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Abstract: Consider the problem −∆u = a (x) u−α + f (λ, x, u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, where Ω

is a bounded domain in Rn with C2 boundary, 0 ≤ a ∈ L∞ (Ω) , 0 < α < 3, and f (λ, x, .) is nonnegative,
and superlinear with subcritical growth at ∞. We prove that, if f satisfies some additional conditions,
then, for some Λ > 0, there are at least two weak solutions in H1

0 (Ω) ∩ C
(
Ω
)

if λ ∈ (0,Λ), and there
is no weak solution in H1

0 (Ω) ∩ L∞ (Ω) if λ > Λ. We also prove that, for each λ ∈ [0,Λ], there exists a
unique minimal weak solution uλ in H1

0 (Ω) ∩ L∞ (Ω), which is strictly increasing in λ.
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supersolutions; fixed points; multiplicity theorems
Mathematics Subject Classification: 35J75, 35D30, 35J20

1. Introduction and statement of the main results

Consider the singular semilinear elliptic problem with a parameter λ:
−∆u = au−α + f (λ, ., u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(1.1)

where Ω is a bounded domain in Rn, 0 ≤ λ < ∞, α > 0, and a, f are functions defined on Ω and
[0,∞) ×Ω × [0,∞) respectively.

Singular elliptic problems like (1.1) appear in many fields, for instance in models of the temperature
in electrical conductors, and also in models of chemical catalysts process and of non Newtonian flows
(see e.g., [6], [10], [17], [20] and the references therein). Existence of solutions to problem (1.1) was
studied, when f ≡ 0, by Fulks and Maybee [20], Crandall, Rabinowitz and Tartar [11], Lazer and
McKenna [33], Diaz, Morel and Oswald [17], Del Pino [15], Bougherara, Giacomoni and Hernández
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[3], and, when f ≡ 0 and a is a suitable measure, by Oliva and Petitta [36]. The existence of classical
solutions to problem (1.1) was proved by Shi and Yao in [40], for the case when Ω and a are regular
enough, and f (λ, x, s) = λsp, with 0 < α < 1, and 0 < p < 1. Related free boundary singular elliptic
problems of the form −∆u = χ{u>0} (−u−α + λg (., u)) in Ω, u = 0 on ∂Ω, u ≥ 0 in Ω, u . 0 in Ω (that
is: |{x ∈ Ω : u(x) > 0}| > 0) were studied by Dávila and Montenegro in [13].

Singular problems of the form{
−∆u = g (x, u) + h (x, λu) in Ω,

u = 0 on ∂Ω, u > 0 in Ω,
(1.2)

were addressed by Coclite and Palmieri in [9]. We would like to note that, as a particular case of
their results, if g (x, u) = au−α, a ∈ C1

(
Ω
)
, a > 0 in Ω, h ∈ C1

(
Ω × [0,∞)

)
, and infΩ×[0,∞)

h(x,s)
1+s > 0,

then there exists λ∗ > 0 such that, for any λ ∈ [0, λ∗) , (1.2) has a positive classical solution u ∈
C2 (Ω) ∩C

(
Ω
)

and, for λ > λ∗, (1.2) has no positive classical solution.
The existence and nonexistence of positive solutions to problems of the form{

−∆u = −u−γ + +λ f (x, u) in Ω,

u = 0 on ∂Ω, u > 0 in Ω,
(1.3)

was studied by Papageorgiou and Rădulescu [37], in the case where Ω is a bounded domain in Rn with
C2 boundary, γ ≥ 0, λ ≥ 0, and f is a Carathéodory function. Under some additional assumptions on f ,
they proved that, if 0 < γ < 1, then there exists λ∗ > 0 such that (1.3) has a solution u ∈ H1

0 (Ω)∩L∞ (Ω)
when λ > λ∗, and has no solution in H1

0 (Ω) ∩ L∞ (Ω) for λ > λ∗. Moreover, they proved also that, if
γ > 1, then (1.3) has no solutions in H1

0 (Ω) ∩ L∞ (Ω).
Godoy and Guerin ([28], [29] and [30]) considered singular elliptic problems of the form

−∆u = χ{u>0}g (., u) + f (., u) in Ω,

u = 0 on ∂Ω,

u ≥ 0 in Ω, u . 0 in Ω,

(1.4)

with s → g (x, s) singular at the origin, and f : Ω × [0,∞) → R sublinear at ∞. In [28] and [29]
the singular part g was of the form au−α. In [30] a more general singular term was allowed; there
conditions were established on g in order to limit the strength of the singularity to a level that guarantee
the existence of finite Dirichlet energy weak solutions to problem (1.4).

Ghergu and Rădulescu [25] proved existence and nonexistence results for positive classical solu-
tions of singular biparametric bifurcation problems of the form −∆u = g (u) + λ |∇u|p + µh (., u) in Ω,

u = 0 on ∂Ω, u > 0 in Ω, where Ω is a smooth bounded domain in Rn, 0 < p ≤ 2, λ, µ ≥ 0, h(x, s) is
nondecreasing with respect to s, and g is unbounded around the origin. The asymptotic behaviour of
the solution around the bifurcation point was also established, provided g(s) behaves like s−α around
the origin, for some α in (0, 1).

Dupaigne, Ghergu and Rădulescu [19] addressed Lane-Emden-Fowler equations with convection
term and singular potential.

Rădulescu in [38] investigated the existence of blow-up boundary solutions for logistic equations;
and for Lane-Emden-Fowler equations, with a singular nonlinearity, and a subquadratic convection
term.
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The problem −∆u = ag (u)+λh (u) in Ω, u = 0 on ∂Ω, u > 0 in Ω was considered by Cı̂rstea, Ghergu
and Rădulescu [12], in the case when Ω is a regular enough bounded domain in Rn, 0 ≤ a ∈ Cβ

(
Ω
)
,

0 < h ∈ C0,β [0,∞) for some β ∈ (0, 1) , h is nondecreasing on [0,∞) , h (s) /s is nonincreasing for
s > 0, g is nonincreasing on (0,∞) , lims→0+ g (s) = +∞; and sups∈(0,σ0) sαg (s) < ∞ for some α ∈ (0, 1)
and σ0 > 0.

Ghergu and Rădulescu [22], addressed the Lane-Emden-Fowler singular equation −∆u = λ f (u) +

a (x) g (u) in Ω, u = 0 on ∂Ω, where Ω is a bounded and regular enough domain in Rn, λ is a positive
parameter, f is a nondecreasing function such that s−1 f (s) is nondecreasing, a ∈ Cα

(
Ω
)

for some
α ∈ (0, 1) , and g is unbounded around the origin. Under suitable additional assumptions on a, f , and
g, they proved that, for some λ∗ > 0,
(i) There exists a unique solution uλ in E :=

{
u ∈ C2 (Ω) ∩C1,1−α

(
Ω
)

such that ∆u ∈ L1 (Ω)
}
, whenever

0 ≤ λ < λ∗.
(ii) For λ ≥ λ∗ the problem has no solution in E.

Moreover, they obtained an explicit characterization of λ∗, and, in the case 0 ≤ λ < λ∗, a precise
description of the behavior of the solution uλ near ∂Ω was also given.

Ghergu and Rădulescu [24], proved the existence of a ground state solution to the singular Lane-
Emden-Fowler equation with sublinear convection term −∆u = p (x) (g (u) + f (u) + |∇u|α) in Rn, u > 0
in Rn, lim|x|→∞ u (x) = 0, in the case where n ≥ 3, 0 < α < 1, p is a positive function, f is positive,
nondecreasing, with sublinear growth, and g is positive, decreasing and unbounded around the origin.

Ghergu and Rădulescu [23], obtained existence and nonexistence results for the two parameter
singular problem −∆u + K(x)g(u) = λ f (x, u) +µh (x) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded
domain in Rn, λ and µ are positive parameters, h is a positive function, f has sublinear growth, K may
change sign, and g is nonnegative and unbounded around the origin.

Aranda and Godoy [2] obtained a multiplicity result for positive solutions in W1,p
loc (Ω) ∩ C

(
Ω
)

to
problems of the form −∆pu = g (u) +λh (u) in Ω, u = 0 on ∂Ω, in the case when Ω is a C2 bounded and
strictly convex domain in Rn, 1 < p ≤ 2; and g, h are locally Lipschitz functions on (0,∞) and [0,∞)
respectively, with g nonincreasing, and allowed to be singular at the origin; and h nondecreasing, with
subcritical growth, and satisfying inf s>0 s−p+1h (s) > 0.

