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Abstract: Starting from limitations of quantum theory and its measurements we have discussed the
concept of quantization in general theory of relativity in strong regime as well as quantization of
gravity, which leads to gravitons, in weak field limitation. This is based on the fact that general theory
of relativity based on strong principle of equivalence which is incompatible with quantum principle. It
has shown that this is the complete agreement with the implications following from the measurement
analysis. To discuss the physical consequences of the limitations arising for quantum GRT, Compton
effect and Euler scattering are discussed.
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1. Introduction

In this paper, the relation between GRT and quantum theory has discussed. That means, it is not
asked the question “what do you expect a quantum theory of gravity to look like?” but it is posed the
query “how does classical GRT (without any modification) relate to quantum theory”? We are therefore
dealing with same question for GRT, which was discussed for electrodynamics after the foundation of
quantum theory [14, 17, 20].

To discuss this topic, first there will be presented some results from [2, 3] and in the literature cited
there in Section 2 while in Section 3 some problems concerning Euler scattering will be considered.

2. Limitation of field measurements resulting from background quantization

We can think quantum operator gi j as a classical background operator ηi j with some perturbation
hi j.

gi j = ηi j + hi j (2.1)
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This method was developed by Dewitt [4, 5]. Apply Einstein-Hilbert action Σ after using tensor
notations (gi = ηi + hi), the following functional series is obtained:

Σ[g] = Σ
[
η + h

]
= Σ;i1

[
η
]
hi1 +

1
2

Σ;i1i2
[
η
]
hi1hi2 +

1
3!

Σ;i1i2i3
[
η
]
hi1hi2hi3 + . . . (2.2)

Since classical operator ηi j is a background operator, it satisfied the equation

Σ,i
[
η
]

= 0 (2.3)

in other words,
Ri j

(
ηi j

)
= 0 (2.4)

Ricci curvature tensor vanishing here permits us to use solution of Einstein’s equations in vacuum as a
background field. One can recover the classical approach to quantum gravity that use particle physics
by putting ηi j to ζi j in Eq. (2.2) [15]. Then Eqs. (2.1) and (2.2) reduce to

gi j = ζi j + hi j (2.5)

and

Σ
[
g
]

= ΣFP (η, ζ) +
1
2

F;i1i2
[
ζ
]
hi1hi2 +

1
3!

F;i1i2i3
[
η
]
hi1hi2hi3 + . . . (2.6)

Here F;i1 is a tensor that comes from Σ;i1i2 when we use gauge condition and ΣFP represents the
evaluation of action at zero point corresponds to flat empty spacetime which may describe the
supplementation of vector fictitions particles. In this manner, one can recover classical field theory
using a very nonlinear (typically higher order terms i.e., polynomial) interaction [19]. This interaction
would be between massless spin of two gravitons, which are propagating in a Minkowski space. Here
quantum general relativity is explicitly curtailed to level of usual particle physics withal the
renormalizability problems known in this model [16].

Another implication of condition (2.3) consists of the fact that, for pure gravity Σ matrix elements
without divergences result on the one-loop level. Indeed, it was shown in [1, 14] that the covariant
counter terms will be added in the Lagrangian i.e.,

∆L ∼
√
−g

[
aR

[
η
]2

+ bRi j
[
η
]
Ri j [η]] (2.7)

From Eq. (2.3) this term vanishes in vacuum.
The philosophy behind the Eq. (2.3) says that whenever Eq. (2.3) holds, true external gravitons

(associated to ηi j) are physical, that is, are on mass shell. This shows that founders of the background
method start with the conviction that gravitons should rigorously be attributed to gravitational fields so
that even the classical background ηi j can be separated into ζi j and φi j. That is

ηr = ζr + φr (2.8)

and
ηi j = ζi j + φi j (2.9)
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Where φi j is to be interpreted in terms of external gravitons. Because we, however, want to examine
the relation of GRT to quantum theory ( i.e., the justification of the graviton hypothesis). In a weak-field
approximation, spacetime looks like

ĝi j = ηi j + εhi j (2.10)

ηi j is again the usual background when Ricci curvature vanishes mostly, i.e., ηi j ∼ 1. Order of
magnitude of hi j is same as of ηi j and ε > 0. In same way order of magnitude is ∂η ∼ r

L and ∂h ∼
h
λ

where L and λ are characteristics lengths. We can express Ricci tensor in terms of Taylor series
expansion,

Ri j

[
ηi j + εhi j

]
= Ri j

(
ηi j

)
+ εR(1)

i j

(
hi j

)
+ ε2R(2)

i j

(
hi j

)
+ ε3R(3)

i j

(
hi j

)
+ . . . (2.11)

with

Ri j

(
ηi j

)
= O

(
L−2

)
, εR(1)

i j

(
hi j

)
= O

(
ελ−2

)
, ε2R(2)

i j

(
hi j

)
= O

(
ε2λ−2

)
, ... (2.12)

εrR(r)
i j

(
hi j

)
= O

(
εrλ−2

)
Let us distinguish now three cases λ

L � ε , λL � ε and λ
L ∼ ε.

