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1. Introduction

Multigrid methods have been widely developed since more than 40 years and were proposed as
fast solvers to the numerical solution of elliptic problems, see e.g. [27] for steady linear and nonlinear
Dirichlet Problems in finite differences, but also for Steady Navier-Stokes Equations [9, 20].

The method is first defined for two levels of discretization (bi-grid case). The two key ingredients are
both the separation of the high and the low mode components of the error provided by the use of coarse
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and fine grids (or spaces) VH and Vh respectively, and also the concentration of the main computational
effort on the coarsest (lower dimensional) subspace VH ⊂ Vh; high modes can be represented in Vh

while only low modes can be captured in VH. This leads to a drastic save in CPU computation time.
The correction to the fine space components belonging to Vh is usually realized by a simple and fast
numerical scheme and is associated to a high mode smoothing. Then the scheme is recursively applied
on a set of nested grids (or spaces).

When considering nonlinear dissipative equations, we can distinguish two approaches for bi-grid
methods:

In the first one, the low and the high mode components are explicitly handled: thanks to the
parabolic regularization, it is expected that the low mode components which carry the main part of the
energy of the (regular) solution have a different dynamics from the high mode components, that can
be seen as a correction, see [16] and the references therein. Also, a way to speed up the numerical
integration is then to apply different schemes to these two sets of components, concentrating the effort
on the computation of the low modes, that belong in VH, see [14]. When dealing with spectral
methods, the separation in frequency is natural but it is not the case when Finite Differences or FEM
methods are used for the spatial discretization. To separate the modes, a hierarchical basis approach is
used [49]: using a proper interpolation (or projection) operator between VH and Vh, one builds a
transfer operator which defines a pre-conditioner for the stiffness matrices but it allows also to express
the solution in terms of main part, associated to the low mode components, and of a fluctuant part, of
lower magnitude, and associated to high modes components; we refer the reader to [46–48] and the
references therein for Finite Elements discretizations, [13, 38] for Finite Differences and [6, 18] in
Finite Volumes. These schemes showed to be efficient, however they necessitate to build and
manipulate hierarchical bases.

In the second approach, the mode separation is not used explicitly and the methods consist, at each
time step, in first computing the coarse approximation uH to the fine solution uh by an unconditionally
implicit stable scheme and then to update the fine space approximation by using a linearized scheme
at an extrapolated value ũh of uH in Vh. These schemes allow to reduce the computational time with
an optimal error as respected to the classical scheme when choosing accurately the mesh size of Vh as
respect to the one of VH. It is to be underlined that ũh represents the mean part of the solution while
zh = uh − ũh ∈ Vh represents the fluctuant part (carrying the high mode components of the solution
uh ∈ Vh) but is not simulated in the schemes. Such methods were developed and applied to the solution
of time dependent incompressible Navier-Stokes equations [2], [3], [21] and [28]. Since a linearization
is used on Vh the matrix to solve at each time iteration changes and it can be costly in transient regime.

The numerical methods we propose here are somehow in between and are inspired from the
approach developed in [1] for Allen-Cahn Equation: as previously described, the use of two levels of
discretization allows to concentrate the effort on the coarsest, yet lower dimensional, space and at the
same time to decompose the solution into its mean and fluctuant part uh = ũh + zh. The zh are not
explicitly simulated, however, they are used implicitly for a high mode stabilization as follows:
consider the time integrations of the reaction-diffusion equation, in its variational form:

d
dt

(u, v) + (∇u,∇v) + ( f (u), v) = 0,∀v ∈ V, (1)

v(0) = v0, (2)
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where V is a proper Hilbert space.
Given two finite dimensional subspaces of V , WH and Vh, with dim(WH) << dim(Vh), we define the

bigrid-scheme as

Algorithm 1 Bi-grid Stabilized scheme for Reaction-Diffusion

1: u0
h, u

0
H given

2:

3: for k = 0, 1, · · · do
4: Step 1 (Coarse Space Implcit Scheme)

5: (
uk+1

H − uk
H

∆t , ψH) + (∇uk+1
H ,∇ψH) + ( f (uk+1

H ), ψH) = 0, ∀ψH ∈ WH

6: Step 2 (Fine Space semi-implicit Scheme)

7: (
uk+1

h − uk
h

∆t , φh)+τ(uk+1
h − uk

h, φh)+(∇uk+1
h ,∇φh)+( f (uk

h), φh) = τ(uk+1
H − uk

H, φh),∀φh ∈ Vh

8: end for

It is not necessary to have WH ⊂ Vh, an inf-sup like compatibility condition has to be satisfied
for defining uniquely the prolongation ũ, [1]. The competition between the terms τ(uk+1

h − uk
h, φh) and

τ(uk+1
H − uk

H, φh) are interpreted as a high mode filter and τ > 0 is the stabilization parameter [1] and
allow to compense the explicit treatment of the nonlinear term. Furthermore, this stabilization has few
influence on the global dynamics, [1].

The aim of the present work is to adapt this two-grid scheme to Navier-Stokes equations. To this
end, we consider a projection method that splits the time resolution into two steps: firstly a parabolic
equation on the velocity and secondly an elliptic equation on the pressure. The bi-grid stabilization
will be applied to the first step.

The paper is organized as follows: in Section 2 we first present briefly the principle of the bi-grid
framework (reference scheme, separation of the modes, high mode stabilization), then, after recalling
the definition and some properties of the projection scheme (reference scheme), we propose different
bi-grid projection schemes. Section 3 is dedicated to the numerical results. We consider the classical
benchmark lid-driven cavity problem. When computing the steady states, the results we obtain agree
with those of the literature, also an important gain of CPU time is obtained as respect to classical
methods, for a comparable precision. The article ends in Section 4 with concluding remarks. All the
computation have been realized using FreeFem++ [19].

2. Derivation of the bi-grid projection schemes

We here build the bi-grid high mode stabilized projection schemes. For that purpose, we first recall
the different approaches of the bi-grid schemes in finite elements and then describe the stabilization
procedure, for reaction diffusion problems. Then, we present briefly the projection schemes in finite
elements we will start from to introduce the new Bi-grid Projection Schemes.

