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Abstract: A minimal entropy martingale measure problem is studied to investigate risk-neutral 

densities and interest rate modelling. Hunt & Devolder focused on the method of Shannon minimal 

entropy martingale measure to select the best measure among all the equivalent martingale measures 

and, proposed a generalization of the Ho & Lee model in the semi-Markov regime-switching 

framework [1]. We formulate and solve the optimization problem of Hunt & Devolder for deriving 

risk-neutral densities using a new non-extensive entropy measure [2]. We use the Lambert function 

and a new type of approach to obtain results without depending on stochastic calculus techniques. 
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1. Introduction 

The application of entropy measures in finance can be regarded as the extension of both 

information and probability theory. Recently the use of information measures has become an 

important tool for solving problems arising in finance, such as portfolio selection or asset pricing. 

Shannon introduced the concept of information entropy [3]. The entropy of a random variable 
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measures uncertainty in probability theory. The Shannon entropy can be used in particular manners 

to evaluate the entropy of probability density distribution around some points but, in the case of 

special events, for example, deviation from mean and any sudden news for stock returns going 

up (down), additional information is needed. Therefore, the concept of Shannon entropy can be 

generalized. The Shannon entropy assumes certain implicit exchange that occurs as a compromise 

between contributions from the tail and main mass of the distribution. Therefore, it misleads in 

comparison to the entropy of two distributions by considering the preceding two events. The use of 

entropy measures that depend on the powers of probability, for example, Shafee, Kaniadakis, Rényi, 

Tsallis, and Ubriaco, provide such control [2,4–7]. The measure is more sensitive to events that occur 

many times in a short interval if the power of the probability is positive large. On the other hand, for 

a negative value, it is more sensitive to the events that occur seldom. 

In quantitative finance and life insurance, various methodologies have been developed to model 

the interest rate structures. In a discrete setting, a binomial like the model of Ho & Lee is well 

known [8]. Ho & Lee developed a revolutionary approach for modeling the yield curve movements 

using a binomial tree. Similarly, continuous-time models of CIR or Hull & White and Vasicek are 

famous [9–11]. On the other hand, regime-switching models have been used in financial derivatives, 

interest rates, and portfolio optimization. Hunt & Devolder used a minimal-entropy martingale 

measure for the semi-Markov regime-switching interest rate model in a discrete framework [1]. 

The process which has mean value at any future time, conditional on the present, equal to its 

present value, is called martingale. Martingales represent the most crucial tool in modern probability 

theory and applied finance. In an incomplete market, an infinite number of martingale measures exist. 

Therefore, measure selection has always been a crucial step in making a model useful. In the theory 

of derivative pricing, one starts with the model of the asset price process in an economy with a 

probability measure  , and then, by choosing a numeraire  , changes the probability measure   to 

equivalent martingale measure   (see [12] and their references). In recent studies, the application of 

entropy in finance and economics has received significant attraction from researchers. It can be an 

important tool in portfolio selection and asset pricing. Philippatos & Wilson were the first two 

researchers who applied the concept of entropy to portfolio selection [13]. Similarly, entropy has 

used in the field of option pricing. A typical example is the Entropy Pricing Theory (EPT) introduced 

by Gulko [14]. The method of minimal entropy martingale measure has been used recently to study 

the generalization of the Ho & Lee model in a semi-Markov regime-switching framework by Hunt & 

Devolder [1]. Trivellato studied the Kaniadakis minimal entropy martingale measure, as well as its 

connections with the Tsallis and the well-known entropy martingale measure, in a general 

semi-martingale pricing model [15–16]. Preda et al. introduced a new measure selection for the 

Hunt-Devolder semi-Markov regime-switching interest rate model using Tsallis and Kaniadakis 

entropy measures [17]. Preda et al. introduced the new classes of Lorenz curves by maximizing 

Tsallis entropy under mean and Gini’s equality and inequality constraints [18]. Shafee proposed a 

new way of defining the entropy of a system and proposed a new entropy measure that is 

non-extensive like Tsallis entropy, but it is linearly dependent on component entropies, like Rényi 

entropy, which is an extensive measure [2]. Preda & Sheraz have recently used the Shafee entropy 

measure for the case of risk-neutral densities using a framework of entropy pricing theory [19]. 