1. λ
L � ε: In this case we have the order of magnitude relation

Ri j

(
ηi j

)
� εrR(r)

i j

(
hi j

)
(2.13)

so that Ri j

(
ηi j

)
is the contributing term and all other terms are correction term only. First order

correction in Ricci tensor leads to
Ri j

(
ηi j

)
= 0

and hence, in this case background field method is most suitable one. The non-linearity of the
Einstein tensors and Ricci tensors lead to weak field interaction and probability of occurrence of
nonlinear graviton-graviton interactions are high. But it is not (and need not) considered a back
reaction of the hi j field on the ηi j background field � L−2 [7]. In this approximation, the quantum
field may be regarded as propagation upon a fixed background field.

2. λ
L � ε: Regarding again the relations (2.12), we get from Eq. (2.11)

Ri j

(
ηi j

)
� ε2R(2)

i j

(
hi j

)
(2.14)

In this case background field method does not work. Independent of all questions on quantization,
background method opposes the spirit of GRT for such high frequencies.

3. λ
L ∼ ε: Weak field assumption provides ε � 1 thus λ � L so that the hi j field is of high frequency.
But the frequency is not so large here that the decomposition (2.10) loses its sense or, roughly
speaking, the ηi j background is dissolved into fluctuations. Usual background considerations
must however be modified because, instead of Eq. (2.3), now Eq. (2.13) holds, therefore we have
to assume

Ri j

(
ηi j

)
−

1
2
ηi jR

(
ηi j

)
= −

G
c4 T e f f

i j (2.15)
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where

T e f f
i j ≡

c4ε2

G

[
R(2)

i j

(
hi j

)
−

1
2
ηi jR(2)

(
hi j

)]
(2.16)

is the effective stress tensor because of the high frequency field.

As there was argued in [2], such high frequency considerations show only for λ ≥ L. This means
that only for comparatively low frequencies, the usual background method (with Eq. (2.13)) can be
applied. The assumption Ri j (η) = 0 for all λ (made in the conventional approach) is according to a
strong supplementary condition changing the mathematical and physical contents of GRT.

The high frequency arguments hitherto given in this section show nonlinear nature of Einstein’s
equation. There are frequencies for which one has to consider the background as dynamically
determined. Therefore, the algebraic splitting (2.9) (which is always possible) cannot be maintained
on the level of the field equations. Now our point is, this typical feature of GRT leads to limitations on
quantum GRT. Indeed, according to Eq. (2.15) the total energy density ρ = c4

G
ε2

λ2 of the hi j field is to be
equal or smaller than c4

G L−2, i.e.,

L−2 ≥

(
ε

λ

)2

(The inequality sign is used if, besides gravitational waves hi j, other sources of energy are present)
and in accordance to the fact that hi j describes a quantum field ρ = hν

L3
0

[18].
If L0 denotes the linear extension of the volume considered. We obtain

λ ≥
1
L3

0

(
lpL

)2
(2.17)

and for an optimal measurement

λ ≥ l0 ≡
(
lpL

)1/2
(2.18)

where lp =
(

hG
c3

)1/2
is Planck’s length.

The above inequality relations say that these limitations on the quantization procedure signaling an
intrinsic incompatibility of classical GRT and quantum theory at high frequencies (high energies) and
short distances, respectively.

