh x

x
− 2

7

>

 8
45

x4
(
tanh x

x

)6/77

=
2097 152

373 669 453 125
x22 tanh6 x,

we can let

F(x) = 7 ln
(sinh x

x

)2

+
tanh x

x
− 2

 − ln
[

2097 152
373 669 453 125

x22 tanh6 x
]
, x > 0.

Then
F′(x) =

h(x)

8x3 (tanh x)
(
cosh3 x

) [(
sinh x

x

)2
+ tanh x

x − 2
] ,

where

h(x) = 18 sinh 3x − 18 sinh 5x + 36 sinh x + 88x2 sinh 3x + 56x cosh x

−63x cosh 3x + 7x cosh 5x + 96x3 cosh x + 96x2 sinh x.

By substituting the power series expansions of all hyperbolic functions involved in the above
formula into h(x), we obtain that

h(x) = 18
∞∑

n=0

(3x)2n+1

(2n + 1)!
− 18

∞∑
n=0

(5x)2n+1

(2n + 1)!
+ 36

∞∑
n=0

x2n+1

(2n + 1)!

+88x2
∞∑

n=0

(3x)2n+1

(2n + 1)!
+ 56x

∞∑
n=0

x2n

(2n)!
− 63x

∞∑
n=0

(3x)2n

(2n)!

+7x
∞∑

n=0

(5x)2n

(2n)!
+ 96x3

∞∑
n=0

x2n

(2n)!
+ 96x2

∞∑
n=0

x2n+1

(2n + 1)!
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= 18
∞∑

n=5

32n+1

(2n + 1)!
x2n+1 − 18

∞∑
n=5

52n+1

(2n + 1)!
x2n+1 + 36

∞∑
n=5

1
(2n + 1)!

x2n+1

+88
∞∑

n=4

32n+1

(2n + 1)!
x2n+3 + 56

∞∑
n=5

1
(2n)!

x2n+1 − 63
∞∑

n=5

32n

(2n)!
x2n+1

+7
∞∑

n=5

52n

(2n)!
x2n+1 + 96

∞∑
n=4

1
(2n)!

x2n+3 + 96
∞∑

n=4

1
(2n + 1)!

x2n+3

=

∞∑
n=5

18
(
32n+1 − 52n+1 + 2

)
+ (2n + 1)

(
56 − 63 · 32n + 7 · 52n

)
(2n + 1)!

x2n+1

+

∞∑
n=4

24
(
11 · 32n + 4

)
+ 96 (2n + 1)

(2n + 1)!
x2n+3

=

∞∑
n=5

18
(
32n+1 − 52n+1 + 2

)
+ (2n + 1)

(
56 − 63 · 32n + 7 · 52n

)
(2n + 1)!

x2n+1

+

∞∑
n=5

24
(
11 · 32n−2 + 4

)
+ 96 (2n − 1)

(2n − 1)!
x2n+1

=

∞∑
n=5

l (n)
3 (2n + 1)!

x2n+1,

where

l (n) = 3 (14n − 83) 52n +
(
352n2 − 202n − 27

)
32n +

(
2304n3 + 1152n2 + 336n + 276

)
.

Since l (5) = 77 856 768 > 0 and for n ≥ 6,

14n − 83 ≥ 14 · 6 − 83 = 1 > 0,
352n2 − 202n − 27 ≥ 352 · 62 − 202 · 6 − 27 = 11 433 > 0,

2304n3 + 1152n2 + 336n + 276 > 0,

we have that l (n) > 0 for n ≥ 5. So h(x) > 0 and F′(x) > 0 for x > 0. Then the function F(x) is strictly
increasing on (0,∞). Therefore, F(x) > F(0+) = 0. At the same time, we find that

lim
x→0+

(
sinh x

x

)2
+ tanh x

x − 2

x4
(

tanh x
x

)6/7 =
8

45
.

Then the proof of Theorem 1 is complete.
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3.2. Proof of Theorem 2

Let

G(x) =
( x

sinh x )2 + x
tanh x − 2

x3 tanh x
, 0 < x < ∞.

Rewrite G(x) as

G(x) =
cosh x

x3 sinh x

(
x2

sinh2 x
+

x cosh x
sinh x

− 2
)

=

(
x2 + x cosh x sinh x − 2 sinh2 x

)
(cosh x)

x3 sinh3 x

=

1
4

(
x sinh 3x − 2 cosh 3x + 2 cosh x + x sinh x + 4x2 cosh x

)
1
4 x3 (sinh 3x − 3 sinh x)

=
x sinh 3x − 2 cosh 3x + 2 cosh x + x sinh x + 4x2 cosh x

x3 (sinh 3x − 3 sinh x)

:=
f (x)
g(x)

.