Kaufmann and Medri [32] obtained existence and nonexistence results for positive solutions of one
dimensional singular problems of the form −

(
(u′)p−2 u′

)′
= m (x) u−γ in Ω, u = 0 on ∂Ω, where Ω ⊂ R

is a bounded open interval, p > 1, γ > 0, and m : Ω→ R is a function that may change sign in Ω.

Chhetri, Drábek and Shivaji [8] considered the problem −∆pu = K (x) f (u) u−δ in Rn \ Ω, u = 0 on
∂Ω, lim|x|→∞ u (x) = 0, in the case where Ω is a simply connected bounded domain in Rn containing
the origin, n ≥ 2, 1 < p < n, and 0 ≤ δ < 1. Under a suitable decay assumption on K at infinity and a
growth restriction on f , they proved the existence of a weak solution u ∈ C1

(
Rn \Ω

)
such that u = 0

on ∂Ω pointwise. Moreover, under an additional condition on K, they also proved the uniquennes of
such a solution. The existence of radial solutions in the case when Ω is a ball centered at the origin
was also addressed.

Recently, Saoudi, Agarwal and Mursaleenin [39], proved that, for λ positive and small enough,
at least two positive weak solutions in H1

0 (Ω) exist for singular elliptic problems of the form
− div (A (x)∇u) = u−α + λup in Ω, u = 0 on ∂Ω, with 0 < α < 1 < p < n+2

n−2 .

Giacomoni, Schindler and Takac [26] considered the problem −∆pu = λu−α + uq in Ω, u = 0 on
∂Ω, u > 0 in Ω, in the case 0 < α < 1, 1 < p < ∞, q < ∞ and p − 1 < q ≤ p∗ − 1, with p∗ defined
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by 1
p∗ = 1

p −
1
n if p < n and p∗ = ∞ otherwise. There it was proved that there exists Λ ∈ (0,∞) such

that this problem has a weak solution if λ ∈ (0,Λ] , has no weak solution if λ > Λ, and has at least two
weak solutions if λ ∈ (0,Λ) .

Finally, let us mention that in [31], existence and multiplicity results were obtained for positive
solutions of problem (1.1) for 0 < α < 3, 0 ≤ a ∈ L∞ (Ω) , a . 0 in Ω, and for some nonlinearities f
satisfying that f (λ, x, .) is superlinear with subcritical growth at∞ (a precise statement of these results
is given in Remark 1.1 below).

Additional references, and a comprehensive treatment of the subject, can be found in [21] and [38],
see also [16].

Unless otherwise stated, the notion of weak solution that we use is the usual one: If h : Ω → R is a
measurable function we say that u : Ω→ R is a weak solution of the problem

− ∆u = h in Ω, u = 0 on ∂Ω (1.5)

if u ∈ H1
0 (Ω) and, for any ϕ ∈ H1

0 (Ω) , hϕ ∈ L1 (Ω) and
∫

Ω
〈∇u,∇ϕ〉 =

∫
Ω

hϕ.

Since our results heavily rely on those in [31]; in the next remark we summarize some of the main
results included in that work:

Remark 1.1. (See [31], Theorems 1.1 and 1.2, and Lemmas 2.9 and 4.3). Assume that Ω is a bounded
domain in Rn with C2 boundary, and that the following conditions H1)-H5) hold:
H1) 0 < α < 3.
H2) a ∈ L∞ (Ω) , and there exists δ > 0 such that infAδ a > 0,
where, for ρ > 0,

Aρ := {x ∈ Ω : dΩ(x) ≤ ρ},

where dΩ := dist(., ∂Ω); and where, for a measurable subset E of Ω, infE means the essential infimum
on E.
H3) 0 ≤ f ∈ C

(
[0,∞) ×Ω × [0,∞)

)
, and f (0, ., .) ≡ 0 on Ω × [0,∞) .

H4) There exist numbers η0 > 0, q ≥ 1, and a nonnegative function b ∈ L∞ (Ω) , such that b . 0, and
f (λ, ., s) ≥ λbsq a.e. in Ω, whenever λ ≥ η0 and s ≥ 0.
H5) There exist p ∈

(
1, n+2

n−2

)
, and h ∈ C

(
(0,∞) ×Ω

)
that satisfy inf[η,∞)×Ω h > 0 for any η > 0, and

such that, for every σ > 0,

lim
(λ,s)→(σ,∞)

s−p f (λ, ., s) = h (σ, .) uniformly on Ω.

Then there exist positive numbers Λ, and Λ∗ ≤ Λ, such that:
i) Problem (1.1) has at least one weak solution u ∈ H1

0 (Ω)∩L∞ (Ω) if and only if 0 ≤ λ ≤ Λ. Moreover,
for λ = 0 there is only one such solution.
ii) For each λ ∈ [0,Λ] , if u ∈ H1

0 (Ω) ∩ L∞ (Ω) is a weak solution of problem (1.1), then u ∈ C
(
Ω
)
,

and satisfies u ≥ cdκ
Ω

in Ω, where dΩ := dist (., ∂Ω) , κ := 1 if 0 < α ≤ 1 and κ := 2
1+α

if 1 < α < 3, and
in both cases c is a positive constant independent of λ and u.
iii) If λ ∈ (0,Λ∗) , then problem (1.1) has at least two positive weak solutions in H1

0 (Ω) ∩C
(
Ω
)
.
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Our aim in this work is to prove the following two Theorems, which complement the results quoted
in Remark 1.1.

Theorem 1.2. Let Ω be a bounded domain in Rn with C2 boundary. Assume the following conditions
H1)-H6) :
H1) 0 < α < 3.
H2) a ∈ L∞ (Ω) , and there exists δ > 0 such that infAδ a > 0,
where, for ρ > 0,

Aρ := {x ∈ Ω : dΩ(x) ≤ ρ},

where dΩ := dist(., ∂Ω); and where, for a measurable subset E of Ω, in fE means the essential infimum
on E.
H3) 0 ≤ f ∈ C

(
[0,∞) ×Ω × [0,∞)

)
, and f (0, ., .) ≡ 0 on Ω × [0,∞) .

H4) There exist numbers η0 > 0, q ≥ 1, and a nonnegative function b ∈ L∞ (Ω) , such that b . 0, and
f (λ, ., s) ≥ λbsq a.e. in Ω, whenever λ ≥ η0 and s ≥ 0.
H5) There exist p ∈

(
1, n+2

n−2

)
, and h ∈ C

(
(0,∞) ×Ω

)
that satisfy inf[η,∞)×Ω h > 0 for any η > 0, and

such that, for every σ > 0,

lim
(λ,s)→(σ,∞)

s−p f (λ, ., s) = h (σ, .) uniformly on Ω.

H6) For any (λ, x) ∈ (0,∞) ×Ω, the function f (λ, x, .) is nondecreasing on (0,∞) and, for any (x, s) ∈
Ω × (0,∞) , the function f (., x, s) is strictly increasing on (0,∞) .
Let Λ be as given in Remark 1.1. Then, for any λ ∈ [0,Λ] , problem (1.1) has a minimal weak solution
uλ ∈ H1

0 (Ω)∩L∞ (Ω) that satisfies uλ ≤ v for any weak solution v ∈ H1
0 (Ω)∩L∞ (Ω) of (1.1). Moreover,

uλ ∈ C
(
Ω
)

and, if 0 ≤ λ1 < λ2 ≤ Λ, then there exists a positive constant c such that uλ1 + cdΩ ≤ uλ2 in

Ω; in particular, λ→ uλ is strictly increasing from [0,Λ] into C
(
Ω
)
.

Theorem 1.3. Assume the hypothesis of Theorem 1.2 and let Λ be as in Remark 1.1. Then, for each
λ ∈ (0,Λ) , problem (1.1) has at least two positive weak solutions in H1

0 (Ω) ∩C
(
Ω
)
.