2.1. Principle of the bi-grid approach

As stated in the introduction, when considering nonlinear dissipative equations, a well known way
to obtain a gain in CPU time is to consider two levels of discretization and to concentrate the main
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computational effort on the lower dimensional approximation space WH, while the higher accurate
approximation to the solution on the fine space Vh is updated by using a simple semi-implicit (yet
linear) scheme. The general pattern of a bi-grid scheme for the reaction diffusion equation (1) writes
as

Algorithm 2 Bi-grid Scheme for Reaction-Diffusion

1: u0
h, u

0
H given

2:

3: for k = 0, 1, · · · do
4: Step 1 (Coarse Space Implicit Scheme)

5: (
uk+1

H − uk
H

∆t , ψH) + (∇uk+1
H ,∇ψH) + ( f (uk+1

H ), ψH) = 0, ∀ψH ∈ WH

6: Step 2 (Fine Space semi-implicit Scheme)

7: (
uk+1

h − uk
h

∆t , φh) + (∇uk+1
h ,∇φh) + ( f (uk

h), φh) + ( f ′(uk+1
H )uk+1

h , φh) = 0,∀φh ∈ Vh

8: end for

This approach was proposed by [21, 28, 30]. However, f ′(uk+1
H ), the linearized of f at uk+1

H must be
computed at each time step, changing the matrix to solve at each iteration. A way to avoid this
drawback is to consider a classical semi-implicit scheme and to compense the lack of stability by
adding, e.g., a first order damping term τ(uk+1

h − uk
h), obtaining as second step:

1: Step 2 (Stabilized Fine Space semi-implicit Scheme)

2: (
uk+1

h − uk
h

∆t , φh) + τ(uk+1
h − uk

h, φh) + (∇uk+1
h ,∇φh) + ( f (uk

h), φh) = 0,∀φh ∈ Vh

This stabilization procedure allows to obtain unconditionally stable time scheme for large values of
τ > 0, that can be tuned. The resulting scheme is fast, however, it can slow down drastically the
dynamics, particularly convergence to steady states occurs in longer times. This is due to the fact that
the damping acts on all the mode components, including the low ones which are associated to the
mean part of the function and carry the main part of the L2 energy, when considering a Fourier-like
interpretation. A way to overcome this drawback is to apply the stabilization to the only high mode
components zh of uh which correspond to a fluctuent part of uh ; the stability of a scheme is indeed
related to its capability to contain the propagation of the high frequencies. Hence the scheme becomes

1: Step 2 (High Mode Stabilized Fine Space semi-implicit Scheme)

2: (
uk+1

h − uk
h

∆t , φh) + τ(P(uk+1
h − uk

h), φh) + (∇uk+1
h ,∇φh) + ( f (uk

h), φh) = 0,∀φh ∈ Vh

where P(uk+1
h − uk

h) capture the high mode components of uk+1
h − uk

h.

At this point we can distinguish two main ways to decompose uh as a sum of its mean part ũh and
its fluctuent part zh in finite elements:

• Hierarchical basis in Finite Elements: the fine space FEM approximation space Vh is
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decomposed as Vh = VH
⊕

Wh ⊂ H1, where VH ⊂ Vh is the coarse FEM space that can capture
only low modes, and Wh is the complementary space, generated by the basis functions of Vh that
do not belong in VH, and that capture high mode components. When using P1 finite elements, the
components of Wh of a function uh ∈ Vh are built as proper local interpolation error from
uH ∈ VH. The functions of approximation Vh can be uniquely decomposed as

uh = uH + zh,

with uH ∈ VH and zh ∈ Wh. It has been showed that the linear change of variable S : uh →

(uH, zh) provides an efficient pre-conditioner for the stiffness matrices but also proceeds to a scale
separation [10, 11, 33, 34, 49].
The spatial discretization reads then to a differential system satisfied by uH and zh, namely

d
dt

(uH + zh, φH) + (∇(uH + zh),∇φH) + ( f (uH + zh), φH) = 0,∀φH ∈ VH, (3)

d
dt

(uH + zh, ψh) + (∇(uH + zh),∇ψh) + ( f (uH + zh), ψh) = 0,∀ψh ∈ Vh. (4)

New time marching methods are obtained applying two different schemes for uh and for zh;
particularly, the separation of the scales allows to use a simple and fast scheme for the zh

components and to save computational time, with a good accuracy. Approximations and
simplifications can be applied to each equation, particularly using an approached law linking
high and low mode components of type Φ(uH) = zh, [33, 34].

The approach followed in [35] is technically different but is based on the same principle: Denoting
by PH the L2 orthogonal projection from Vh on VH, the decomposition uh = uH + wh with uH =

PHuh and wh = (Id − PH)uh is used, making uH and wh orthogonal. They proposed and analyzed
schemes of Nonlinear Galerkin type, says in which an asymptotic approach law Φ(uH) = wh) is
implemented together with a time marching scheme on uH. A drawback is that one must build a
basis for (Id − PH)Vh.
Finally let us mention similar developments in finite differences [12, 13] and spectral methods
[14, 16, 17, 29]
• A L2-like filtering, used in [1] and to which we will concentrate: we define first the prolongation

operator P : VH → Vh by

(uH − P(uH), φh) = 0,∀φh ∈ Vh. (5)

Then, setting ũh = P(uH), we write

uh = ũh + (uh − ũh) = ũh + zh.

We now apply the high mode stabilization to the zh components and get, after usual simplifications

1: Step 2 (High Mode Stabilized Fine Space semi-implicit Scheme)

2: (
uk+1

h − uk
h

∆t , φh) + τ(zk+1
h − zk

h, φh) + (∇uk+1
h ,∇φh) + ( f (uk

h), φh) = 0,∀φh ∈ Vh
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and using the identity

(zk+1
h − zk

h, φh) = (uk+1
h − uk

h, φh) − (ũk+1
h − ũk

h, φh) = (uk+1
h − uk

h, φh) − (uk+1
H − uk

H, φh),∀φh ∈ Vh

we can write the high mode stabilized bi-grid scheme as

Algorithm 3 Bi-grid Stabilized scheme for Reaction-Diffusion

1: u0
h, u

0
H given

2:

3: for k = 0, 1, · · · do
4: Step 1 (Coarse Space Implicit Scheme)

5: (
uk+1

H − uk
H

∆t , ψH) + (∇uk+1
H ,∇ψH) + ( f (uk+1

H ), ψH) = 0, ∀ψH ∈ WH

6: Step 2 (Fine Space semi-implicit Scheme)