Sheraz et al. have used some general frameworks to obtain risk-neutral densities. The results are 

based on Tsallis-weighted-Tsallis-Kaniadakis and weighted Kanidakis entropy measures [20]. 

In this paper, we consider the Shafee entropy measure to obtain the results for risk-neutral 
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probabilities, using the framework of the Hunt-Devolder model. In Section 2 the framework of the 

regime-switching interest rate model is introduced, as it provides tools for the development of the 

risk-neutral probabilities. In Section 3 we present our new results for risk-neutral probabilities using 

Shafee entropy measure and another new approach. Section 4 concludes our results. 

2. Preliminaries and framework 

We will use some concepts developed in Hunt & Devolder semi-Markov regime-switching 

model. In the unstable economic environment, regime-switching processes have been used to model 

regular changes at some non-predictable stopping time. A significant part of the financial literature 

focuses on Markov switching models. The major disadvantage of these models is the memoryless 

property of the Markov process. semi-Markov processes depend on backward recurrence time, i.e., 

the time elapsed since the last jump of the process. Therefore, the use of these models is 

advantageous on simple homogeneous Markov models. Moreover, since the Markov process are a 

subclass of semi-Markov processes, semi-Markov switching models should always perform at least 

as well as Markov switching models. 

Let              be a probability space and      a filtration, where                    

is a fixed time horizon. Consider an economy   with assets   
       i.e., the price of asset   at 

time   if the economy is in state   . The arbitrage-free model is the most critical assumption in the 

pricing of any financial model. See details in [12,21]. 

Definition 2.1. ([12]) A one period economy   admits arbitrage if there exists a portfolio   such 

that one of the following conditions hold. 

i.        and             for all    

ii.        and             for all    

If there is no such  , then the economy   is arbitrage free. In any financial modeling process 

it is crucial to find an arbitrage free economy  . The above definition refers to a one period model. 

The binomial option pricing model provides a numerical method for the valuation of 

options [22]. In the one period binomial model if    denotes price of a bond, then we can write    

= 1 at time     and     , at future time    . Similarly, for the stock price process        , 

the initial value of the stock at time     is      and the value of the stock corresponding to the 

future time     is        with probability    (up movement) or      , with probability 

   (down movement), with the condition     and of course         . 

Proposition 2.1. ([21]) The binomial model is free of arbitrage if and only if         holds. 

A market model is arbitrage-free if there exists a martingale measure such that the return on the 

stock is not allowed to dominate the returns on the bond and vice versa. In Hunt & Devolder’s 

discrete-time regime-switching binomial-like model of the term structure where the regime switches 

are governed by the semi-Markov process, the minimal Shannon entropy martingale measure 

characterized one period and n-period binomial model. Now we introduce the framework of the Hunt 

& Devolder model. We consider a set                  for   finite, Σ a sigma-algebra on   

and              a probability space which carries a pair of processes          taking values in 

   . See details in [1]. 
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Definition 2.2. Let              be a probability space and       be a measureable space. A 

stochastic process         adapted to the filtration      is called Markov process w.r.t.     , if for 

each     and each        with     

                                                                      (2.1) 

Definition 2.3. ([1]) A homogeneous Markov-renewal process of semi-Markov kernel   can be 

defined as: 

                                               

                                                       

            
                                             (2.2) 

In the above definition,         is a homogeneous Markov-renewal process of semi-Markov 

kernel    Then the semi-Markov process   of kernel   is defined by       , where, 

               and    is supposed to be known and non-random. The process   controls the 

“regime” or “state” of the economy. Similarly, the process    which represents the time elapsed 

since the last jump, is given by         , where    is supposed to be known and non-random 

and    is known as backword recurrence process. The pair          satisfies the Markov property. 

Assume the existence of two real values       and       up and down movements respectively for 

every      ,             and strictly positive. The vector stochastic process         of the 

term structure from time   to     is given by 

                                                                  (2.3) 

where      and      are conditionally independent given      for all      Therefore we can 

write: 

                                                                     (2.4) 

We denote by: 

                          
 
                                          (2.5) 

                          
 
                                            (2.6) 

                    
 
                          

 
  
 
                    (2.7) 

                  
 
                             

 
   

 
                  (2.8) 

Since for every    it follows that 

                              
 
   

 
    

                                (2.9) 

The system composed of process           can take    different values and these values are all 

determined by the following state of events. 
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                                                (2.10) 

                        
   

                                                (2.11) 

In order to maintain the no arbitrage condition in a market one needs an equivalent martingale 

measure. 