By substituting the power series expansions of the hyperbolic functions involved in the above formula
into f (x) and g(x) we have

f (x) =

∞∑
n=0

32n+1x2n+2

(2n + 1)!
− 2

∞∑
n=0

32nx2n

(2n)!
+ 2

∞∑
n=0

x2n

(2n)!
+

∞∑
n=0

x2n+2

(2n + 1)!

+4
∞∑

n=0

x2n+2

(2n)!

=

∞∑
n=2

32n+1x2n+2

(2n + 1)!
− 2

∞∑
n=3

32nx2n

(2n)!
+ 2

∞∑
n=3

x2n

(2n)!
+

∞∑
n=2

x2n+2

(2n + 1)!

+4
∞∑

n=2

x2n+2

(2n)!

=

∞∑
n=2

32n+1 + 1 + 4 (2n + 1)
(2n + 1)!

x2n+2 −

∞∑
n=3

2
(
32n − 1

)
(2n)!

x2n

=

∞∑
n=2

32n+1 + 1 + 4 (2n + 1)
(2n + 1)!

x2n+2 −

∞∑
n=2

2
(
32n+2 − 1

)
(2n + 2)!

x2n+2

=

∞∑
n=2

(2n + 2)
(
32n+1 + 1 + 4 (2n + 1)

)
− 2

(
32n+2 − 1

)
(2n + 2)!

x2n+2

=

∞∑
n=2

2
[
(3n − 6) 32n + 8n2 + 13n + 6

]
(2n + 2)!

x2n+2 :=
∞∑

n=2

anx2n+2,
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and

g(x) = x3

 ∞∑
n=0

(3x)2n+1

(2n + 1)!
− 3

∞∑
n=0

x2n+1

(2n + 1)!

 =

∞∑
n=0

(
32n+1 − 3

)
x2n+4

(2n + 1)!

=

∞∑
n=1

(
32n+1 − 3

)
x2n+4

(2n + 1)!
=

∞∑
n=2

(
32n−1 − 3

)
(2n − 1)!

x2n+2 :=
∞∑

n=2

bnx2n+1.

Let

cn =
an

bn
=

2[(3n−6)32n+8n2+13n+6]
(2n+2)!

(32n−1−3)
(2n−1)!

=
2
[
(3n − 6) 32n + 8n2 + 13n + 6

]
(2n + 2) (2n + 1) 2n

(
32n−1 − 3

) .
We can calculate that

c2 =
2
45

< c3 =
2

35
> c4 =

206
4095

,

and show that {cn}n≥4 is decreasing:

cn ≥ cn+1

⇔
C
D

:=
2
(
(3n − 6) 32n + 8n2 + 13n + 6

)
(2n + 2) (2n + 1) 2n

(
32n−1 − 3

)
≥

2
(
(3n − 3) 32n+2 + 8 (n + 1)2 + 13 (n + 1) + 6

)
(2n + 4) (2n + 3) (2n + 2)

(
32n+1 − 3

) :=
E
F
.

In fact,

CF − DE =
2
3

p(n),

where

p(n) =
(
108n2 − 189n − 324

)
34n

+
(
128n4 + 1104n3 + 952n2 + 1026n + 648

)
32n

−
(
144n3 + 612n2 + 837n + 324

)
.

Since for n ≥ 4, we have 108n2 − 189n− 324 ≥ 648 > 0. By mathematical induction it is easy to prove
that

32n >
144n3 + 612n2 + 837n + 324

128n4 + 1104n3 + 952n2 + 1026n + 648
holds for n ≥ 4. So p(n) > 0 for n ≥ 4. This leads to {cn}n≥4 is decreasing. Therefore

c2 < c3 > c4 > c5 > · · · .

We compute to get

H f ,g (∞) = lim
x→∞

(
f ′

g′
g − f

)
= −∞,

By Lemma 1 we obtain that there exists x0 ∈ (0,∞) such that the function G(x) = f /g is strictly
increasing on (0, x0) and strictly decreasing on (x0,∞). That is, x0 is the only maximum point of the
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function G(x) on (0,∞). Let us determine the maximum point x0 and the maximum value G(x0). We
compute

G′(x) = −2
r(x)

x4 (15 cosh 2x − 6 cosh 4x + cosh 6x − 10)
,

where

r(x) = −10x − 15 sinh 2x + 12 sinh 4x − 3 sinh 6x + 8x3 cosh 2x + 4x3 cosh 4x

−12x2 sinh 2x + 6x2 sinh 4x + 15x cosh 2x − 6x cosh 4x + x cosh 6x − 12x3.

