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1. Introduction

G. Caginalp introduced in [1] and [2] the following phase-field systems:

∂u
∂t

+ ∆2u − ∆ f (u) = −∆θ, (1.1)

∂θ

∂t
− ∆θ = −

∂u
∂t
, (1.2)

where u is the order parameter and θ is the (relative) temperature. These equations model phase transi-
tion processes such as melting/solidification processes and have been studied, e.g., in [4] for a similar
phase-field model with a memory term. Eqs. (1.1) − (1.2) consist of the coupling of the Cahn-Hilliard
equation introduced in [18] with the heat equation and are known as the conserved phase-field model,
in the sens that, when endowed with Neumann boundary conditions, the spatial average of the order pa-
rameter is a conserved quantity (see below). We refer the reader to, e.g., [6–11,13,14,16,17,19,20,22–
25].

Equations (1.1) and (1.2) are based on the total free energy

ψ(u, θ) =

∫
Ω

(
1
2
|∇u|2 + F(u) − uθ −

1
2
θ2)dx, (1.3)

where Ω is the domain occupied by the material (we assume that it is a bounded and smooth domain
of Rn, n = 2 or 3) and F′ = f (typically, F is the double-well potential F(s) = 1

4 (s2 − 1)2, hence

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/Math.2018.2.288


289

f (s) = s3 − s). We then introduce the enthalpy H defined by

H = −∂θψ, (1.4)

where ∂ denotes a variational derivative, so that

H = u + θ. (1.5)

The gouverning equations for u and θ are finally given by

∂u
∂t

= ∆∂uψ, (1.6)

∂H
∂t

= −divq, (1.7)

where q is the thermal flux vector. Assuming the classical Fourier law

q = −∇θ, (1.8)

we obtain (1.1) and (1.2).
Now, one drawback of the Fourier law is that it predicts that thermal signals propagate with an

infinite speed, which violates causality (the so-called ”paradox of heat conduction”, see, e.g. [5]).
Therefore, several modifications of (1.8) have been proposed in the literature to correct this unrealistic
feature, leading to a second order in time equation for the temperature.

In particular, we considered in [15] (see also [19] the Maxwell-Cattaneo law)

(1 + η
∂

∂t
)q = −∇θ, η > 0, (1.9)

which leads to

η
∂2θ

∂t2 +
∂θ

∂t
− ∆θ = −η

∂2u
∂t2 −

∂u
∂t
. (1.10)

Green and Naghdi proposed in [21] an alternative treatment for a thermomechanical theory of de-
formable media. This theory is based on an entropy balance rather than the usual entropy inequality
and is proposed in a very rational way. If we restrict our attention to the heat conduction, we recall
that proposed three different theories, labelled as type I, type II and type III, respectively. In particular,
when type I is linearized, we recover the classical theory based on the Fourier law. The linearized
versions of the two other theories are decribed by the constitutive equation of type II (see [12])

q = −k∇α, k > 0, (1.11)

where

α(t) =

∫ t

t0
θ(τ)dτ + α0 (1.12)

is called the thermal displacement variable. It is pertinent to note that these theories have received
much attention in the recent years.
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If we add the constitutive equation (1.9) to equation (1.7), we then obtain the following equations

for α (note that
∂α

∂t
= θ):

∂2α

∂t2 − k∆α = −
∂u
∂t
. (1.13)

Our aim in this paper is to study the model consisting the equation (1.1) (θ =
∂α

∂t
) and the tempera-

ture equation (1.13). In particular, we obtain the existence and the uniqueness of tne solutions.

2. Setting of the problem

We consider the following initial and boundary value problem (for simplificity, we take k = 1):

∂u
∂t

+ ∆2u − ∆ f (u) = −∆
∂α

∂t
, (2.1)

∂2α

∂t2 − ∆α = −
∂u
∂t
, (2.2)

u = ∆u = α = 0 on Γ, (2.3)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1, (2.4)

where Γ is the boundary of the spatial domain Ω.
We make the following assumptions:

f is of class C2(R), f (0) = 0, (2.5)

f ′(s) > −c0, c0 > 0, s ∈ R, (2.6)

f (s)s > c1F(s) − c2 > −c3, c1 > 0, c2, c3 > 0, s ∈ R, (2.7)

where F(s) =
∫ s

0
f (τ)dτ. In particular, the usual cubic nonlinear term f (s) = s3 − s satisfies these

assumptions.
We futher assume that

u0 ∈ H1
0(Ω) ∩ H2(Ω). (2.8)