7: (
uk+1

h − uk
h

∆t , φh)+τ(uk+1
h − uk

h, φh)+(∇uk+1
h ,∇φh)+( f (uk

h), φh) = τ(uk+1
H − uk

H, φh),∀φh ∈ Vh

8: end for

We now consider incompressible Navier-Stokes equations. FEM Bi-grid methods for
incompressible NSE as proposed, e.g., in [2, 3, 21, 28, 30], are built using the pattern of scheme 2, and
written as following. Given two pairs of FEM spaces (XH,YH) and (Xh,Yh) satisfying the discrete
inf-sup condition, with XH ⊂ Xh and YH ⊂ Yh, one defines the bi-grid iterations as

Algorithm 4 Bi-grid Scheme for Navier-Stokes Equation

1: u0
h, u

0
H given

2:

3: for k = 0, 1, · · · do
4: Step 1 (Coarse Space Implicit Scheme)

5: (
uk+1

H − uk
H

∆t , ψH)+ 1
Re (∇uk+1

H ,∇ψH)+((uk+1
H .∇)uk+1

H , ψH)−(div(ψH), pk+1
H ) = ( f , ψH),∀ψH ∈

XH

6: (div(uk+1
H ), qH) = 0,∀qH ∈ YH

7: Step 2 (Fine Space semi-implicit Scheme)

8: (
uk+1

h − uk
h

∆t , φh) + 1
Re (∇uk+1

h ,∇φh) + (uk+1
H .∇uk+1

h , φh) − (div(ψh), pk+1
h ) = ( f , ψh),∀ψh ∈ Xh

9: (div(uk+1
h ), qh) = 0,∀qh ∈ Yh

10: end for

We have used here the simple linearization of the nonlinear term (uk+1
H .∇uk+1

h , φh) proposed in [21],
but other linearizations can be considered. At each step the method needs to solve first a mixed
nonlinear FEM problem on the coarse pair FEM spaces (XH,YH), then a linear mixed FEM problem
on the fine FEM spaces (Xh,Yh); in this last step, the underlying matrix changes at each iteration. To
avoid this drawback and to apply the stabilized bi-grid method, as described in Algorithm 3, we will
use a projection method. In such a case the computation of the velocity is decoupled from the one of
the pressure, the intermediary velocity satisfies a nonlinear convection-diffusion equation. The main
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idea is then to apply a stabilized bi-grid scheme to this equation to speed up the resolution. We
present below several options of this approach.

2.2. Bi-grid projection schemes in finite elements

First of all, let us recall the framework of the Projection Schemes in Finite elements and then derive
the new bi-grid stabilized methods.

The mixed variational formulation of the motion of a viscous and incompressible fluid in a domain
Ω is described by the unsteady Navier-Stokes equation


(
∂u
∂t
, v) + (u · ∇u, v) − ν(∇u,∇v) − (p, div v) = ( f , v), ∀v ∈ X = (H1

0(Ω))d

(div u, q) = 0, ∀q ∈ Y = L2(Ω)

where Ω is a domain of Rd, d = 2, 3 of lipschizian bound ∂Ω,−→n the normal outside unit and a time
interval [0,T ],T > 0.
Here is a choice of the approximation spaces Xh and Yh for the velocity and the pressure

Xh = {v ∈ C0(Ω̄)2|v|κ ∈ P2
2, ∀κ ∈ Th, v = 0 on ∂Ω}, (6)

Yh = {q ∈ C0(Ω̄)|q|κ ∈ P1, ∀κ ∈ Th} ∩ L2
0(Ω). (7)

The degrees of freedom for the velocity are the vertices of the triangulation and the midpoints of
the edges of the triangles of the triangulation Th. The degrees of freedom for the pressure are the
vertices of Th assumed to be uniformly regular. It is well known that because of the constraint of
incompressibility, the choice of Xh and Yh is not arbitrary. They must satisfy a suitable compatibility
condition, the ”inf-sup” condition of Babus̆ka-Brezzi (cf. [4, 7]):

inf
q∈Yh

sup
u∈Xh

∫
Ω

q(div u)dx

‖q‖L2(Ω)‖∇u‖L2(Ω)
≥ β∗, (8)

where β∗ is independent of h. All the results presented in this paper are done with the Taylor-Hood
finite element P2/P1.

Let us consider the semi-discretization in time and focus on marching schemes. Let uk ' u(x, k∆t)
be a sequence of functions; ∆t is the time step. We compare our method to the projection method
applied on the fine grid. It is a fractional step-by-step method of decoupling the computation of the
velocity from that of the pressure, by first solving a convection-diffusion problem such that the resulting
velocity is not necessarily zero divergence; then in a second step, the latter is projected onto a space
of functions with zero divergence in order to satisfy the incompressibility condition (cf. [15,24–26,40,
42, 43]). We start by presenting the implicit reference scheme [40]:
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Algorithm 5 Reference Scheme
1: for k = 0, 1, · · · do

2: Find u∗h in Xh (
u∗h − uk

h

∆t
, ψh) + ν(∇u∗h,∇ψh) + ((u∗h · ∇)u∗h, ψh) = ( f , ψh),∀ψh ∈ Xh

3: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div u∗h

∆t
, χh),∀χh ∈ Yh

4: Find uk+1
h in Xh (uk+1

h − u∗h + ∆t∇pk+1
h , ψh) = 0,∀ψh ∈ Xh

5: end for

This will be our reference scheme, used on the coarse FEM Space. It enjoys of unconditional stability
properties, see Temam [40], chapter III, section 7.3 and [41].

Remark 2.1. We could use also an incremental projection method introduced by Goda [22], see also
[24]. Goda has proven that adding a previous value of the gradient of the pressure (∇pk) in the first
step of the projection method then rectify the value of the velocity in the second step will improve the
accuracy, in other words, he proposed the following algorithm:

Algorithm 6 Incremental Reference
1: for k = 0, 1, · · · do
2: Find u∗h in Xh

3: (
u∗h − uk

h

∆t
, ψh) + ν(∇u∗h,∇ψh) + ((u∗h · ∇)u∗h, ψh) + (∇pk

h, ψh) = ( f , ψh),∀ψh ∈ Xh

4: Find pk+1
h in Yh α(div ∇pk+1

h − div ∇pk
h, χh) = (

div u∗h
∆t

, χh),∀χh ∈ Yh

5: Find uk+1
h in Xh (uk+1

h − u∗h + α∆t(∇pk+1
h − ∇pk

h), ψh) = 0,∀ψh ∈ Xh

6: end for

The results obtained are similar to the one produced by the non incremental scheme to which we focus
for a sake of simplicity.