The following two corollaries are direct consequences of Theorems 1.2 and 1.3, and of Remark 1.1:

Corollary 1. Let Ω be a bounded domain in Rn with C2 boundary. Consider the problem:
−∆u = au−α + λg (., u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(1.6)

Assume that the conditions H1) and H2) of Theorem 1.2 hold, and that g : Ω× [0,∞)→ R satisfies the
following conditions H3’)-H5’):
H3’) 0 ≤ g ∈ C

(
Ω × [0,∞)

)
and, for any x ∈ Ω, g (x, .) is strictly increasing on (0,∞) .

H4’) There exist q ∈ [1,∞) and a nonnegative b ∈ L∞ (Ω) , with b . 0, such that, for any s ≥ 0,
g (., s) ≥ bsq a.e. in Ω.

H5’) lims→∞
g(.,s)

sp = h uniformly on Ω for some p ∈
(
1, n+2

n−2

)
and some h ∈ C

(
Ω
)

such that minΩ h > 0.
Then there exists Λ ∈ (0,∞) such that problem (1.6):
i) Has at least two positive weak solutions in H1

0 (Ω) ∩C
(
Ω
)

if λ ∈ (0,Λ) ,
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ii) Has no positive weak solution in H1
0 (Ω) ∩ L∞ (Ω) if λ > Λ,

iii) Has at least one positive weak solution in H1
0 (Ω) ∩C

(
Ω
)

if λ = Λ,

iv) Has a unique positive weak solution in H1
0 (Ω) ∩ L∞ (Ω) if λ = 0, and it belongs to C

(
Ω
)
.

Moreover, for such a Λ, the conclusions of Theorems 1.2 and 1.3 hold for problem (1.6).

Corollary 2. Let Ω be a bounded domain in Rn with C2 boundary. Consider the problem
−∆u = au−α + g (., λu) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(1.7)

Assume that the conditions H1) and H2) of Theorem 1.2 hold; and that g : Ω × [0,∞) → R satisfies
the conditions H3’)-H5’) of Corollary 1, and the following additional condition:
H6’) g (., 0) = 0.
Then there exists Λ ∈ (0,∞) such that the conclusions of Corollary 1 hold for problem (1.7).

The paper is organized as follows: At the beginning of Section 2 we recall some results from [31]
that we need in order to prove Theorems 1.2 and 1.3. Lemma 2.5 provides a sub-supersolution result
adapted to our singular problem and, in Lemma 2.9, we use results from [17] to prove a version,
suitable for our purposes, of the strong maximum principle in the presence of a singular potential.

In Section 3 we prove Theorems 1.2 and 1.3. Concerning Theorem 1.2, the minimal solution uλ
is found by adapting, to our singular setting, ideas from [35], and using the sub and supersolutions
method (applied to suitable nonsingular approximations to problem (1.1)). The sub and supersolutions
method also gives that λ → uλ is nondecreasing. Next, Lemma 2.9 is used to prove the stronger
monotonicity assertion of Theorem 1.2.

In Remark 3.1 we recall a sub-supersolution theorem from [34], which allows singular nonlineari-
ties, and provides solutions, in the sense of distributions, to problems like (1.1). Lemma 3.2 states that,
under suitable assumptions, a solution, in the sense of distributions, to problem (1.1), is also a weak
solution in H1

0 (Ω) .
Theorem 1.3 is proved by using a classical fixed point theorem from [1], combined with an a priori

bound (obtained in [31]) for the L∞ norm of the solutions of problem (1.1), as well as the results of
Theorem 1.2, and the sub-supersolutions method developed in [34].

2. Preliminaries

We assume from now on that Ω is a bounded domain inRn with C2 boundary; and that the conditions
H1)-H6) of Theorem 1.2 hold. Let us summarize in the next lemmas some facts proved in [31].

Lemma 2.1. (See [31], Lemmas 2.6 and 2.12) For any nonnegative ζ ∈ L∞ (Ω) and ε ≥ 0, the problem
−∆u = a (u + ε)−α + ζ in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(2.1)

has a unique weak solution u ∈ H1
0 (Ω) , and it belongs to L∞ (Ω) .
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Let P∞ := {ζ ∈ L∞ (Ω) : ζ ≥ 0 a.e. in Ω} and, for any ε ≥ 0, let S ε : P∞ → H1
0 (Ω) ∩ L∞ (Ω) be defined

by S ε (ζ) := u, where u is the unique weak solution to problem (2.1) given by Lemma 2.1. Define also
S : P∞ × [0,∞)→ H1

0 (Ω) ∩ L∞ (Ω) by S (ζ, ε) := S ε (ζ) .
Unless explicit mention to the contrary, we will consider P∞ endowed with the topology of the L∞

norm.

Lemma 2.2. (See [31], Lemmas 2.14, 2.7, 2.12 and 2.9):
i) ζ → S ε (ζ) is nondecreasing on P∞ for any ε ≥ 0.
ii) ε→ S ε (ζ) is nonincreasing on [0,∞) for any ζ ∈ P∞.
iii) S (P∞ × [0,∞)) ⊂ C

(
Ω
)
, and S : P∞ × [0,∞)→ C

(
Ω
)

is continuous.

iv) S : P∞ × [0,∞)→ C
(
Ω
)

is a compact map.
v) There exists a positive constant c such that S ε (ζ) ≥ cdΩ in Ω for any ε ∈ [0, 1] and ζ ∈ P∞.
vi) If 1 < α < 3, then there exists a positive constant c such that S 0 (ζ) ≥ cd

2
1+α

Ω
in Ω for any ζ ∈ P∞.

vii) For any ζ ∈ P∞, ε ≥ 0, and γ ∈ (0, 1) , there exists a positive constant c such that S ε (ζ) ≤ cdγ
Ω

in
Ω.

Lemma 2.3. (See [31], Lemma 4.8) Let λ0 > 0, let
{
λ j

}
j∈N

be a sequence in [λ0,∞) , let
{
ε j

}
j∈N

be a

sequence in [0, 1] , and for each j ∈ N, let w j ∈ H1
0 (Ω) ∩ L∞ (Ω) be a weak solution of the following

problem 
−∆w j = a

(
w j + ε j

)−α
+ f

(
λ j, .,w j

)
in Ω,

w j = 0 on ∂Ω,

w j > 0 in Ω.

Then i)
{
w j

}
j∈N

is bounded in H1
0 (Ω) .

ii) If
{
w jk

}
k∈N

is a subsequence of
{
w j

}
j∈N

that converges weakly in H1
0 (Ω) to some w ∈ H1

0 (Ω)∩L∞ (Ω) ,

and if limk→∞

(
λ jk , ε jk

)
= (λ, ε) , then w is a weak solution of the problem

−∆w = a (w + ε)−α + f (λ, .,w) in Ω,

w = 0 on ∂Ω,

w > 0 in Ω;

and, moreover, there exists a positive constant c such that w ≥ cdΩ in Ω.

For u ∈ H1 (Ω) , we write u ≥ 0 on ∂Ω (respectively u ≤ 0 on ∂Ω), to mean that u− ∈ H1
0 (Ω) (resp.

u+ ∈ H1
0 (Ω)). The notions of weak subsolutions and supersolutions, to be used from now on in this

work, are the usual ones: If h : Ω → R is a measurable function such that hϕ ∈ L1 (Ω) for any
ϕ ∈ H1

0 (Ω) , we say that u : Ω → R is a weak subsolution (respectively a weak supersolution) of (1.5)
if u ∈ H1

0 (Ω) , u ≤ 0 on ∂Ω, and
∫

Ω
〈∇u,∇ϕ〉 ≤

∫
Ω

hϕ (resp. u ≥ 0 on ∂Ω and
∫

Ω
〈∇u,∇ϕ〉 ≥

∫
Ω

hϕ) for
any nonnegative ϕ ∈ H1

0 (Ω) .

Remark 2.4. If U is an open set in Rn, u ∈ H1 (U) and h ∈ L1
loc (U), we will write −∆u ≥ h in U

(respectively −∆u ≤ h in U) to mean that∫
U
〈∇u,∇ϕ〉 ≥

∫
U

hϕ (resp.
∫

U
〈∇u,∇ϕ〉 ≤

∫
U

hϕ) for any nonnegative ϕ ∈ C∞c (U) . (2.2)
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Note that if, in addition, h ∈ H−1 (U) :=
(
H1

0 (U)
)′

(i.e., if the map ϕ →
∫

U
hϕ is continuous on

H1
0 (U)), then, by a standard density argument, from (2.2) it follows that

∫
U
〈∇u,∇ϕ〉 ≥

∫
U

hϕ (resp.∫
U
〈∇u,∇ϕ〉 ≤

∫
U

hϕ) also holds for any nonnegative ϕ ∈ H1
0 (U) .