Remark 2.1. We take here, for simplicity, Dirichlet boundary conditions. However, we can obtain the
same results for Neumann boundary conditions, namely,

∂u
∂ν

=
∂∆u
∂ν

=
∂α

∂ν
= 0 on Γ, (2.9)

where ν denotes the unit outer normal to Γ. To do so, we rewrite, owing to (2.1) and (2.2), the equations
in the form

∂u
∂t

+ ∆2u − ∆( f (u) − 〈 f (u)〉) = −∆
∂α

∂t
, (2.10)

∂2α

∂t2 − ∆α = −
∂u
∂t
, (2.11)
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where v = v − 〈v〉, |〈v0〉| 6 M1, |〈α0〉| 6 M2, for fixed positive constants M1 and M2. Then, we note that

v 7→ (‖(−∆)−
1
2 v‖2 + 〈v〉2)

1
2 ,

where, here, −∆ denotes the minus Laplace operator with Neumann boundary conditions and acting
on functions with null average and where it is understood that

〈.〉 =
1

vol(Ω)
〈., 1〉H−1(Ω),H1(Ω).

Furthermore,
v 7→ (‖v‖2 + 〈v〉2)

1
2 ,

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 ,

and
v 7→ (‖∆v‖2 + 〈v〉2)

1
2

are norms in H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to the usual ones.
We further assume that

| f (s)| 6 εF(s) + cε , ∀ε > 0, s ∈ R, (2.12)

which allows to deal with term 〈 f (u)〉.

We denote by ‖.‖ the usual L2-norm (with associated scalar product ((.,.))) and set ‖.‖−1 = ‖(−∆)−
1
2 .‖,

where −∆ denotes the minus Laplace operator with Dirichlet boundary conditions. More generally, ‖.‖X
denotes the norm in the Banach space X.

Throughout this paper, the same letters c, c′ and c′′ denotes (generally positive) constants which
may change from line to line, or even in a same line. Similary, the same letter Q denotes monotone
increasing (with respect to each argument) functions which may change from line to line, or even in a
same line.

3. A priori estimates

The estimates derived in this section are formal, but they can easily be justified within a Galerkin
scheme.

We rewrite (2.1) in the equivalent form

(−∆)−1∂u
∂t
− ∆u + f (u) =

∂α

∂t
. (3.1)

We multiply (3.1) by
∂u
∂t

and have, integrating over Ω and by parts,

d
dt

(‖∇u‖2 + 2
∫

Ω

F(u)dx) + 2‖
∂u
∂t
‖2−1 = 2((

∂α

∂t
,
∂u
∂t

)). (3.2)

We then multiply (2.2) by
∂α

∂t
and obtain

d
dt

(‖∇α‖2 + ‖
∂α

∂t
‖2) = −2((

∂α

∂t
,
∂u
∂t

)). (3.3)

AIMS Mathematics Volume 3, Issue 2, 288–297



292

Summing (3.2) and (3.3), we find a differential inequality of the form

dE1

dt
+ c‖

∂u
∂t
‖2−1 6 c′, c > 0, (3.4)

where
E1 = ‖∇u‖2 + 2

∫
Ω

F(u)dx + ‖∇α‖2 + ‖
∂α

∂t
‖2

satisfies
E1 > c(‖u‖H1(Ω) +

∫
Ω

F(u)dx + ‖α‖2H1(Ω) + ‖
∂α

∂t
‖2) − c′, c > 0, (3.5)

hence estimates on u, α ∈ L∞(0,T ; H1
0(Ω)), on

∂u
∂t
∈ L2(0,T ; H−1(Ω)) and on

∂α

∂t
∈ L∞(0,T ; L2(Ω)).