We can now derive the bi-grid schemes.
Our first approach consists in separating in scales the intermediate velocity u∗h which we introduce
according to the projection method of Chorin-Temam [15, 40, 42, 43]. First we compute u∗H on the
coarse space XH and then stabilize the high frequencies of u∗h on the fine space Xh. In all our bi-grid
schemes we solve the nonlinear problem using the usual Picard fixed point method on the coarse space:

Initilisation: set u∗,0H = uk
H,

For m ≥ 0 up to convergence
Find u∗,m+1

H solution of
(u∗,m+1

H , φH) + ∆t(∇u∗,m+1
H ,∇φH) = (u∗,mH , φH) + ∆t((u∗,mH .∇)u∗,mH , φH), ∀φH ∈ XH

End
Set u∗H = u∗,m+1

H

Only few iterations are needed at each time step (4 at the beginning and only 1 close to the steady state)
making this simple fixed point method efficient and well adapted in this context.
In the same way we solve the nonlinear problem in the reference scheme on a fine grid. Based on the
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free divergence condition, we find the pressure ph whose mean is equal to zero. We end up finding uh

and restricting it to the coarse grid to get uk
H for the next iteration.

Algorithm 7 Two grids Algo1
1: for k = 0, 1, · · · do

2: Find u∗H in XH (
u∗H − uk

H

∆t
, ψH) + ν(∇u∗H,∇ψH) + ((u∗H · ∇)u∗H, ψH) = ( f , ψH),∀ψH ∈ XH

3: Find u∗h in Xh

(1 + τ∆t)(
u∗h − uk

h

∆t
, φh) + ν(∇u∗h,∇φh) + ((uk

h · ∇)uk
h, φh) = τ(u∗H − uk

H, φh) + ( f , φh),∀φh ∈ Xh

4: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div u∗h

∆t
, χh),∀χh ∈ Yh

5: Find uk+1
h in Xh (uk+1

h − u∗h + ∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

6: Solve in XH (uk+1
H − uk+1

h , ψH) = 0,∀ψH ∈ XH

7: end for

We propose in the second algorithm to replace (uk
h.∇)uk

h by (u∗H · ∇)u∗h. We obtain:

Algorithm 8 Variant of the Two grids Algo1 : Two grids Algo2
1: for k = 0, 1, · · · do

2: Find u∗H in XH (
u∗H − uk

H

∆t
, ψH) + ν(∇u∗H,∇ψH) + ((u∗H · ∇)u∗H, ψH) = ( f , ψH),∀ψH ∈ XH

3: Find u∗h in Xh

(1 + τ∆t)(
u∗h − uk

h

∆t
, φh) + ν(∇u∗h,∇φh) + ((u∗H · ∇)u∗h, φh) = τ(u∗H − uk

H, φh) + ( f , φh),∀φh ∈ Xh

4: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div u∗h

∆t
, χh),∀χh ∈ Yh

5: Find uk+1
h in Xh (uk+1

h − u∗h + ∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

6: Solve in XH (uk+1
H − uk+1

h , ψH) = 0,∀ψH ∈ XH

7: end for

The second approach that we consider in the following is to find directly uk+1
H by the projection

method applied on the coarse grid. By this technique, we do not need to restrict uk+1
h to XH to define

uk+1
H .
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Algorithm 9 Two grids Algo3
1: for k = 0, 1, · · · do

2: Find u∗H in XH (
u∗H − uk

H

∆t
, ψH) + ν(∇u∗H,∇ψH) + ((u∗H · ∇)u∗H, ψH) = ( f , ψH),∀ψH ∈ XH

3: Find pk+1
H in YH (div ∇pk+1

H , χH) = (
div u∗H

∆t
, χH),∀χH ∈ YH

4: Find uk+1
H in XH (uk+1

H − u∗H + ∆t∇pk+1
H , ψH) = 0,∀ψH ∈ XH

5: Find u∗h in Xh

(1 + τ∆t)(
u∗h − uk

h

∆t
, φh) + ν(∇u∗h,∇φh) + ((u∗h · ∇)u∗h, φh) = τ(u∗H − uk

H, φh) + ( f , φh),∀φh ∈ Xh

6: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div u∗h

∆t
, χh),∀χh ∈ Yh

7: Find uk+1
h in Xh (uk+1

h − u∗h + ∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

8: end for

Algorithm 10 Variant of the Two grids Algo3: Two grids Algo4
1: for k = 0, 1, · · · do

2: Find u∗H in XH (
u∗H − uk

H

∆t
, ψH) + ν(∇u∗H,∇ψH) + ((u∗H · ∇)u∗H, ψH) = ( f , ψH),∀ψH ∈ XH

3: Find pk+1
H in YH (div ∇pk+1

H , χH) = (
div u∗H

∆t
, χH),∀χH ∈ YH

4: Find uk+1
H in XH (uk+1

H − u∗H + ∆t∇pk+1
H , ψH) = 0,∀ψH ∈ XH

5: Find u∗h in Xh

(1 + τ∆t)(
u∗h − uk

h

∆t
, φh) + ν(∇u∗h,∇φh) + ((u∗H · ∇)u∗h, φh) = τ(u∗H − uk

H, φh) + ( f , φh),∀φh ∈ Xh

6: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div u∗h

∆t
, χh),∀χh ∈ Yh

7: Find uk+1
h in Xh (uk+1

h − u∗h + ∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

8: end for

Remark 2.2. We have considered above only first order time marching schemes. However, the
stabilization technique can be applied/adapted to more accurate methods such as BDF. For instance,
when looking to the classical Gear-Scheme. We refer to [45], [44] and to [24] where an incremental
projection method has been introduced. We can propose the following one grid algorithm, considered
as our reference second-order in time scheme:
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Algorithm 11 Non-Incremental Second-order Reference Scheme
1: for k = 0, 1, · · · do
2: Find u∗h in Xh

3: (
3u∗h − 4uk

h + uk−1
h

2∆t
, ψh) + ν(∇u∗h,∇ψh) + ((u∗h · ∇)u∗h, ψh) + (∇pk

h, ψh) = ( f , ψh),∀ψh ∈ Xh

4: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div 3u∗h

2∆t
, χh),∀χh ∈ Yh

5: Find uk+1
h in Xh (uk+1

h − u∗h +
2
3

∆t∇pk+1
h , ψh) = 0,∀ψh ∈ Xh.