We will also need the following auxiliary results.

Lemma 2.5. Let λ > 0, and suppose that u and v are weak nonnegative supersolutions in H1
0 (Ω) ∩

L∞ (Ω) of problem (1.1). Then there exists a weak solution z ∈ H1
0 (Ω) ∩ C

(
Ω
)

of problem (1.1) such
that z ≤ min {u, v} in Ω.

Proof. Let
{
ε j

}
j∈N

be a sequence in (0, 1] such that lim j→∞ ε j = 0. Then, for any j, u and v are weak
supersolutions of the (nonsingular) problem

−∆w = a
(
w + ε j

)−α
+ f (λ, .,w) in Ω,

w = 0 on ∂Ω,

w > 0 in Ω,

(2.3)

and therefore (see, e.g., [18], Lemma 4.10), min {u, v} is a weak supersolution of (2.3). Note that
S ε j (0) is a weak subsolution of the same problem, and that, by Lemma 2.2, S ε j (0) ≤ S ε j ( f (λ, ., u)) ≤
S 0 ( f (λ, ., u)) = u. Similarly, S ε j (0) ≤ S ε j ( f (λ, ., v)) ≤ S 0 ( f (λ, ., v)) = v, therefore S ε j (0) ≤
min {u, v} . Thus (see e.g., [18], Theorem 4.9), there exists a weak solution z j of problem (2.3) such
that z j ≤ min {u, v} . As, by Lemma 2.3,

{
z j

}
j∈N

is bounded in H1
0 (Ω) , there exist z ∈ H1

0 (Ω) , and

a subsequence
{
z jk

}
k∈N

, such that
{
z jk

}
k∈N

converges to z in L2 (Ω) and
{
∇z jk

}
k∈N

converges weakly in

L2 (Ω,Rn) to ∇z. Taking a subsequence if necessary, we can assume that
{
z jk

}
k∈N

converges to z a.e. in
Ω. Then z ≤ min {u, v} a.e. in Ω and, by Lemma 2.3, z is a weak solution of (1.1); now Remark 1.1
says z ∈ C

(
Ω
)
. �

Remark 2.6. Following [5], for µ ∈ L1 (Ω) we say that u : Ω→ R is a solution of the problem{
−∆u = µ in Ω,

u = 0 on ∂Ω,
(2.4)

if u ∈ L1 (Ω) and
∫

Ω
u (−∆ϕ) =

∫
Ω
µϕ, for any ϕ ∈ C2

0

(
Ω
)
, where C2

0

(
Ω
)

:={
ϕ ∈ C2

(
Ω
)

: ϕ = 0 on ∂Ω
}
.

From [5], Theorem B.1, for any µ ∈ L1 (Ω) , problem (2.4) has a unique solution u (in the above sense).
Moreover, u ∈ W1,1

0 (Ω) and, for any ϕ ∈ C∞c (Ω) ,∫
Ω

〈∇u,∇ϕ〉 =

∫
Ω

µϕ.

Remark 2.7. Let us recall the Hardy inequality (see e.g., [4], p. 313): There exists a positive constant
c such that

∥∥∥∥ ϕ

dΩ

∥∥∥∥
L2(Ω)
≤ c ‖∇ϕ‖L2(Ω) for all ϕ ∈ H1

0 (Ω) .
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Let us introduce some notation: ϕ1 will denote the positive principal eigenfunction of −∆ in Ω with
homogeneous Dirichlet boundary condition, normalized by ‖ϕ1‖∞ = 1.We recall that, for some positive
constant c, 1

c dΩ ≤ ϕ1 ≤ cdΩ in Ω (for the definitions and properties of principal eigenvalues and
principal eigenfunctions see, e.g., Chapter 1 in [14]).
For h ∈ L1 (Ω) , N (h) will denote the unique solution u ∈ W1,1

0 (Ω), in the sense of Remark 2.6, of the
problem −∆u = h in Ω, u = 0 on ∂Ω.

Remark 2.8. Let us recall the following result from [17] (see [17], Theorem 1 and Corollary 1): If
γ ∈ (0, 1) , 0 ≤ h ∈ L1 (Ω) , and |{x ∈ Ω : h (x) > 0}| > 0, then there exists τ0 > 0 such that, for any
t ≥ τ0, the problem 

−∆v = −v−γ + th in Ω,

v = 0 on ∂Ω,

v > 0 in Ω

(2.5)

has a maximal solution vt, in the sense of Remark 2.6, and as such, vt ∈ W1,1
0 (Ω) and −v−γt +h ∈ L1 (Ω) .

If, in addition, h ∈ L∞ (Ω) , then, by ([17], Lemma 2), vt ∈ H1
0 (Ω) . Moreover, as observed in the proof

of ([17], Theorem 1), vt ≤ N (h) in Ω, and so there exists a positive constant r′ such that vt ≤ r′dΩ in
Ω. Also, within the proof of ([17], Theorem 3) it is proved that if τ0 ≤ t′ < t, then, for some ε > 0,
vt ≥ vt′ + εϕ1 in Ω, and so, for t > τ0, there exists a positive constant r such that vt ≥ rdΩ in Ω. Thus,
for t > τ0,

rdΩ ≤ vt ≤ r′dΩ in Ω. (2.6)

Since vt is a solution in the sense of distributions of (2.5), and since, from (2.6), vt ∈ L∞ (Ω) and
−v−γt + th ∈ L∞loc (Ω) , the inner elliptic estimates (see e.g., in [27], Theorem 8.24) give that vt ∈ C (Ω) .
From (2.6), vt is continuous at ∂Ω, and so vt ∈ C

(
Ω
)
. Also, from (2.6), there exists a positive constant

c such that
∣∣∣−v−γt + th

∣∣∣ ≤ cd−γ
Ω

in Ω. Then, for any ϕ ∈ H1
0 (Ω) ,∫

Ω

∣∣∣∣(−v−γt + th
)
ϕ
∣∣∣∣ ≤ c

∫
Ω

d1−γ
Ω

∣∣∣∣∣ ϕdΩ

∣∣∣∣∣ ≤ c′′
∥∥∥∥∥ ϕdΩ

∥∥∥∥∥
2
,

where c′′ is a constant independent of ϕ. Thus, by the Hardy inequality, the functional ϕ →∫
Ω

(
−v−γt + th

)
ϕ is continuous on H1

0 (Ω) . Therefore, taking into account that vt ∈ H1
0 (Ω) , and that∫

Ω

〈∇vt,∇ϕ〉 =

∫
Ω

(
−v−γt + th

)
ϕ for any ϕ ∈ C∞c (Ω) (2.7)

it follows that (2.7) remains valid for any ϕ ∈ H1
0 (Ω) ; therefore vt is a weak solution of (2.5).

Lemma 2.9. Let k > 0, η ∈ (0, 2) , and let g ∈ C (Ω) ∩ L∞ (Ω) be a function such that g (x) > 0 for all
x ∈ Ω. If w ∈ H1

0 (Ω) satisfies −∆w + kd−η
Ω

w ≥ g in Ω, then there exists a positive constant c such that
w ≥ cdΩ a.e. in Ω.

Proof. Note that if w ∈ H1
0 (Ω) satisfies −∆w + kd−η

Ω
w ≥ g in Ω, then, for τ > 0, −∆ (τw) + kd−η

Ω
τw ≥ τg

in Ω. Thus the lemma will follow if we show that, if τ is large enough and if w ∈ H1
0 (Ω) satisfies

−∆w + kd−η
Ω

w ≥ τg in Ω, then there exists a positive constant c such that w ≥ cdΩ in Ω.