We multiply (3.1) by −∆
∂u
∂t

to find

1
2

d
dt
‖∆u‖2 + ‖

∂u
∂t
‖2 = ((∆ f (u),

∂u
∂t

)) − ((∆
∂α

∂t
,
∂u
∂t

)),

which yields, owing to (2.5) and the continuous embedding H2(Ω) ⊂ C(Ω),

d
dt
‖∆u‖2 + ‖

∂u
∂t
‖2 6 Q(‖u‖H2(Ω)) − 2((∆

∂α

∂t
,
∂u
∂t

)). (3.6)

Multiplying also (2.2) by −∆
∂α

∂t
, we have

d
dt

(‖∆α‖2 + ‖∇
∂α

∂t
‖2) = 2((∆

∂α

∂t
,
∂u
∂t

)). (3.7)

Summing then (3.6) and (3.7), we obtain

d
dt

(‖∆u‖2 + ‖∆α‖2 + ‖∇
∂α

∂t
‖2) + ‖

∂u
∂t
‖2 6 Q(‖u‖H2(Ω)). (3.8)

In particular, setting

y = ‖∆u‖2 + ‖∆α‖2 + ‖∇
∂α

∂t
‖2,

we deduce from (3.8) an inequation of the form

y′ 6 Q(y). (3.9)

Let z be the solution to the ordinary differential equation

z′ = Q(z), z(0) = y(0). (3.10)

It follows from the comparison principle that there exists T0 = T0(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)) be-
longing to, say, (0, 1

2 ) such that
y(t) 6 z(t), ∀t ∈ [0,T0], (3.11)
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hence

‖u(t)‖2H2(Ω) + ‖α(t)‖2H2(Ω) + ‖
∂α

∂t
(t)‖2H1(Ω) 6 Q(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t 6 T0. (3.12)

We now differentiate (3.1) with respect to time and have, noting that
∂2α

∂t2 = ∆α −
∂u
∂t

,

(−∆)−1 ∂

∂t
∂u
∂t
− ∆

∂u
∂t

+ f ′(u)
∂u
∂t

= ∆α −
∂u
∂t
. (3.13)

We multiply (3.13) by t
∂u
∂t

and find, owing to (2.6)

d
dt

(t‖
∂u
∂t
‖2−1) +

3
2

t‖∇
∂u
∂t
‖2 6 ct(‖

∂u
∂t
‖2 + ‖∇α‖2) + ‖

∂u
∂t
‖2−1,

hence, noting that ‖
∂u
∂t
‖2 6 c‖

∂u
∂t
‖−1‖∇

∂u
∂t
‖,

d
dt

(t‖
∂u
∂t
‖2−1) + t‖∇

∂u
∂t
‖2 6 ct(‖

∂u
∂t
‖2−1 + ‖∇α‖2) + ‖

∂u
∂t
‖2−1. (3.14)

In particular, we deduce from (3.4), (3.12), (3.14) and Gronwall’s lemma that

‖
∂u
∂t
‖2−1 6

1
t

Q(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t ∈ (0,T0]. (3.15)

Multiplying then (3.13) by
∂u
∂t

, we have, proceeding as above,

d
dt
‖
∂u
∂t
‖2−1 + ‖∇

∂u
∂t
‖2 6 c(‖

∂u
∂t
‖2−1 + ‖∇α‖2). (3.16)

It thus follows from (3.4), (3.16) and Gronwall’s lemma that

‖
∂u
∂t
‖2−1 6 ectQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω))‖

∂u
∂t

(T0)‖2−1, t > T0, (3.17)

hence, owing to (3.15),

‖
∂u
∂t
‖2−1 6 ectQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t > T0. (3.18)

We now rewrite (3.1) in the forme

− ∆u + f (u) = hu(t), u = 0 on Γ, (3.19)

for t > T0 fixed, where

hu(t) = −(−∆)−1∂u
∂t

+
∂α

∂t
(3.20)

satisfies, owing to (3.4) and (3.18)

‖hu(t)‖ 6 ectQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t > T0. (3.21)

AIMS Mathematics Volume 3, Issue 2, 288–297



294

We multiply (3.19) by u and have, noting that f (s)s > −c, c > 0, s ∈ R,

‖∇u‖2 6 c‖hu(t)‖2 + c′. (3.22)

Then, multipying (3.19) by −∆u, we find, owing to (2.6),

‖∆u‖2 6 c(‖hu(t)‖2 + ‖∇u‖2). (3.23)

We thus deduce from (3.21) − (3.23) that

‖u(t)‖2H2(Ω) 6 ectQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t > T0, (3.24)

and, thus, owing to (3.12)

‖u(t)‖2H2(Ω) 6 ectQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t > 0. (3.25)

Returning to (3.7), we have

d
dt

(‖∆α‖2 + ‖∇
∂α

∂t
‖2) 6 ‖∆

∂α

∂t
‖2 + ‖

∂u
∂t
‖2. (3.26)

Noting that it follows from (3.4), (3.16) and (3.18) that∫ t

T0

(‖∆
∂α

∂t
‖2 + ‖

∂u
∂t
‖2)dτ 6 ectQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t > T0, (3.27)

we finally deduce from (3.12) and (3.25) − (3.27) that

‖u(t)‖2H2(Ω) + ‖α(t)‖2H2(Ω) + ‖
∂α

∂t
(t)‖2H1(Ω) 6 ectQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H1(Ω)), t > 0. (3.28)

4. Existence and uniqueness of solutions

We first have the following.