6: end for

Since the time scheme used on the equation in u∗h is a second accurate Gear’s one, it is natural to
associate a second order stabilization, namely related to the discretization of the second derivative in
time. Hence, when one grid only is used, the damping term to add will be

τ(u∗h − 2uk
h + uk−1

h , φh) ' τ∆t2(
∂2u
∂t2 , φh),

as proposed in [39] for the stabilization of semi-explicit schemes applied to reaction diffusion
problems, when using one-grid FEM. Now, we can apply this stabilization procedure to the high mode
components, as presented below, and we can derive the following new bi-grids algorithms,
considering several options:

Algorithm 12 Two grids Second-order Algo1Order2
1: for k = 0, 1, · · · do

2: Find u∗H in XH (
3u∗H − 4uk

H + uk−1
H

2∆t
, ψH) + ν(∇u∗H,∇ψH) + ((u∗H · ∇)u∗H, ψH)s =

( f , ψH),∀ψH ∈ XH

3: Find u∗h in Xh

(
3u∗h − 4uk

h + uk−1
h

2∆t
, φh) + ν(∇u∗h,∇φh) + ((uk

h · ∇)uk
h, φh) + τ(u∗h − 2uk

h + uk−1
h , φh)

= τ(u∗H − 2uk
H + uk−1

H , φh) + ( f , φh),∀φh ∈ Xh

4: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div 3u∗h

2∆t
, χh),∀χh ∈ Yh

5: Find uk+1
h in Xh (uk+1

h − u∗h +
2
3

∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

6: Solve in XH (uk+1
H − uk+1

h , ψH) = 0,∀ψH ∈ XH

7: end for
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Algorithm 13 Variant of the Two grids Second-order ”Algo1Order2” algorithm:
”Algo2Order2”

1: for k = 0, 1, · · · do

2: Find u∗H in XH (
3u∗H − 4uk

H + uk−1
H

2∆t
, ψH)+ν(∇u∗H,∇ψH)+((u∗H ·∇)u∗H, ψH) = ( f , ψH),∀ψH ∈

XH

3: Find u∗h in Xh

(
3u∗h − 4uk

h + uk−1
h

2∆t
, φh) + ν(∇u∗h,∇φh) + ((u∗H · ∇)u∗h, φh) + τ(u∗h − 2uk

h + uk−1
h , φh)

= τ(u∗H − 2uk
H + uk−1

H , φh) + ( f , φh),∀φh ∈ Xh

4: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div 3u∗h

2∆t
, χh),∀χh ∈ Yh

5: Find uk+1
h in Xh (uk+1

h − u∗h +
2
3

∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

6: Solve in XH (uk+1
H − uk+1

h , ψH) = 0,∀ψH ∈ XH

7: end for

Algorithm 14 Two grids Second-order ”Algo3Order2”
1: for k = 0, 1, · · · do

2: Find u∗H in XH (
3u∗H − 4uk

H + uk−1
H

2∆t
, ψH)+ν(∇u∗H,∇ψH)+((u∗H ·∇)u∗H, ψH) = ( f , ψH),∀ψH ∈

XH

3: Find pk+1
H in YH (div ∇pk+1

H , χH) = (
div 3u∗H

2∆t
, χH),∀χH ∈ YH

4: Find uk+1
H in XH (uk+1

H − u∗H +
2
3

∆t∇pk+1
H , φH) = 0,∀φH ∈ XH

5: Find u∗h in Xh

(
3u∗h − 4uk

h + uk−1
h

2∆t
, φh) + ν(∇u∗h,∇φh) + ((uk

h · ∇)uk
h, φh) + τ(u∗h − 2uk

h + uk−1
h , φh)

= τ(u∗H − 2uk
H + uk−1

H , φh) + ( f , φh),∀φh ∈ Xh

6: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div 3u∗h

2∆t
, χh),∀χh ∈ Yh

7: Find uk+1
h in Xh (uk+1

h − u∗h +
2
3

∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

8: Solve in XH (uk+1
H − uk+1

h , ψH) = 0,∀ψH ∈ XH

9: end for
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Algorithm 15 Variant of the Two grids Second-order ”Algo3Order2” algorithm:
”Algo4Order2”

1: for k = 0, 1, · · · do

2: Find u∗H in XH (
3u∗H − 4uk

H + uk−1
H

2∆t
, ψH)+ν(∇u∗H,∇ψH)+((u∗H ·∇)u∗H, ψH) = ( f , ψH),∀ψH ∈

XH

3: Find pk+1
H in YH (div ∇pk+1

H , χH) = (
div 3u∗H

2∆t
, χH),∀χH ∈ YH

4: Find uk+1
H in XH (uk+1

H − u∗H +
2
3

∆t∇pk+1
H , φH) = 0,∀φH ∈ XH

5: Find u∗h in Xh

(
3u∗h − 4uk

h + uk−1
h

2∆t
, φh) + ν(∇u∗h,∇φh) + ((u∗H · ∇)u∗h, φh) + τ(u∗h − 2uk

h + uk−1
h , φh)

= τ(u∗H − 2uk
H + uk−1

H , φh) + ( f , φh),∀φh ∈ Xh

6: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div 3u∗h

2∆t
, χh),∀χh ∈ Yh

7: Find uk+1
h in Xh (uk+1

h − u∗h +
2
3

∆t∇pk+1
h , φh) = 0,∀φh ∈ Xh

8: Solve in XH (uk+1
H − uk+1

h , ψH) = 0,∀ψH ∈ XH

9: end for

3. Numerical results

3.1. The lid driven cavity

We simulate the Navier-Stokes equations in 2D by a stabilization technique. We use the unit
square mesh [0, 1] × [0, 1] and vary the dimensions of the coarse and fine FEM spaces. We choose as
spaces of approximation the well-known Taylor-Hood element P2/P1 for the velocity and the pressure
respectively. Here are the results of the driven cavity flow obtained by adopting the variational
formulation provided by the projection technique (Chorin-Temam) proposed by the two preceding
steps. In this case the velocity is imposed only in the upper boundary with u = (1, 0) and zero
Dirichlet conditions are imposed on the rest of the boundary (see Figure 5).

There is a relationship between R =
dim(XH)
dim(Xh) (or R =

dim(YH)
dim(Yh) ) and the gain in CPU time: the

smaller R is, the faster but the less accurate the scheme is. We here concentrate on a factor 2 between
the mesh sizes of XH and that of Xh, say H ' 2h, then R ' 0.25. This simple situation is to be first
considered before looking to optimal ratio R. It gives a simple framework for exploring the multilevel
case in which the bi-grid scheme is recursively applied using a fine FEM space and a sequence of coarse
FEM spaces. We mention the optimal relations between H and h, such as h = O(H2) proposed in [3]
for NSE (with a comparable CPU ratio reduction as for our methods taking H ' 2h) and H = O(h1/3)
in [35] for Reaction-Diffusion equations.
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3.1.1. Computation of steady states

These flow patterns in Figures 1, 2, 3, 4 fit with earlier results of Bruneau et al. [9], Ghia et al. [20],
Goyon [23], Pascal [37] and Vanka [45]. Also, the numerical values and the localization of the extrema
of the vorticity and of the stream function are good agreement with the ones given in these references.