We consider first the case 1 < η < 2. Let θ := 1
2 (2 − η) and let γ := η

2 . Notice that η + θ < 2 and
0 < γ < 1. According to Remark 2.8 there exists t0 = t0 (η, g) > 0 such that, for t = t0 and h = g, (2.5)
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has a positive maximal weak solution vt0 ∈ H1
0 (Ω) , which satisfies, for some positive constants c1 and

c2, c1dΩ ≤ vt0 ≤ c2dΩ in Ω. Assume temporarily k ≥ c−η−θ2 ‖dΩ‖
−θ
∞ . Fix δ ∈

(
0, 1

2

(
kcη+θ2

)− 1
θ

)
; and for

ρ > 0 let Aρ := {x ∈ Ω : dΩ (x) < ρ} and Ωρ := {x ∈ Ω : dΩ (x) > ρ} . We have, in A2δ,

−∆vt0 = −v−γt0 + t0g

= −v−(η+θ)
t0 vt0 + t0g ≤ − (c2dΩ)−(η+θ) vt0 + t0g

= −c−(η+θ)
2 d−θΩ d−η

Ω
vt0 + t0g

≤ −c−(η+θ)
2 (2δ)−θ d−η

Ω
vt0 + t0g ≤ −kd−η

Ω
vt0 + t0g,

therefore,
− ∆vt0 + kd−η

Ω
vt0 ≤ t0g in A2δ. (2.8)

We have also, for any x ∈ Ωδ,(
kd−η

Ω
(x) − (c2dΩ (x))−η−θ

)
vt0 (x) =

(
k − c−η−θ2 d−θΩ (x)

)
d−η

Ω
(x) vt0 (x)

≤
(
k − c−η−θ2 ‖dΩ‖

−θ
∞

)
d−η

Ω
(x) vt0 (x)

≤ c2

(
k − c−η−θ2 ‖dΩ‖

−θ
∞

)
δ−ηdΩ (x) ;

that is, (
kd−η

Ω
− (c2dΩ)−η−θ

)
vt0 ≤ c2

(
k − c−η−θ2 ‖dΩ‖

−θ
∞

)
δ−ηdΩ in Ωδ. (2.9)

Define τ0 := t0 + c2

(
k − c−η−θ2 ‖dΩ‖

−θ
∞

) (
minΩδ

g
)−1 δ−η ‖dΩ‖∞ . For t > τ0, from (2.9), we have, in Ωδ,

(t − t0) g ≥ (t − t0) min
Ωδ

g ≥ c2

(
k − c−η−θ2 ‖dΩ‖

−θ
∞

)
δ−η ‖dΩ‖∞ (2.10)

≥ c2

(
k − c−η−θ2 ‖dΩ‖

−θ
∞

)
δ−ηdΩ

≥
(
k − c−η−θ2 ‖dΩ‖

−θ
∞

)
δ−ηvt0

≥
(
k − c−η−θ2 ‖dΩ‖

−θ
∞

)
d−η

Ω
vt0

≥
(
kd−η

Ω
− c−η−θ2 d−η−θ

Ω

)
vt0 ,

therefore, for t > τ0,

−∆vt0 + kd−η
Ω

vt0 = −v−γt0 + t0g + kd−η
Ω

vt0 = −v−η−θt0 vt0 + t0g + kd−η
Ω

vt0 (2.11)
≤ − (c2dΩ)−η−θ vt0 + t0g + kd−η

Ω
vt0 ≤ tg in Ωδ,

the last inequality by (2.10). Then, from (2.8) and (2.11), we have, for t > τ0,

− ∆vt0 + kd−η
Ω

vt0 ≤ tg in Ω. (2.12)

Let w ∈ H1
0 (Ω) be such that, for some t ≥ τ0, −∆w + kd−η

Ω
w ≥ tg in Ω, then, from (2.12), we have

−∆
(
w − vt0

)
+ kd−η

Ω

(
w − vt0

)
≥ 0 in Ω; i.e.,∫

Ω

〈
∇

(
w − vt0

)
,∇ϕ

〉
+

∫
Ω

kd−η
Ω

(
w − vt0

)
ϕ ≥ 0 (2.13)
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for any nonnegative ϕ ∈ C∞c (Ω) . Also, since η < 2, from the Hölder and Hardy inequalities there
exists a positive constant c such that, for any ϕ ∈ H1

0 (Ω) ,
∣∣∣∫

Ω
kd−η

Ω

(
w − vt0

)
ϕ
∣∣∣ ≤ ∫

Ω
kd2−η

Ω

∣∣∣∣w−vt0
dΩ

∣∣∣∣ ∣∣∣∣ ϕdΩ

∣∣∣∣ ≤
c
∥∥∥w − vt0

∥∥∥
H1

0 (Ω) ‖ϕ‖H1
0 (Ω) . Thus kd−η

Ω

(
w − vt0

)
∈ H−1 (Ω), and then, as observed in Remark 2.4, (2.13)

holds for any ϕ ∈ H1
0 (Ω) . Now, taking ϕ =

(
w − vt0

)− in (2.13), we get

−

∫
Ω

∣∣∣∇ (
w − vt0

)−∣∣∣2 − ∫
Ω

kd−η
Ω

((
w − vt0

)−)2
≥ 0

which gives
(
w − vt0

)−
= 0 in Ω. Thus w ≥ vt0 in Ω, and, since vt0 ≥ c1dΩ in Ω, the lemma is proved

when 1 < η < 2 and k ≥ c−η−θ2 ‖dΩ‖
−θ
∞ .

If 1 < η < 2 and k ≤ c−η−θ2 ‖dΩ‖
−θ
∞ , define k := k + c−η−θ2 ‖dΩ‖

−θ
∞ . Note that, if w ∈ H1

0 (Ω) satisfies
−∆w + kd−η

Ω
w ≥ tg in Ω, then −∆w + kd−η

Ω
w ≥ tg in Ω, and and thus the lemma follows, in this case,

from the previous case 1 < η < 2.
Finally, note that the case 0 < η ≤ 1 reduces to the case 1 < η < 2. Indeed, since 0 < η ≤ 1 and dΩ

is bounded on Ω, there exists a positive constant q such that d−η
Ω
≤ qd−

3
2

Ω
in Ω, and so, if w ∈ H1

0 (Ω)

satisfies −∆w + kd−η
Ω

w ≥ tg in Ω, then −∆w + qkd−
3
2

Ω
w ≥ tg in Ω, therefore the case 1 < η < 2 gives a

positive constant c such that w ≥ cdΩ in Ω. �

Remark 2.10. Let Λ be as in Remark 1.1; and for λ ∈ [0,Λ] , let u ∈ H1
0 (Ω) ∩ L∞ (Ω) be a weak

solution of (1.1). Then u ∈ C1 (Ω) . Indeed, from Remark 1.1, u ≥ cdΩ in Ω for some positive constant
c. Thus au−α + f (λ, ., u) ∈ L∞loc (Ω) . Also u ∈ L∞ (Ω) , and so, by the inner elliptic estimates (as stated
e.g., in [7], Proposition 1.4.2), u ∈ W2,p

loc (Ω) for any p ∈ (1,∞) and then u ∈ C1 (Ω) .

3. Proof of the main results

Proof of Theorem 1.2. Let Λ be as in Remark 1.1. We first prove that, for any λ ∈ [0,Λ] , problem
(1.1) has a weak solution uλ ∈ H1

0 (Ω) ∩ L∞ (Ω) , minimal in the sense stated in the theorem, i.e., such
that uλ ≤ v for any weak solution v ∈ H1

0 (Ω) ∩ L∞ (Ω) of (1.1). Let

βλ := inf
{∫

Ω

w : w ∈ H1
0 (Ω) ∩ L∞ (Ω) and w is a weak solution of (1.1)

}
For each λ ∈ [0,Λ] , if u ∈ H1

0 (Ω)∩L∞ (Ω) is a weak solution of (1.1), then, by Remark 1.1, u ≥ cdΩ in
Ω, for some positive c independent of λ and u; therefore βλ > 0. Let

{
w j

}
j∈N

be a minimizing sequence

for the above infimum. By Lemma 2.3,
{
w j

}
j∈N

is bounded in H1
0 (Ω) ; then there exists uλ ∈ H1

0 (Ω) ,

and a subsequence
{
w jk

}
k∈N

, such that
{
w jk

}
k∈N

converges to uλ in L2 (Ω) and
{
∇w jk

}
k∈N

converges

weakly in L2 (Ω,Rn) to ∇uλ. Taking a further subsequence we can assume that
{
w jk

}
k∈N

converges to

uλ a.e. in Ω. Again by Lemma 2.3, uλ is a weak solution of (1.1) and, by Lemma 2.2, uλ ∈ C
(
Ω
)
.