We find out that

G′(1.54471) = 1. 108 6 × 10−7, G′(1.54472) = −2. 229 2 × 10−9.

So x0 = 1.54471 . . . and
G(x0) = max

x∈(0,∞)
G(x) = 0.050244 . . . .

Considering the reasons

lim
x→0+

G(x) =
2

45
= 0.044444 . . . , lim

x→∞
G(x) = 0,

we have
min

x∈(0,∞)
G(x) = 0.

The proof of Theorem 2 is completed.

3.3. Proof of Theorem 3

Let

H(x) = ln
[

128
373 669 453 125

x24

cosh4 x
sinh4 x

]
− 7 ln

[( x
sinh x

)2
+

x
tanh x

− 2
]
,

where 0 < x < ∞. Then

H′(x) =
q(x)

8x
(
cosh x sinh3 x

) [(
x

sinh x

)2
+ x

tanh x − 2
] ,

where

q(x) = 15x + 96 sinh 2x − 48 sinh 4x + 56x3 cosh 2x + 84x2 sinh 2x

−32x cosh 2x + 17x cosh 4x + 88x3.

By substituting the power series expansions of the hyperbolic functions involved in the above
formula into q(x), we have

q(x) = 15x + 96
∞∑

n=0

22n+1x2n+1

(2n + 1)!
− 48

∞∑
n=0

42n+1x2n+1

(2n + 1)!
+ 56x3

∞∑
n=0

22nx2n

(2n)!
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+84x2
∞∑

n=0

22n+1x2n+1

(2n + 1)!
− 32x

∞∑
n=0

22nx2n

(2n)!
+ 17x

∞∑
n=0

42nx2n

(2n)!
+ 88x3

= 96
∞∑

n=5

22n+1x2n+1

(2n + 1)!
− 48

∞∑
n=5

42n+1x2n+1

(2n + 1)!
− 32

∞∑
n=5

22nx2n+1

(2n)!

+17
∞∑

n=5

42nx2n+1

(2n)!
+ 56

∞∑
n=4

22nx2n+3

(2n)!
+ 84

∞∑
n=4

22n+1x2n+3

(2n + 1)!

+56
∞∑

n=4

22nx2n+3

(2n)!
+ 84

∞∑
n=4

22n+1x2n+3

(2n + 1)!

=

∞∑
n=5

(34n − 175) 42n − (64n − 160) 22n

(2n + 1)!
x2n+1 +

∞∑
n=4

112 (n + 2) 22n

(2n + 1)!
x2n+3

=

∞∑
n=5

(34n − 175) 42n − (64n − 160) 22n

(2n + 1)!
x2n+1 +

∞∑
n=5

28 (n + 1) 22n

(2n − 1)!
x2n+1

=

∞∑
n=5

[
(34n − 175) 42n − (64n − 160) 22n

(2n + 1)!
+

28 (n + 1) 22n

(2n − 1)!

]
x2n+1

=

∞∑
n=5

(34n − 175) 42n − (64n − 160) 22n + 28 (2n + 1) (2n) (n + 1) 22n

(2n + 1)!
x2n+1

=

∞∑
n=5

(34n − 175) 42n + 8
(
14n3 + 21n2 − n + 20

)
22n

(2n + 1)!
x2n+1

=

∞∑
n=5

dn

(2n + 1)!
x2n+1,

where
dn = (34n − 175) 42n + 814n3 + 21n2 − n + 20, n ≥ 5.

We can find d5 = 13 516 800 > 0 and dn > 0 holds for n ≥ 6 due to

34n − 175 ≥ 34 × 6 − 175 = 29 > 0,
14n3 + 21n2 − n + 20 ≥ 14 · 63 + 21 · 62 − 6 + 20 = 3794 > 0.

So H′(x) >0. Then H(x) is increasing on (0,∞). Therefore, H(x) > H(0+) = 0. At the same time, we
find that

lim
x→0+

(
x

sinh x

)2
+ x

tanh x − 2

x4
(

tanh x
x

)4/7 =
2

45
.

Then the proof of Theorem 3 is complete.
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