Figure 1. From top to bottom: Algorithms 5, 7, 8, 9 and 10, and from left to right : flow,
vorticity, pressure and velocity for ∆t = 10−3,Re = 2000, τ = 0.5,T = 70, dim(XH) =

6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561.
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Figure 2. From top to bottom: Algorithms 5, 7, 8, 9 and 10, and from left to right : flow,
vorticity, pressure and velocity for ∆t = 10−3,Re = 3200, τ = 0.5,T = 130, dim(XH) =

6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561.
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Figure 3. From top to bottom: Algorithms 5, 7, 8, 9 and 10, and from left to right : flow,
vorticity, pressure and velocity for ∆t = 10−3,Re = 5000, τ = 0.5,T = 148, dim(XH) =

6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561.
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Figure 4. From top to bottom: Algorithms 5 and 7 for Re = 7500,T = 195 respectively and
from left to right : flow, vorticity, pressure and velocity for ∆t = 5×10−4, τ = 0.5, dim(XH) =

6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561.

Figure 5. Boundary conditions

3.1.2. CPU time reduction

In Figures 6–7 we observe that the bi-grid schemes are faster in computation time than reference the
implicit scheme (Algorithm 5) applied on the fine space Vh. However, the gain in CPU time is mainly
obtained in the transient phase. Indeed, since a stationary solution is computed, the reference scheme
will need only one nonlinear iteration at each time step in the neighborhood of the steady state: it
means that only a linear system has then to be solved at each iteration, exactly as for the semi-implicit
scheme. Therefore, in a neighborhood of the steady state, an iteration of the bi-grid method needs an
additional implicit iteration on the coarse grid and becomes then more expensive in CPU time.

We denote by t1G and t2G respectively the computational time (CPU) of the resolution of the
reference scheme on a single grid and the resolution by the bi-grid method. We compute the number

of nonlinear iterations as a function of time and compute the L2 norm of
∂u
∂t

; we use the
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approximation
∂u
∂t
|t=tk '

uk+1 − uk

∆t
.We identify the time t∗ from which the reference scheme

(Algorithm 5) uses only one linear iteration at each time step and we define θs as the associated

threshold value of ‖
∂u
∂t
‖L2(Ω. We then can obtain an heuristic criteria to define a simple strategy to save

more CPU time and we modify the bi-grid scheme as follows: as long as ‖
∂u
∂t
‖ > θs we apply the

bi-grid scheme and as soon as ‖
∂u
∂t
‖L2(Ω) ≤ θs we apply the reference scheme on the fine space Vh. We

report in Table 1 (resp. Table 2) the CPU times for the four bi-grid algorithms (resp. on-grid scheme
with Algorithm 7). We notice that the ratio t2G

t1G
is now equal to 0.7 instead of 0.9 when no threshold

strategy was applied on the values of
∂u
∂t

.
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Figure 6. From left to right: CPU time of the scheme on a fine grid (Algorithm 5) and that
of the scales separation methods for Re = 100, 400, 1000, 2000 respectively.
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Figure 7. From left to right: CPU time of the scheme on a fine grid (Algorithm 5) and that
of the scales separation method (Algorithm 7) for Re = 3200, 5000, 7500 respectively.

As for the first order algorithms, the second order bi-grid schemes are faster in computation time
than the (second order) reference scheme (Algorithm 11). A gain in CPU is obtained see Figure 8 and
Tables 3, 4, 5, 6 for Re = 100, 400, 1000 and 2000.

The relative performances of semi-implicit reference one grid and of the bi-grid schemes in stability
time are the same as for the first order stabilized bi-grid algorithms: the high mode stabilization allows
to take larger time steps ∆t.
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Table 1. Non incremental Navier-Stokes Re = 2000,∆t = 10−3 and P2/P1.

80 × 40 points Algorithm 7 Algorithm 8 Algorithm 9 Algorithm 10
t1G at T = 70 (in sec.) 136366 136366 136366 136366
t2G at T = 70 (in sec.) 118398 129836 131503 132104
t2G

t1G
0.868 0.952 0.964 0.969

θs 0.00521845 0.00521845 0.00521845 0.00521845
t1G (in sec.) 74803.8 74803.8 74803.8 74803.8
t2G (in sec.) 54363.8 60544.3 61401.9 60842.7
t2G

t1G
0.727 0.809 0.821 0.813

Table 2. Non incremental Navier-Stokes for the Algorithm 7 Re = 2000, 3200, 5000, 7500
and P2/P1

80 × 40 points Re = 2000 Re = 3200 Re = 5000 Re = 7500
∆t = 10−3 ∆t = 10−3 ∆t = 10−3 ∆t = 5 × 10−4

Final time T = 70 T = 130 T = 148 T = 195
t1G at T (in sec.) 136366 227543 299998 846647
t2G at T (in sec.) 118398 203692 237105 670244
t2G

t1G
0.868 0.8952 0.7904 0.791

θs 0.00521845 0.00502797 0.00321512 0.00462578
t1G (in sec.) 74803.8 132604 256175 758398
t2G (in sec.) 54363.8 102922 188600 565283
t2G

t1G
0.727 0.776 0.736 0.745

3.1.3. Enhanced stability : comparison with a semi-implicit scheme

As presented in the previous sections, the bi-grid methods are faster than the unconditionally stable
reference scheme (Algorithm 5). To illustrate the stabilization properties of the bi-grid schemes, we
make now a comparison with the semi-implicit scheme (applied on whole the fine space Xh) and which
consists in treating the nonlinear term (uk · ∇)uk explicitly. Particularly we compare the maximum time
steps ∆t that can be taken for each of the schemes and compare the respective final CPU time on the
time interval [0,T ]. We concentrate on moderate and High Reynolds numbers Re = 2000, 3200, 5000
and Re = 7500. We give hereafter in Tables 7, 8, 9 and 10 the results comparing the stability of the
bi-grid Algorithms 7, 8, 9, 10 and the following semi-implicit scheme:
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Figure 8. From left to right: CPU time of the scheme on a fine grid (Algorithm 11) and that
of the scales separation method (Algorithms 12, 13, 14, 15) for Re = 100, 400, 1000, 2000
respectively.