Moreover, since
{
w jk

}
k∈N

converges to uλ in L2 (Ω) , we have βλ = limk→∞

∫
Ω

w jk =
∫

Ω
uλ. Let

{
ε j

}
j∈N

be

a sequence in (0, 1] such that lim j→∞ ε j = 0. Let v ∈ H1
0 (Ω)∩L∞ (Ω) be a weak solution of (1.1). From

Lemma 2.5, there exists a weak solution z ∈ H1
0 (Ω) ∩ C

(
Ω
)

to problem (1.1) such that z ≤ min {uλ, v}

AIMS Mathematics Volume 3, Issue 1, 233–252



244

in Ω. Thus
∫

Ω
z ≤ βλ. Also, from the definition of βλ, βλ ≤

∫
Ω

z, and so
∫

Ω
z =

∫
Ω

uλ. Thus uλ = z ≤ v;
therefore uλ is a minimal solution of (1.1), and clearly such a minimal solution is unique.

To see that λ → uλ is nondecreasing, suppose 0 ≤ λ1 < λ2 ≤ Λ; from H6) we have f (λ2, x, s) ≥
f (λ1, x, s) for any (x, s) ∈ Ω × [0,∞) , and so uλ2 is a weak supersolution of the problem

−∆w = aw−α + f (λ1, .,w) in Ω,

w = 0 on ∂Ω,

w > 0 in Ω.

(3.1)

Since uλ1 is a weak supersolution of the same problem, Lemma 2.5 says that there exists a weak solution
z̃ ∈ H1

0 (Ω) ∩ C
(
Ω
)

to problem (3.1) such that z̃ ≤ min
{
uλ1 , uλ2

}
; which implies z̃ = uλ1 , since uλ1 is

minimal; then uλ1 ≤ uλ2 .
To complete the proof of the theorem it remains to prove that if 0 ≤ λ1 < λ2 ≤ Λ, then

uλ1 + cdΩ ≤ uλ2 in Ω for some constant c > 0. (3.2)

Suppose 0 ≤ λ1 < λ2 ≤ Λ. From the first part of the proof we have uλ1 ≤ uλ2 in Ω. If uλ1 ≡ uλ2 in
Ω, then f

(
λ2, ., uλ2

)
= f

(
λ1, ., uλ1

)
= f

(
λ1, ., uλ2

)
in Ω (the first of these equalities from the equations

satisfied by uλ1 and uλ2 and the second one because uλ1 ≡ uλ2 in Ω), and therefore f
(
λ2, x, uλ2 (x)

)
=

f
(
λ1, x, uλ2 (x)

)
for any x ∈ Ω , which contradicts H6). Thus uλ1 . uλ2 in Ω. To prove (3.2) we consider

first the case 1 ≤ α < 3. Let ε > 0 be such that α + ε < 3. We have, for i = 1, 2,
−∆uλi = au−αλi

+ f
(
λi, ., uλi

)
= auελi

u−α−ελi
+ f

(
λi, ., uλi

)
in Ω,

uλi = 0 on ∂Ω,

uλi > 0 in Ω.

Notice that, since uλ1 ≤ uλ2 , the mean value theorem gives

auελ2
u−α−ελ2

− auελ1
u−α−ελ1

≥ auελ1

(
u−α−ελ2

− u−α−ελ1

)
= − (α + ε) auελ1

θ−α−ε−1 (
uλ2 − uλ1

)
for some measurable θ : Ω→ R such that uλ1 ≤ θ ≤ uλ2 . Thus

−∆
(
uλ2 − uλi

)
+ (α + ε) auελ1

θ−α−ε−1 (
uλ2 − uλi

)
= f

(
λ2, ., uλ2

)
− f

(
λi, ., uλi

)
in Ω,

uλ2 − uλ1 = 0 on ∂Ω,

uλ2 − uλ1 ≥ 0 in Ω.

(3.3)

By Lemma 2.2, for any γ ∈ (0, 1) , there exists a positive constant c1 such that max
{
uλ1 , uλ2

}
≤ c1dγ

Ω
in

Ω. Lemma 2.2 also gives a positive constant c2 such that uλ1 ≥ c2d
2

1+α

Ω
in Ω. Let ηγ,ε := γε+γ− 2(α+1+ε)

1+α
.A

computation shows that if we take γ = 1− ε, with ε positive and small enough, then 2
(
ηγ,ε + 1

)
> −1;

for such values of ε and γ, and for any ϕ ∈ H1
0 (Ω) , Hölder’s and Hardy’s inequalities give∥∥∥adγε

Ω
u−α−ε−1
λ1

(
uλ2 − uλi

)
ϕ
∥∥∥

1
≤ ‖a‖∞ c1c−α−ε−1

2

∥∥∥∥∥dγε+γ
Ω

d−
2(α+γ+ε)

1+α +1
Ω

ϕ

dΩ

∥∥∥∥∥ (3.4)
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≤ ‖a‖∞ c1c−α−ε−1
2

∥∥∥∥dηγ,ε+1
Ω

∥∥∥∥
2

∥∥∥∥∥ ϕdΩ

∥∥∥∥∥
2
< ∞.

As θ ≥ uλ1 , we also have
∥∥∥adγε

Ω
θ−α−ε−1 (

uλ2 − uλi

)
ϕ
∥∥∥

1
< ∞.

From (3.3) and (3.4) we conclude that, in weak sense,

− ∆
(
uλ2 − uλi

)
+ (α + ε) acε1dγε

Ω
u−α−ε−1
λ1

(
uλ2 − uλi

)
(3.5)

≥ −∆
(
uλ2 − uλi

)
+ (α + ε) acε1dγε

Ω
θ−α−ε−1 (

uλ2 − uλi

)
≥ f

(
λ2, ., uλ2

)
− f

(
λi, ., uλi

)
in Ω.

Notice that uλ1 satisfies 
−∆uλ1 = auελ1

u−α−ελ1
+ f

(
λ1, ., uλ1

)
in Ω,

uλ1 = 0 on ∂Ω,

uλ1 > 0 in Ω,

and that 0 ≤ auελ1
∈ L∞ (Ω) , auελ1

. 0 in Ω, and 1 < α + ε < 3; therefore Remark 1.1 says (with

a replaced by auελ1
) that there exists a constant c2 > 0 such that uλ1 ≥ c2d

2
1+α+ε

Ω
in Ω. Thus, for some

constant c3 > 0, u−α−ε−1
λ1

≤ c3d−2
Ω

in Ω. Therefore, for some constant c4 > 0,

0 ≤ (α + ε) acε1u−α−ε−1
λ1

dγε
Ω
≤ c4d−2+γε

Ω
in Ω. (3.6)

Since uλ2 ≥ uλ1 in Ω, from H6) we get

f
(
λ2, ., uλ2

)
− f

(
λ1, ., uλ1

)
(3.7)

≥ f
(
λ2, ., uλ1

)
− f

(
λ1, ., uλ1

)
> 0 in Ω.

Then, taking into account (3.5), (3.6) and (3.7), Lemma 2.9 gives a positive constant c such that uλ2 −

uλi ≥ cdΩ in Ω.

Consider now the case 0 < α < 1. Let m : Ω→ R be defined by

m := −χ{uλ2>uλ1}
a
(
u−αλ2
− u−αλ1

) (
uλ2 − uλ1

)−1 ,

and let w := uλ2 − uλ1 . Thus w satisfies, in weak sense,
−∆w + mw = f

(
λ2, ., uλ2

)
− f

(
λ1, ., uλ1

)
in Ω,

w = 0 on ∂Ω,

w > 0 in Ω,

(3.8)

and, by Remark 2.10 and Remark 1.1, w ∈ C1 (Ω) ∩ C
(
Ω
)
. The mean value theorem gives m =

−αaθ−α−1 in
{
x ∈ Ω : uλ2 (x) > uλ1 (x)

}
, for some measurable function θ such that uλ1 ≤ θ ≤ uλ2 . Also,

by Remark 1.1, there exists a positive constant c6 such that uλ1 ≥ c6dΩ in Ω, and so, for some positive
constant c7,

0 ≤ m ≤ c7d−(1+α)
Ω

in Ω. (3.9)

As in the case 1 ≤ α < 3, we have (3.7), and so, taking into account (3.8), (3.9) and (3.7), Lemma 2.9
gives a positive constant c such that w ≥ cdΩ in Ω. �
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Let g : Ω × (0,∞) → R be a Carathéodory function (i.e., g (x, .) is continuous for a.e. x ∈ Ω and
g (., s) is measurable for any s ∈ [0,∞)). We say that w ∈ W1,2

loc (Ω) is a subsolution (respectively a
supersolution), in the sense of distributions, of the singular problem (without boundary condition)

− ∆z = az−α + g (., z) in Ω (3.10)

if w > 0 a.e. in Ω, aw−α + g (.,w) ∈ L1
loc (Ω) , and for all nonnegative ϕ ∈ C∞c (Ω) , the following holds:∫

Ω

〈∇w,∇ϕ〉 ≤
(
resp. ≥

) ∫
Ω

(
aw−α + g (.,w)

)
ϕ.