Lemma 2.1. ([1]) Let    =   
  
 

  
      

    
  
 

  
      

     
   

   
   . Then      for all t and        , 

              . 

Hunt & Devolder used Lemma 2.1 to define an equivalent martingale measure and studied the 

minimal entropy martingale measure for the binomial model [1]. 

Definition 2.4. Let   and   be two probability measures. The relative Shannon entropy is given 

by 

                  
   

  

  
   

  

  
                                 

                                              

               (2.12) 

A measure   is called a minimal (Shannon) entropy martingale measure if it minimizes the 

relative entropy over the set of all equivalent martingale measures. The minimal entropy martingale 

is an efficient method because the minimization of the relative entropy finds a probability 

distribution that is closest to the prior. Also, it contains all the information we know about the 

random variable of interest. The martingale probabilities for the one-period binomial model, with 

minimal Shannon entropy martingale measure, are given by 

                              
 
   

 
 

     

       

                               (2.13) 

                              
 
   

 
 

     

       

                               (2.14) 

where    is a semi-Markov process. 

We select Shafee entropy measure to compute risk-neutral probabilities for the semi-Markov 

regime-switching interest rate model of the term structure. Optimization of this entropy measure 

leads to a probability distribution function involving the Lambert function. 

A Lambert function   is a multivalued complex function which is defined as the solution of 

the equation             , where   is a complex number. If   is a real number such that 

     , then      becomes a real function with two possible values in        and      [23]. 

3. Measure selection: Shafee entropy 

In 2007 a non-additive entropy measure was proposed by Shafee [2]. It is non-extensive like 

Tsallis entropy, but it is linearly dependent on component entropies, like Rényi entropy, which is an 

extensive measure. Formally the Shafee entropy is given by: 

                               
 

                                  (3.1) 
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The continuous cases as an analogue of the discrete case is given by: 

                                                                  (3.2) 

We note that for     we obtain the corresponding Shannon entropy. 

Definition 3.1. Let   and   be two probability measures. The relative Shafee entropy for the one 

period minimal martingale is given by 

                    
    

  

  
     

  

  
                 

                                 

                     (3.3) 

We note that for     we obtain the corresponding relative Shannon entropy. 

Definition 3.2. A measure   is called a minimal Shafee entropy martingale measure if it minimizes 

the relative entropy over the set of all equivalent martingale measures. 

This idea leads to closest to real-world martingale measure, in terms of Shafee entropy measure 

subject to the following constraints that ensure that the measure will be an equivalent martingale 

measure. 

                              
 
   

 
  

                                  (3.4) 

                           
   

  
       

   
  

                             (3.5) 

Constructing the minimal entropy martingale measure is equivalent to giving the parameters   
 
 

in the density process associated to the minimal entropy martingale measure. We study the 

one-period case. We present the computation of risk-neutral probabilities for one period binomial 

model of the term structure. We assume that Lambert’s function is well defined for the quantities 

which have been considered.  

Theorem 3.1. Let   and   be two probability measures. The relative Shafee entropy for the one 

period minimal martingale is given by Eq. (3.3) and constraints (3.4) and (3.5) respectively. We 

obtain risk neutral probabilities   
 
 and   

 
, given by: 

                    
 
   

 
 

              
   

 
    

 
 
   

   
   
  

                  
 
 
    

 

   

                  (3.6) 

                  
 
   

 
 

              
   

 
    

 
 
   

    
   
  

                  
 
 
    

 

   

                  (3.7) 

where    and    are Lagrange multipliers and    and    are chosen so that the risk neutral 

densities satisfy given constraints. 

Proof. We can write the Lagrangian, and using calculus of variation for optimization of functional 

(see for example [24–25]). 



306 

AIMS Mathematics  Volume 5, Issue 1, 300–310. 