Table 3. Non incremental second order Navier-Stokes Re = 100,∆t = 10−2 and P2/P1.

80 × 40 points Algorithm 12 Algorithm 13 Algorithm 14 Algorithm 15
t1G at T = 17 (in sec.) 3825.49 3825.49 3825.49 3825.49
t2G at T = 17 (in sec.) 3448.5 2758.86 3189.22 3357.44
t2G

t1G
0.901 0.721 0.834 0.878

θs 0.000538847 0.000538847 0.000538847 0.000538847
t1G (in sec.) 1812.3 1812.3 1812.3 1812.3
t2G (in sec.) 1327.1 1060.33 1211.73 1286.01
t2G

t1G
0.732 0.585 0.669 0.710

Table 4. Non incremental second order Navier-Stokes Re = 400,∆t = 10−2 and P2/P1.

80 × 40 points Algorithm 12 Algorithm 13 Algorithm 14 Algorithm 15
t1G at T = 35 (in sec.) 8565.76 8565.76 8565.76 8565.76
t2G at T = 35 (in sec.) 7334.26 5804.16 6731.14 6416.9
t2G

t1G
0.856 0.678 0.786 0.749

θs 0.000442771 0.000442771 0.000442771 0.000442771
t1G (in sec.) 5479 5479 5479 5479
t2G (in sec.) 4022.09 3209.97 3685.41 3508.57
t2G

t1G
0.734 0.586 0.673 0.640
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Table 5. Non incremental second order Navier-Stokes Re = 1000,∆t = 3 × 10−3 and P2/P1.

80 × 40 points Algorithm 12 Algorithm 13 Algorithm 14 Algorithm 15
t1G at T = 56 (in sec.) 38900.4 38900.4 38900.4 38900.4
t2G at T = 56 (in sec.) 36594.2 31834.6 33335.9 33493.8
t2G

t1G
0.941 0.818 0.857 0.861

θs 0.00147126 0.00147126 0.00147126 0.00147126
t1G (in sec.) 20786.7 20786.7 20786.7 20786.7
t2G (in sec.) 15856.7 13376.5 13917.3 13661
t2G

t1G
0.763 0.644 0.670 0.657

Table 6. Non incremental second order Navier-Stokes Re = 2000,∆t = 10−3 and P2/P1.

80 × 40 points Algorithm 12 Algorithm 13 Algorithm 14 Algorithm 15
t1G at T = 70 (in sec.) 141635 141635 141635 141635
t2G at T = 70 (in sec.) 121453 128157 120371 141042
t2G

t1G
0.858 0.905 0.850 0.996

θs 0.00514984 0.00514984 0.00514984 0.00514984
t1G (in sec.) 79614.3 79614.3 79614.3 79614.3
t2G (in sec.) 58606.9 61953.7 57919.8 67550.1
t2G

t1G
0.736 0.778 0.728 0.848

Algorithm 16 Non-incremental semi-implicit scheme
1: for k = 0, 1, · · · do

2: Find u∗h in Xh (
u∗h − uk

h

∆t
, ψh) + ν(∇u∗h,∇ψh) + ((uk

h · ∇)uk
h, ψh) = ( f , ψh),∀ψh ∈ Xh

3: Find pk+1
h in Yh (div ∇pk+1

h , χh) = (
div u∗h

∆t
, χh),∀χh ∈ Yh

4: Find uk+1
h in Xh (uk+1

h − u∗h + ∆t∇pk+1
h , ψh) = 0,∀ψh ∈ Xh

5: end for

We observe in Figure 9 that the dynamics of the convergence to the steady state of the bi-grid method
is similar to the one of the implicit and semi-implicit schemes. We note also that the stability of the bi-
grid scheme is guaranteed for large values of τ. For example, for Re = 1000 and ∆t = 0.007, Algorithm
7 was unstable for τ = 0.5 but taking a τ = 30 we can have a stable scheme without deteriorating the
history of the convergence to the steady state. In order to locate our gain at time step ∆t, we present
in Table 12 a comparison between the maximum time step allowing the stability of the semi-implicit
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Table 7. Re = 2000, dim(XH) = 6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) =

6561,P2/P1 elements.

Scheme τ ∆t Stability ∆t Stability τ ∆t Stability
Algorithm 7 0.5 0.001 yes 0.003 no 140 0.005 yes
Algorithm 8 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 9 0.5 0.001 yes 0.003 no 200 0.005 yes
Algorithm 10 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 16 0.001 yes 0.007 no 0.005 no

Table 8. Re = 3200, dim(XH) = 6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) =

6561,P2/P1 elements.

Scheme τ ∆t Stability ∆t Stability τ ∆t Stability
Algorithm 7 0.5 0.001 yes 0.003 no 200 0.005 yes
Algorithm 8 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 9 0.5 0.001 yes 0.003 no 300 0.005 yes
Algorithm 10 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 16 0.001 yes 0.003 no 0.005 no

Table 9. Re = 5000, dim(XH) = 6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) =

6561,P2/P1 elements.

Scheme τ ∆t Stability ∆t Stability τ ∆t Stability
Algorithm 7 0.5 0.001 yes 0.003 no 300 0.005 yes
Algorithm 8 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 9 0.5 0.001 yes 0.003 no 500 0.005 yes
Algorithm 10 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 16 0.001 yes 0.003 no 0.005 no

Table 10. Re = 7500, dim(XH) = 6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) =

6561,P2/P1 elements.

Scheme τ ∆t Stability ∆t Stability τ ∆t Stability
Algorithm 7 0.5 0.001 yes 0.003 no 400 0.005 yes
Algorithm 8 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 9 0.5 0.001 yes 0.003 no 900 0.005 yes
Algorithm 10 0.5 0.001 yes 0.003 yes 0.5 0.005 yes
Algorithm 16 0.001 yes 0.003 no 0.005 no
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scheme and our Algorithm 7 for the minimum value of τ necessary for stabilization.
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Figure 9. ‖
∂u
∂t
‖L2(Ω) vs time: left for ∆t = 10−2,Re = 400,T = 35, dim(XH) =

6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561 and right for ∆t = 5 × 10−3,Re =

1000, T = 56 and dim(XH) = 6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561.

Table 11. Non incremental Navier-Stokes ∆t maximum and stability.