We say that z ∈ W1,2
loc (Ω) is a solution, in the sense of distributions, of (3.10) if z > 0 a.e. in Ω, and, for

all ϕ ∈ C∞c (Ω) , the following holds:∫
Ω

〈∇z,∇ϕ〉 =

∫
Ω

(
az−α + g (., z)

)
ϕ. (3.11)

Remark 3.1. Let g : Ω × (0,∞) → R be a Carathéodory function, and assume that (3.10) has a
subsolution z and a supersolution z, in the sense of distributions, both in L∞loc (Ω) , and satisfying 0 <

z ≤ z a.e. in Ω. If, in addition, there exists k ∈ L∞loc (Ω) such that |a (x) s−α + g (x, s) | ≤ k (x) a.e. x ∈ Ω

for all s ∈
[
z (x) , z (x)

]
; then Theorem 2.4 in [34] says that (3.10) has a solution z ∈ W1,2

loc (Ω) in the
sense of distributions, satisfying z ≤ z ≤ z a.e. in Ω.

Lemma 3.2. Let λ ≥ 0, and suppose that u ∈ W1,2
loc (Ω) ∩ L∞ (Ω) is a solution, in the sense of distribu-

tions, of problem (1.1), and that one of the following two conditions holds:
i) 0 < α ≤ 1, and there exist positive constants c1, c2 and γ such that c1dΩ ≤ u ≤ c2dγ

Ω
a.e. in Ω.

ii) 1 < α < 3, and there exist positive constants c1, c2 and γ such that c1d
2

1+α

Ω
≤ u ≤ c2dγ

Ω
a.e. in Ω.

Then u ∈ H1
0 (Ω) ∩C1 (Ω) ∩C

(
Ω
)
, and u is a weak solution of (1.1).

Proof. For each j ∈ N, let h j : R→ R be defined by h j (s) := 0 if s ≤ 1
j , h j (s) := −3 j2s3+14 js2−19s+ 8

j

if 1
j < s < 2

j , and h j (s) := s if 2
j ≤ s. Then h j ∈ C1 (R) , h′j (s) = 0 for s < 1

j , h′j (s) ≥ 0 for 1
j < s < 2

j

and h′j (s) = 1 for 2
j < s. Also, h j (s) < s for all s ∈

(
0, 2

j

)
.

Let h j (u) := h j ◦ u. Then, for all j, ∇
(
h j (u)

)
= h′j (u)∇u. Since u ∈ W1,2

loc (Ω) , it follows that h j (u) ∈
W1,2

loc (Ω) . Since h j (u) has compact support we have h j (u) ∈ H1
0 (Ω) . Therefore, for all j,∫

Ω

〈
∇u,∇

(
h j (u)

)〉
=

∫
Ω

(
au−α + f (λ, ., u)

)
h j (u)

i.e., ∫
{u>0}

h′j (u) |∇u|2 =

∫
Ω

(
au−α + f (λ, ., u)

)
h j (u) . (3.12)

Now, h′j (u) |∇u|2 is nonnegative and lim j→∞ h′j (u) |∇u|2 = |∇u|2 a.e. in Ω, and so, from (3.12) and
Fatou’s lemma, we have ∫

Ω

|∇u|2 ≤ lim j→∞

∫
Ω

(
au−α + f (λ, ., u)

)
h j (u) .
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Note that au1−α ∈ L1 (Ω) . Indeed, this is clear when 0 < α ≤ 1 (because u ∈ L∞ (Ω)). If
1 < α < 3, then −2α−1

α+1 > −1, and so, from the assumption ii) of the lemma, 0 ≤ u1−α ≤ c1−α
1 d−

2(α−1)
1+α

Ω

in Ω, which implies au1−α ∈ L1 (Ω) . On the other hand, clearly f (λ, ., u) u ∈ L1 (Ω) . Now,
lim j→∞ (au−α + f (λ, ., u)) h j (u) = (au−α + f (λ, ., u)) u and, for any j ∈ N,

0 ≤
(
au−α + f (λ, ., u)

)
h j (u) ≤

(
au−α + f (λ, ., u)

)
u ∈ L1 (Ω) .

Then, Lebesgue’s dominated convergence theorem gives

lim
j→∞

∫
Ω

(
au−α + f (λ, ., u)

)
h j (u) =

∫
Ω

(
au−α + f (λ, ., u)

)
u < ∞.

Thus
∫

Ω
|∇u|2 < ∞, and so u ∈ H1 (Ω) . Now, −∆u = au−α + f (λ, ., u) in D′ (Ω) , also u ∈ L∞ (Ω) ,

therefore f (λ, ., u) ∈ L∞ (Ω) ; and the assumptions i) and ii) of the lemma imply that au−α ∈ L∞loc (Ω) ;
thus au−α + f (λ, ., u) ∈ L∞loc (Ω) . Now, the inner elliptic estimates in ([27], Theorem 8.24) give that
u ∈ C (Ω) and, from i) and ii), u is continuous on ∂Ω, and so u ∈ C

(
Ω
)
.Thus, since u ∈ H1 (Ω) ,

u ∈ C
(
Ω
)

and u = 0 on ∂Ω, we conclude that u ∈ H1
0 (Ω) .

Let ϕ ∈ H1
0 (Ω) . If 0 < α < 1, from i), we have∣∣∣au−αϕ

∣∣∣ =

∣∣∣∣∣au−αdΩ

ϕ

dΩ

∣∣∣∣∣ ≤ c−α1 ‖a‖∞ d1−α
Ω

∣∣∣∣∣ ϕdΩ

∣∣∣∣∣ in Ω,

and so, taking into account that d1−α
Ω
∈ L∞ (Ω) , from the Hölder and the Hardy inequalities, we have

‖au−αϕ‖1 ≤ c ‖ϕ‖H1
0 (Ω) for some positive constant c independent of ϕ. If 1 ≤ α < 3, ii) gives∣∣∣au−αϕ

∣∣∣ =

∣∣∣∣∣au−αdΩ

ϕ

dΩ

∣∣∣∣∣ ≤ c−α1 ‖a‖∞ d1− 2α
1+α

Ω

∣∣∣∣∣ ϕdΩ

∣∣∣∣∣ (3.13)

= c−α1 ‖a‖∞ d−
α−1
α+1

Ω

∣∣∣∣∣ ϕdΩ

∣∣∣∣∣ in Ω.