Theorem 4.1. We assume that (2.5) − (2.8) hold and (α0, α1) ∈ (H1
0(Ω) ∩ H2(Ω)) × H1

0(Ω). Then,

(2.1) − (2.4) possesses at last one solution (u, α,
∂α

∂t
) such that

u, α ∈ L∞(0,T ; H1
0(Ω) ∩ H2(Ω)),

∂u
∂t
∈ L2(0,T ; H−1(Ω)) and

∂α

∂t
∈ L∞(0,T ; H1

0(Ω)).

Proof. The proof is based on (3.28) and, e.g., a standard Galerkin scheme. �

We have, concerning the uniqueness, the following.

Theorem 4.2. We assume that the assumptions of Theorem 4.1 hold. Then, the solution obtained in
Theorem 4.1 is unique
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Proof. Let (u(1), α(1),
∂α(1)

∂t
) and (u(2), α(2),

∂α(2)

∂t
) be two solutions to (2.1) − (2.3) with initial data

(u(1)
0 , α(1)

0 , α(1)
1 ) and (u(2)

0 , α(2)
0 , α(2)

1 ), respectively. We set

(u, α,
∂α

∂t
) = (u(1), α(1),

∂α(1)

∂t
) − (u(2), α(2),

∂α(2)

∂t
)

and
(u0, α0, α1) = (u(1)

0 , α(1)
0 , α(1)

1 ) − (u(2)
0 , α(2)

0 , α(2)
1 ).

Then, (u, α) satisfies
∂u
∂t

+ ∆2u − ∆( f (u(1)) − f (u(2))) = −∆
∂α

∂t
, (4.1)

∂2α

∂t2 − ∆α = −
∂u
∂t
, (4.2)

u = α = 0 on ∂Ω, (4.3)

u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1. (4.4)

We multiply (4.1) by (−∆)−1∂u
∂t

and (4.2) by
∂α

∂t
and have, summing the two resulting equations,

d
dt

(‖∇u‖2 + ‖∇α‖2 + ‖
∂α

∂t
‖2) + ‖

∂u
∂t
‖2−1 6 ‖∇( f (u(1)) − f (u(2)))‖2. (4.5)

Furthermore,

‖∇( f (u(1)) − f (u(2))‖ =
∥∥∥∇(

∫ 1

0
f ′(u(1) + s(u(2) − u(1)))dsu)

∥∥∥
6

∥∥∥ ∫ 1

0
f ′(u(1) + s(u(2) − u(1)))ds∇u

∥∥∥ +
∥∥∥ ∫ 1

0
f ′′(u(1) + s(u(2) − u(1)))(∇u(1) + s∇(u(2) − u(1)))dsu

∥∥∥
6 Q(‖u(1)

0 ‖H2(Ω), ‖u
(2)
0 ‖H2(Ω), ‖α

(1)
0 ‖H1(Ω), ‖α

(2)
0 ‖H1(Ω), ‖α

(1)
1 ‖H1(Ω), ‖α

(2)
1 ‖H1(Ω))

× (‖∇u‖ + ‖|u||∇u(1)|‖ + ‖|u||∇u(2)|‖)

6 Q(‖u(1)
0 ‖H2(Ω), ‖u

(2)
0 ‖H2(Ω), ‖α

(1)
0 ‖H1(Ω), ‖α

(2)
0 ‖H1(Ω), ‖α

(1)
1 ‖H1(Ω), ‖α

(2)
1 ‖H1(Ω))‖∇u‖. (4.6)

We thus deduce from (4.5) and (4.6) that

d
dt

(‖∇u‖2 + ‖∇α‖2 + ‖
∂α

∂t
‖2) + ‖

∂u
∂t
‖2−1

6 Q(‖u(1)
0 ‖H2(Ω), ‖u

(2)
0 ‖H2(Ω), ‖α

(1)
0 ‖H1(Ω), ‖α

(2)
0 ‖H1(Ω), ‖α

(1)
1 ‖H1(Ω), ‖α

(2)
1 ‖H1(Ω))‖∇u‖2. (4.7)