We could now be tempted to consider the conclusion mentioned above that, it is not so much as
a result concerning typical features of quantum GRT but as showing the limits of the background
field method used here. There are however some arguments opposing this interpretation. First, we
should remember that principle limitation on quantum GRT were deduced by Rosenfeld [23] arguing
mainly within the canonical approach. Rosenfeld showed that in quantum GRT there occurs a principle
limitation for length measurements given by L0 ≥ lp, which results, by regarding typical features of
GRT like Q = GM and ∆|gi j| < 1, from the Bohr-Rosenfeld relation for field measurements,

∆F.L2
0 ≥

h
c

Q
M

(2.19)

originally derived for electrodynamics. Here L0 denotes the linear extension of the volume considered,
Q the charge of the measurement body, M its mass, and F the field strength to be measured. This
shows that the canonical approach does not change the situation, it rather provides the absolute limit on
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quantum GRT caused by the three universal constants h, c and G lying on the basis of quantum GRT and
the covariant approach completes this picture. It shows that due to the nonlinear structure of Einstein’s
equations and to the identification of metric and field, the cut off arises gradually before (not rapidly)
at Planck’s length. The latter point is an interesting feature of the situation in principle characterized
by the appearance of Planck’s cut-off units, because nonlinearity and metric field identification are
expressions of the strong principle of equivalence. The gradual cut-off given by equations (2.17) and
(2.18) is thus an implication of the basic principle of GRT.

A second argument showing the fundamental meaning of the cut-off length stems from the
measurement analysis not referring to a special field quantization method. Following Bohr and
Rosenfeld, it was shown that Eq. (2.19) can be derived by pure measurement consideration if one
assumes a measurement body whose structure is described by classical physics and whose
displacement ∆x in the field to be measured obeys Heisenberg’s uncertainty relation

∆px∆x ≥ h (2.20)

Due to Q = GM and in the case of gravity, Eq. (2.19) reads

∆g.L2
0 ≥

hG
c3 (2.21)

and

∆Γ.L3
0 ≥

hG
c3 (2.22)

(g and Γ denote the components of the metric and the affinity, respectively.)
Next, we try to measure the constraints on background metric. Uncertainty arises due to

measurement of metric g near the origin in Riemannian coordinates must be added to the uncertainties
∆g(0) given by Eq. (2.21);

∆g (x) = ∆g (0) +
α

L2 x2 (2.23)

where g(0) regarded as the average volume of g over a domain V of order V ∼ L3
0. Here we assume

that background is flat and average curvature has been measured which is g(x). The Riemannian
background curvature is calculated by L−1, and α > 0 is a numerical constant of order 1. Using Eq.
(2.21) we obtain that the least value of ∆g(x) is accessed for l0 ∼

(
lpL

)1/2
.

Thus all limitations deducible in field quantum formalism can be reproduced by a measurement
analysis. This supports the fact that the limitations arising are not limits of the used quantization
procedure, which one can overcome by another one, but limits of quantum GRT itself.

3. Implications of the limits arising in quantum GRT

As these were shown earlier, the limitation on quantum GRT discussed above imply a cut-off for the
high frequency pars of such quantum effects as Bremsstrahlung, gravitational Compton effect, Lamb
shift and pair creation [2,21]. In difference to quantum electrodynamics, these effects cannot be used to
test quantum GRT (and the corresponding graviton conception) over the whole frequency scale [11,24].

This is especially easy to see in the case of the gravitational Compton Effect given by the formula:
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1
ν′

=
1
ν

+
h

mc2
(1 − cosθ) (3.1)

where ν is the frequency of the incoming waves, ν′ of the scattered waves, θ is the scattering angle
and m denotes the mass of the scattering particle. According to Heisenberg, Eq. (3.1) is valid upto
frequencies λΛ � r2

0 where Λ, the Compton wavelength of the scattering particle, λ is the length of
the scattered waves and r0 is cut-off length. If we assume

r0 = l0 ≡
(
lpL

)1/2
(3.2)

then we obtain λ � lp for Λ = L, while λΛ � r2
0 is not satisfied for Λ ≈ λ. The occurrence of the

wavelength given by Eq. (2.18) thus cuts-off high frequency Compton effect.
In the remainder of this section, we will discuss some aspects of gravitational vacuum polarization,

namely Euler scattering [25]. It is interesting because pure vacuum effects are especially essential in
order to decide the interpretation of quantization of field. Bohr and Rosenfeld [23] addressed field
quantization when they were trying to answer the question whether quantum electrodynamics is
physically meaningful or whether it is a purely mathematical formalism. A similar position was taken
by Planck when he coined a quest regarding physical reality of light quanta.

We should start from the effective Lagrangian derived from quantum GRT to consider gravitational
vacuum polarization in details [25]. Because there might not so viable quantum GRT (or quantum
theory of gravity). For this reason, many considerations start with the so called semi classical version
of quantum GRT to arrive at Leff [13]. This is however physically and mathematically inconsistent
approach as shown by Borzeszkowski [2]. Therefore, we prefer here to presuppose the existence of
an effective Lagrangian describing in analogy to Euler scattering in quantum electrodynamics. This
analogy helps to determine the frequency region for which such a Lagrangian exists and, by this, to
find the limits within such effects as gravitational Euler scattering can be considered as test of quantum
GRT [8, 10, 12].