                        
 
 
 
   

  
 

  
      

 
 
 
   

  
 

  
   

 
           

 
   

 
  

        

                     
   

  
       

   
  

                                   (3.8) 

Applying derivative on the above equation of Lagrangian L, w. r. t   
 
 and   

 
 and equating 

with zero we get: 

    
 
 
   

   
  
 

  
 
     

 
 
   

             

                          
 
 
   

   
  
 

  
      

 
 
   

                                     

which is equivalent to 

    
 
 
   

     
  
 

  
                        

    
 
 
   

     
  
 

  
                  

We can rewrite the above two equations: 

 
  
 

  
  

   

   
 
 
   

     
  
 

  
                                    

                
  
 

  
  

   

   
 
 
   

     
  
 

  
                                    

Equivalently, 

    
  
 

  
                 

  
 

  
  

   

   
 
 
   

               (3.9) 

      
  
 

  
                 

  
 

  
  

   

   
 
 
   

               (3.10) 

Let us suppose  
  
 

  
  

   

            
  
 

  
       , and we get 

 

   
         

  
 

  
    

Similarly, we can put  
  
 

  
  

   

    and we get 
 

   
         

  
 

  
    Now using Eqs. (3.9) and (3.10) to 

compute   
 
 and   

 
 respectively. Therefore, we can write: 
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Equivalently, 

                 
   

 
      

 
 
   

 
   

 
                     

      
   

 
    

 
 
   

             
   

 
                      

        
 
   

 
    

 
 
   

               
   

 
                      

Let us use definition of the Lambert function and suppose 

z   
   

 
    

 
 
   

             i.e.,    
 

        

 
 

   
    

 
 
   

. Therefore, we can write: 

 
 

        

 
 

   
    

 
 
   

     
   

                              

                
   

 
    

 
 
   

  
   

   

               
   

 
    

 
 
   

  
   

                         

  
   

 
    

 
 
   

           
  
 

  
  

   

              
   

 
    

 
 
   

  
   

               

Thus we obtain 

   
 
   

 
 

              
   

 
    

 
 
   

   
   
  

                  
 
 
    

 

   

                      

Similarly, using Eq. (3.10)   
 
 is given by 

  
 
   

 
 

              
   

 
    

 
 
   

    
   
  

                  
 
 
    

 

   

                       

where    and    are Lagrange multipliers and    and    are chosen so that risk neutral densities 

satisfy given constraints. 

We present another approach to compute   
 
 and   

 
. 

Lemma 3.1. If         and               where     and    , then   , the first 

derivative of   admits an inverse. Therefore, 
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a.          
    

           
   

    
 

   
  

b.          
    

         
   

    
 

   
    

c. If         then   is convex on     
    

        and concave on  
   

    
 

   
    

Theorem 3.2. Let   and   be two probability measures. The relative Shafee entropy for the one 

period minimal martingale is given by 

         
   

  

  
     

  

  
                     

                                     

  

subject to constraints (3.4) and (3.5). Consider            
 

  
   and            

 

  
  . Then 

risk neutral probabilities   
 
 and   

 
 are given by: 

  
 
    

  
  
                                    (3.11) 

    
 
    

  
  
                                    (3.12) 

where    and    are chosen so that risk neutral density satisfies given constraints. 

Proof. Using Eq. (3.8) of Lagrangian L and Eqs. (3.9) and (3.10) respectively. We put      
 
   

   
 
  
 
   

  
 

  
   and      

 
      

 
  
 
   

  
 

  
    Then,   

 
 and   

 
 are given by (3.11) and (3.12). 

Example. Let    
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 ,         and        , 

therefore    
 
 
         

  
 

  
 
 

  
 
 

  
 
 

  
  and    

 
 
         

  
 

  
 
  

  
 
 

  
 
 

  
 . 

We use Theorem 3.2 to derive the minimal second order Shafee entropy martingale measure. By 

using (3.8), (3.11), (3.12) it results that the martingale probabilities for the one-period binomial 

model with minimal second order Shafee entropy martingale measure are given by 

   
 
 
         

                                                    

and 

   
 
 
         

                                 .                  



309 

AIMS Mathematics  Volume 5, Issue 1, 300–310. 

4. Conclusion 

We have presented two different approaches to obtain risk-neutral probabilities. The problem of 

extracting risk-neutral probabilities is crucial in mathematical finance. This approach is an alternative 

structure to solve such problems without depending on the stochastic calculus techniques. We have 

considered a non-extensive entropy, which is mathematically simple, and it leads to solutions using 

the Lambert function. 
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