In particular, we have a differential inequality of the form

dE2

dt
6 QE2, (4.8)

where
E2 = ‖∇u‖2 + ‖∇α‖2 + ‖

∂α

∂t
‖2
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satisfies
E2 > c(‖u‖2H1(Ω) + ‖α‖2H1(Ω) + ‖

∂α

∂t
‖2) − c′. (4.9)

It follows from (4.8) − (4.9) and Gronwall’s lemma that

‖u(t)‖2H1(Ω) + ‖α(t)‖2H1(Ω) + ‖
∂α

∂t
(t)‖2 6 ceQt(‖u0‖

2
H1(Ω) + ‖α0‖

2
H1(Ω) + ‖α1‖

2), t > 0, (4.10)

hence the uniqueness, as well as the continuous dependence with respect to the initial data in the
H1 × H1 × L2-norm. �

Acknowledgments

The authors wish to thank the referees for their careful reading of the paper and useful comments.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, phys. Rev. B,
38 (1988), 789–791.

2. G. Caginalp, The dynamics of a conserved phase-field system: Stefan-Like, Hele-Shaw and Cahn-
Hilliard models as asymptotic limits, IMA J. Appl. Math., 1 (1990), 77–94.

3. D. Brochet, D. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved
phase field model, Adv. Differ. Equ-NY, 1 (1996), 547–578.

4. G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary
conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 14 (2007), 129–161.

5. C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in
moving media, Phys. Rev. Lett., 94 (2005), 154301.

6. M. Grasselli, A. Miranville, V. Pata, et al. Well-posedness and long time behavior of a parabolic-
hyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475–1509.

7. L. Cherfils, A. Miranville and S. Peng, Higher-order models in phase separation, J. Appl. Anal.
Comput., 7 (2017), 39–56.

8. L. Cherfils, A. Miranville and S. Peng, Higher-order generalized Cahn-Hilliard equations, Elec-
tron. J. Qual. Theo., 9 (2017), 1–22.

9. A. Miranville, Some mathematical models in phase transition, Discrete Cont. Dyn-S, 7 (2014),
271–306.

10. A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143–152.

11. A. Miranville, On higher-order anisotropic conservative Caginalp phase-field systems, Appl.
Math. Opt., 77 (2018), 1–18.

AIMS Mathematics Volume 3, Issue 2, 288–297



297

12. A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl.
Anal., 88 (2009), 877–894.

13. A. Miranville and R. Quintanilla, A conserved phase-field system based on the Maxwell-Cattaneo
law, Nonlinear Anal-Real, 14 (2013), 1680–1692.

14. A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type III heat conduction
with two temperatures, Quart. Appl. Math., 74 (2016), 375–398.

15. A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on
the Cattaneo law, Nonlinear Anal-Theor, 71 (2009), 2278–2290.

16. A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic
boundary conditions, Discrete cont. Dyn-A, 28 (2010), 275–310.

17. A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and
unbounded domains, In: Handbook of Differential Equations, Evolutionary Partial Differential
Equations, C. M. Dafermos, M. Pokorny eds., Elsevier, Amsterdam, 4 (2008), 103–200.

18. A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with
singular potentials, Math. Methods Appl. Sci., 27 (2004), 545–582.

19. J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo
heat flux law, J. Math. Anal. Appl., 341 (2008), 149–169.

20. J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795–801.

21. A. E. Green, P. M. Naghdi, On Undamped heat waves in an elastic solid, J. Therm. Stresses, 15
(1992), 253–264.

22. A. J. Ntsokongo, D. Moukoko, F. D. R. Langa, et al. On higher-order anisotropic conservative
Caginalp phase-field type models, AIMS Mathematics, 2 (2017), 215–229.

23. A. J. Ntsokongo and N. Batangouna, Existence and uniqueness of solutions for a conserved phase-
field type model, AIMS Mathematics, 1 (2016), 144–155.

24. A. Morro, L. E. Payne and B. Straughan, Decay, growth, continuous dependence and uniqueness
results in generalized heat conduction theories, Appl. Anal., 38 (1990), 231–243.

25. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition,
Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.

c© 2018 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 3, Issue 2, 288–297

http://creativecommons.org/licenses/by/4.0

	Introduction
	Setting of the problem
	A priori estimates
	Existence and uniqueness of solutions