These two conditions must be satisfied in order to search a Lagrangian responsible for scattering of
light quantas:

1. We must choose such regions where the electric field |E| must be small so that it must not create
particles from vacuum. In other words we can say that energy change ∆E of a charge particle e
shifted towards a distance Λ = h

mc must be smaller than mc2 i.e.,

∆E ∼
∂E
∂x

Λ ∼
e2

x2

}

mc
� mc2 (3.3)

So that we obtain

|E| � |Ek| ≡
m2c3

e}
(3.4)

or
x � xk ∼ (λd)1/2

∼ α−1/2d (3.5)

where α = e2/hc is the Sommerfeld constant and d = e2/mc2 is the classical radius of the electron.
This implies, electric field strength must be smaller than the critical field Ek. That is, Eq. (3.5)
gives the distance x when pure vacuum effects happening. Such effects do not contribute in the
matter coupling.

AIMS Mathematics Volume 5, Issue 1, 332–341.



338

2. We must make an assumption that

hω � mc2 and c|k| � mc2 (3.6)

i.e., the change in electromagnetic field must be happened but in a very long and slow process
otherwise Lagrangian may contain some extra term other than invariants of the field. Rapidly
changing field must require extra term other than the Larmor Lagrangian. Lagrangian of such
field must also contain derivatives of the field [6].

In the purview of quantum gravity, the gravitational radius dg and “gravitational Sommerfeld
constant” αg must be given as

αg =

(
G1/2m

)2

hc
(3.7)

and
dg =

Gm
c2 (3.8)

So that xk = (hc)1/2d/e goes over into

(xk)g =

(
hG
c3

)1/2

= lp (3.9)

Here, we can observe that vacuum polarization effects must occur at x � lp in absolute Planck
length regime. Eq. (3.9) contains three fundamental constants namely, h, c and G, those come into
quantum gravity picture. Further consideration of quantum gravity may reveal the real range of vacuum
polarization.

If we consider λ ∼ ε/L then Eq. (2.15) reflects effective energy under a back reaction of the quantum
correction εhi j or ηi j. Which will be

Eg ∼
c4

G
ε2

λ2 L3
0 (3.10)

where L0 is the length of extended region. Change of energy ∆Eg must be less than mc2 because
of energy described in Eq. (3.10) contributes as like as the energy-momentum tensor of matter. Hence
from this point of view, we can say that

c4

G
ε2

λ2 L3
0Λ � mc2 (3.11)

i.e.,

1
dg

ε2

λ
L3

0Λ � λ (3.12)

In this regard, hi j is quantized in all components and

ε2 ∼
λ

L3
0

l2
p (3.13)
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holds true then we get

λ �

(
Λ

dg

) 1
2

lp = Λ (3.14)

From Eq. (3.14) we can observe that wavelength from Eqs. (2.17) and (2.18) would smoothly
move in Planck’s magnitude regime rather than any drastic change. In the presence of electromagnetic
field around a particle, particle−antiparticle pairs reposition themselves such that they partially
counteracting the field. These short lived fields therefore will be weaker than would be expected if the
vacuum were completely empty. And in this limit the heaviest elementary particles, namely
Planckions will be created [9].

Λ =
}

mc
→ lp for m→ mp (3.15)

i.e., for m = mp equation (3.9) will be reproduced.
Thus, if we assume Eq. (3.14), condition (3.11) automatically satisfied and we are awaiting this

because Lagrangian in quantum gravity contains quadratic invariants unlike to quantum
electrodynamics.

4. Conclusion

To summarize, we can observe that there are regions like weak-field and low frequency regions,
where GRT, similar to electrodynamics, can and must be quantized. This quantization overcome
mathematical and physical inconsistencies of Einstein’s equations describing the interaction of gravity
and quantized (or atomistic) non-gravitational matter. In the regions where the non-linearity of
Einstein’s equations becomes effective, i.e., for strong and high frequency gravitational fields,
quantum field effects of gravity are cut off. The effects one can consider in these regions are typical
quantum GRT effects because here GRT lies beyond the difference between classical and quantum
GRT accordingly, although the conception of gravitons is only a limited one. This gets especially
clear in the case of gravitational Euler scattering. The classical non-linearity takes the part played in
linear theories by vacuum polarization caused by coupled matter fields. This produces a large cut-off

length for effects like Euler scattering.
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