Notice that 1 ≤ α < 3 implies 2α−1
α+1 < 1, and then, from (3.13), Hölder’s and Hardy’s inequalities give

‖au−αϕ‖1 ≤ c ‖ϕ‖H1
0 (Ω) for some positive constant c independent of ϕ. Also, from H3), and taking into

account the Poincaré inequality, and that u ∈ L∞ (Ω) , we have, for any α ∈ (0, 3) , ‖ f (λ, ., u)ϕ‖1 ≤
c′ ‖ϕ‖H1

0 (Ω) for some constant c′ independent of ϕ; then the maps ϕ→
∫

Ω
au−αϕ and ϕ→

∫
Ω

f (λ, ., u)ϕ
are continuous on H1

0 (Ω) ; since u ∈ H1
0 (Ω) , also the map ϕ→

∫
Ω
〈∇u,∇ϕ〉 is continuous on H1

0 (Ω) .
Therefore, since C∞c (Ω) is dense in H1

0 (Ω) , and∫
Ω

〈∇u,∇ϕ〉 =

∫
Ω

(
au−α + f (λ, ., u)

)
ϕ for any ϕ ∈ C∞c (Ω) ; (3.14)

we conclude that (3.14) holds for any ϕ ∈ H1
0 (Ω) . Thus u is a weak solution of (1.1). �

Let us recall the following result from [1]:

Remark 3.3. (See [1], Theorem 1.17): Let E be an ordered Banach space, let P := {ζ ∈ E : ζ ≥ 0})
be its positive cone, and let T : [0,∞) × P → P be a continuous and compact map. Suppose that
T (0, 0) = 0, and that 0 is the only fixed point of T (0, .) . Suppose, in addition, that there exists a
positive number ρ such that T (0, ζ) , σζ for all ζ ∈ S +

ρ :=
{
ζ ∈ P : ‖ζ‖E = ρ

}
and all σ ≥ 1. Then the

set Σ := {(λ, ζ) ∈ [0,∞) × P : T (λ, ζ) = ζ} includes an unbounded subcontinuum (i.e. an unbounded
closed and connected subset) that contains (0, 0) .
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We will also need the following result from [31]:

Lemma 3.4. (See [31], Lemma 3.4) Assume the hypothesis H1)-H5) of Theorem 1.2, and that λ0 > 0.
Then there exists cλ0 > 0 such that ‖u‖∞ < cλ0 whenever u ∈ H1

0 (Ω) ∩ L∞ (Ω) is a weak solution, for
some ε ∈ [0, 1] and λ ≥ λ0 , of the problem

−∆u = a (u + ε)−α + f (λ, ., u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(3.15)

Proof of Theorem 1.3. By way of contradiction let us assume that there exists λ ∈ (0,Λ) such that, for
λ = λ, problem (1.1) has a unique weak solution u ∈ H1

0 (Ω) ∩ C
(
Ω
)
. Thus f

(
λ, ., u

)
∈ C

(
Ω
)
. Define

the operator T : [0,∞) × P→ P by T (µ, v) := S 0

(
f
(
λ + µ, ., u + v

))
− u, and let

Σ := {(λ, ζ) ∈ [0,∞) × P : T (λ, ζ) = ζ} .

¿From Lemma 2.2, T is a continuous and compact operator. Since u = S 0

(
f
(
λ, ., u

))
we have T (0, 0) =

S 0

(
f
(
λ, ., u

))
− u = 0. Furthermore,

0 is the only fixed point of T (0, .) . (3.16)

Indeed, if v ∈ P and T (0, v) = v, then

S 0

(
f
(
λ, ., u + v

))
− u = v,

i.e., u + v satisfies −∆ (u + v) = a (u + v)−α + f
(
λ, ., u + v

)
in Ω, u + v = 0 on ∂Ω, u + v > 0 in Ω, which,

by our contradiction assumption, implies u + v = u, i.e., v = 0. Then (3.16) holds.
Now, the following two possibilities arise:
a) There exists a positive number ρ such that T (0, v) , σv for all v ∈ S +

ρ := {v ∈ P : ‖v‖∞ = ρ} and all
σ ≥ 1.
b) For any ρ > 0 there exist a number σ ≥ 1 and v ∈ P such that ‖v‖∞ = ρ and T (0, v) = σv.
If a) holds, then, by Remark 3.3, there exists an unbounded subcontinuum C ⊂ Σ such that (0, 0) ∈ C.
Since (µ,w) ∈ Σ if and only if u+v satisfies −∆ (u + w) = a (u + w)−α+ f

(
λ + µ, ., u + w

)
in Ω, u+w = 0

on ∂Ω. Then (µ,w) ∈ Σ implies λ + µ ≤ Λ and ‖u + w‖∞ ≤ cλ, with cλ as given by Lemma 3.4, which
contradicts the fact that C is unbounded.
If b) holds, then, for each j ∈ N, there exists v j ∈ P, and a number σ j ≥ 1, such that

∥∥∥v j

∥∥∥
∞

= 1
j and

T
(
0, v j

)
= σ jv j, i.e.,

u + σ jv j = S 0

(
f
(
λ, ., u + v j

))
. (3.17)

Now, lim j→∞

(
u + v j

)
= u with convergence in C

(
Ω
)
, and so f

(
λ, ., u + v j

)
converges to f

(
λ, ., u

)
in

C
(
Ω
)
. By Lemma 2.2, S 0 : C

(
Ω
)
→ C

(
Ω
)

is continuous, and so, from (3.17), lim j→∞

(
u + σ jv j

)
= u

with convergence in C
(
Ω
)
, i.e., lim j→∞ σ jv j = 0 with convergence in C

(
Ω
)
.

Let us see that
lim
j→∞

∥∥∥∥∥σ jv j

dΩ

∥∥∥∥∥
∞

= 0. (3.18)
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Indeed, let M := 1 + ‖u‖∞ and let ε j :=
∥∥∥∥ f

(
λ, ., u + v j

)
− f

(
λ, ., u

)∥∥∥∥
∞
. Since f is uniformly continuous

on [0,Λ] ×Ω × [0,M] , we have lim j→∞ ε j = 0. Since

−∆
(
σ jv j

)
= a

(
u + σ jv j

)−α
− a (u)−α + f

(
λ, ., u + v j

)
− f

(
λ, ., u

)
≤ f

(
λ, ., u + v j

)
− f

(
λ, ., u

)
≤ ε j in Ω,

we have 0 ≤ σ jv j ≤ ε j (−∆)−1 (1) ≤ cε jdΩ. Then (3.18) holds. Consequently there exists a sequence{
δ j

}
j∈N

such that σ jv j ≤ δ jdΩ in Ω, with lim j→∞ δ j = 0. Since, by (3.17) and H6), in weak sense, −∆
(
u + σ jv j

)
≤ a

(
u + σ jv j

)−α
+ f

(
λ, ., u + σ jv j

)
in Ω,

u + σ jv j = 0 on ∂Ω,

we have that u + σ jv j is a subsolution, in the sense of the distributions, of the problem −∆u = au−α + f
(
λ, ., u

)
in Ω,

u = 0 on ∂Ω.
(3.19)

Also, −∆uΛ = au−α
Λ

+ f (Λ, ., uΛ) ≥ au−α
Λ

+ f
(
λ, ., uΛ

)
in Ω and so uΛ is a supersolution of (3.19). On

the other hand, by Theorem 1.2, we have, for some positive constant c, u + cdΩ = uλ + cdΩ ≤ uΛ in
Ω. Thus, for j large enough, u + σ jv j = uλ + σ jv j ≤ uΛ − cdΩ + δ jdΩ ≤ uΛ. Moreover, since u ≥ c′dΩ

in Ω, there exists k ∈ L∞loc (Ω) such that |a (x) s−α + f (λ, x, s) | ≤ k (x) for all s ∈
[
u (x) + cdΩ (x) , uΛ

]
a.e. x ∈ Ω. Then, by Remark 3.1, there exists a solution z, in the sense of distributions, to (3.19) that
satisfies u + σ jv j ≤ z ≤ uΛ in Ω, and so, for j large enough, z ≥ u + σ jv j > u in Ω. Observe that,
by Theorem 1.2, uΛ ∈ C

(
Ω
)
, and so f (Λ, ., uΛ) ∈ L∞ (Ω) . Now, uΛ = S 0 ( f (Λ, ., uΛ)) , and then, by

Lemma 2.2 vii), there exist positive constants c and γ such that uΛ ≤ cdγ
Ω

in Ω. Then z ≤ cdγ
Ω

in Ω. Also
u ∈ L∞ (Ω) , and so f

(
λ, ., u

)
∈ L∞ (Ω) . Since u = S 0

(
f
(
λ, ., u

))
, Lemma 2.2 says that there exists a

positive constant c′ such that u ≥ c′dτ
Ω

in Ω, with τ = 1 if 0 < α < 1 and τ = 2
1+α

if 1 ≤ α < 3. Then,
for such τ and c′, we have z ≥ c′dτ

Ω
in Ω, and so, by Lemma 3.2, z is a weak solution of (3.19), and it

belongs to H1
0 (Ω) ∩C1 (Ω) ∩ L∞ (Ω) , which contradicts our initial assumption that for λ = λ (1.1) has

a unique weak solution. �

Proof of Corollaries 1 and 2. The corollaries follow from Theorems 1.2 and 1.3, taking f (λ, x, s) :=
λg (x, s) for corollary 1, and taking f (λ, x, s) := g (x, λs) for corollary 2. �
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