Re=400 Re=1000
Algorithm 16 ∆t = 10−2 ∆t = 10−2 ∆t = 5 × 10−3 ∆t = 5 × 10−3

Algorithm 7 ∆t = 0.1 ∆t = 0.5 ∆t = 0.1 ∆t = 0.5
τ = 30 τ = 30 τ = 100 τ = 100

DtAlgo7

DtAlgo16
10 50 20 100

Table 12. Non incremental Navier-Stokes ∆t maximum and stability.

Re=2000 Re=3200 Re=5000 Re=7500
Algorithm 16 ∆t = 10−3 ∆t = 10−3 ∆t = 10−3 ∆t = 10−3 ∆t = 10−3 ∆t = 5 × 10−4

Algorithm 7 ∆t = 0.01 ∆t = 0.1 ∆t = 0.01 ∆t = 0.1 ∆t = 0.01 ∆t = 0.01
τ = 200 τ = 300 τ = 240 τ = 400 τ = 340 τ = 500

DtAlgo7

DtAlgo16
10 100 10 100 10 20

For small Reynolds number (Re = 100), we do not obtain an enhanced stability (larger ∆t) as compared
to the semi-implicit scheme. The latter is stable even for large values of the time step ∆t. When
considering larger values of Re, say Re = 400 to Re = 7500, the bi-grid scheme appears as 10 times to
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100 times more stable than the semi-implicit one. As a consequence, the gain in CPU time to compute
the steady state increases: the stability of the semi-implicit scheme is limited by ∆t = 0.005 while the
bi-grid algorithm remains stable for τ = 100 and ∆t = 0.1 and 0.5.

3.2. Precision test: Comparison with an exact solution

In order to show the accuracy of the bi-grid schemes, we simulate the Navier-Stokes equations for a
Bercovier-Engelman type solution [5], say

(u1, u2) = (−2x2y(1 − y)(1 − 2y)(1 − x)2 expsin t, 2y2x(1 − x)(1 − 2x)(1 − y)2 expsin t),
p = (x − 0.5)(y − 0.5),

and with the corresponding term f . We can observe in Figures 10 and 11 that the solutions coincide
with the reference one at final time T = 56 and that the L2 norm of the error of the bi-grid schemes is
of the order of ∆t on all interval time.

Figure 10. From top to bottom : velocity and pressure, and from left to right : the exact
solution and Algorithms 5 and 7 solutions for ∆t = 5 × 10−3,Re = 1000,T = 56, dim(XH) =

6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561.

4. Concluding remarks and further developments

The new bi-grid projection schemes introduced in this work allow to reduce the CPU time when
compared to fully implicit projection scheme, for a comparable precision. Their stability is enhanced
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Figure 11. From left to right : the L2−error for the velocity and the pressure between the
exact solution and the solution of algorithms 5, 7, 8, 9 and 10, for ∆t = 5 × 10−3,Re =

1000,T = 56, dim(XH) = 6561, dim(YH) = 1681, dim(Xh) = 25921, dim(Yh) = 6561.

as compared to semi-implicit projection scheme (larger time steps can be used). We choose to
stabilize only the velocity: the stabilization we used on the high mode components is simple, directly
derived from the technique introduced for reaction-diffusion equation in [1] and does not deteriorate
the consistency.

The numerical results we obtained on the benchmark driven cavity, corresponding to laminar
regimes, agree with the ones of the literature, particularly the dynamics of the convergence to the
steady state is close to the one of classical methods.
This is a first and encouraging step before considering a strategy of multi-grid or multilevel
adaptations of our methods, using more than 2 nested FEM spaces. We have used here FEM methods
for the spatial discretization, but the approach is applicable to others discretizations techniques such
as finite differences or spectral methods.
As further developments, the following topics could be considered

• Stabilization on the pressure. Of course other type of stabilization techniques can be considered,
e.g. such as those applied to the pressure and related also to artificial compressibility approach
[40]; we refer to the pressure stabilization method introduced by Brezzi and Pitkäranta [8] for
the Stokes problem and to Olshanski and al. [36] for the Navier-Stokes equations. The mass
conservation (divergence free condition) is modified as

ε
∂p
∂t

+ ∇u = 0,

where ε > 0 is a small positive real number. High mode stabilization on p can be obtained by
solving the In such a context a high-mode stabilization on the pressure can be obtained as follows:
First of all, solution of the pressure in YH:

(∇pk+1
H ,∇ψH) = −(∇u∗H, ψH),∀ψH ∈ YH,

(uk+1
H , φH) = (u∗H, φH) − ∆t(∇pk+1

H , φH),∀φH ∈ XH,

Then, we make the correction on the fine space Yh

τ(pk+1
h , ψh) + (∇pk+1

h ,∇ψh) = τ(pk
h, ψh) + τ(pk+1

H − pk
H, ψh) − (∇u∗h, ψh),∀ψh ∈ Yh,

(uk+1
h , ψH) = (u∗h, φh) − ∆t(∇pk+1

h , φh),∀ψh ∈ Xh.
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• Adaptation to models of turbulence. Laminar regimes are interesting at first sight to validate
the approach up to high Reynolds numbers (Re = 7500), even not in turbulence regime; this
was the scope of our paper. An issue that can be considered is to apply the bi-grid approach
to turbulence modeling, using a modified viscosity term. Smagorinsky’s turbulence model can
be considered. Numerical simulations, with different choices of the turbulent viscosity constant,
can be compared to some other studies that consider this benchmark problem. In such cases the
turbulence is modeled by introducing a turbulent viscosity νT , e.g., as follows:

ut + (u.∇)u − ∇ ((ν + νT )∇u) + ∇p = f x ∈ Ω, t ≥ 0, (9)
∇.u = 0 x ∈ Ω, (10)

u = 0 x ∈ ∂Ω, (11)
u(0, x) = u0 x ∈ Ω. (12)

Here ν > 0 is a constant viscosity, νT = βδ|u − ū|, where ū is a local average of u, β > 0, δ > 0.
This model of Smagorinsky’s type is considered, e.g., in [32]. In a more recent work [31], Layton
has considered

ν + νT = (Csδ)2|∇u|.

We refer also to [16].
• 3D flows.We have considered the two-dimensional case. The application of the bi-grid approach

should be applied as an issue to the 3D case. A larger gain in CPU time can be expected since for
H ' 2h we have R =

dim(XH)
dim(Xh) ' 0.25 in 2D while R ' 0.125 in 3D. Notice that when looking to

NSE equations, different behavior of the small eddies (high frequency components) can occur in
space dimension 2 and space dimension 3, see [16] and the references therein.
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