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Abstract: In this study, natural convection in a porous, ferrofluid-filled cavity is numerically investi-
gated utilizing the multiquadric (MQ) radial basis function (RBF) based pseudo spectral (PS) method.
The influence of Kelvin forces, Brinkman and Forchheimer terms and a magnetic source is also taken
into account. Results reveal that convective heat transfer is inhibited with the rise of Hartmann number,
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1. Introduction

Natural convection heat transfer has taken great deal of interest in the last decade due to its various
engineering applications such as thermal insulation, cooling of electronic equipments, heat exchangers
and solar collectors. In order to improve hydrothermal behaviour of the conventional fluids, nanofluids
are proposed in thermal systems [3].

A lot of numerical studies on nanofluids are reported. Khanafer et al. [10] used finite volume
method (FVM) with alternating direction implicit procedure analyzing heat transfer performance with a
model considering the solid particle dispersion. Their conclusion shows that heat transfer rate increases
with the increase in solid volume fraction at any Grashof number. Tiwari et al. [22] performed FVM
in a Cu-water nanofluid-filled cavity with moving walls in different directions. In their study, heat
transfer is more reduced in case of walls moving upward. The same problem of mixed convection
flow in different aspect ratios is also considered by Muthtamilselvan et al. [14] employing FVM with
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SIMPLE algorithm on a staggered grid. The linear relation between solid volume fraction and average
Nusselt number is revealed. Sheremet et al. [21] applied the finite difference method to simulate the
free convection in an inclined wavy enclosure filled with a Cu-water nanofluid under the effect of a
uniform magnetic field and isothermal corner heater. Sheikholeslami [19] analyzes nanofluid flow
and heat transfer between heated and permeable parallel plates employing Runge-Kutta integration
scheme, and considers Koo-Klein-streuer-Li (KKL) model. Results show that the Nusselt number
has a reverse relation with expansion ratio while it has a direct relationship with power law index.
Geridonmez Pekmen [16] solved natural convection flow in a cavity filled with nanofluid using RBF-
PS in space derivatives and differential quadrature method in time derivatives. In this study, different
type of nanofluids are considered as well as using both multiquadric and inverse multiquadric RBFs.

Ferrofluids, which are magnetic nanofluids, are used in various fields such as electronic packing,
mechanical engineering, thermal engineering, aerospace and bioengineering. Many researches have
studied numerically and experimentally on ferrofluids in different geometries either in presence of
external magnetic field or in absence of magnetic field. Aminfar et al. [1] utilized the control volume
technique with SIMPLEC for simulation of 3D laminar ferrofluid in presence of an electric current
through a wire at the bottom of the duct resulting with transverse nonuniform magnetic field. Ghasemi
et al. [7] used FVM for simulation of a water based ferrofluid in a mini channel under the effect of
constant or alternating magnetic field induced by wires carrying current. They found that heat transfer
enhancement occurs with a constant magnetic field at magnetic number 1.07 × 108, and Reynolds
number 25. The influence of heat dissipation and an external magnetic source on natural convection
flow in a kerosene based cobalt-filled cavity is analyzed in [8] performing LBM. At a large Rayleigh
number Ra = 105, heat transfer is decelarated by the increase in solid volume fraction of nanoparticles.
LBM is also used to simulate the same problem in an inclined cavity in [9]. The effect of the increase in
solid volume fraction on heat transfer dominates over the effect of inclination angle. In [18], governing
equations based on ferrohydrodynamic (FHD) effect and magnetohydrodynamic (MHD) effect are
solved in a semi annulus enclosure with sinusoidal hot wall with a magnetic source employing control
volume based finite element method (CVFEM). The results demonstrate that the effect of Kelvin force
is pronounced at a low Rayleigh number.

Nanofluids in porous medium are encountered in [12, 20]. In [12], Cu-water nanofluid in a porous
medium with Darcy-Brinkman-Forchheimer model considering the magnetic field is solved by FVM
with SIMPLE algorithm. They reported that the heat transfer rate increases with the augmentation in
Darcy number. Sheikholeslami [20] analyzed the nanofluid flow and heat transfer in KKL model in a
stretching porous cylinder conducting the fourth order Runge Kutta integration scheme with a shooting
technique. Results show that solid volume fraction and skin friction coefficient have a reverse relation,
and average Nusselt number increases with the increase in the suction parameter.

Geridonmez Pekmen has also solved the natural convection in a square cavity involving magnetite
nanoparticles inside of the nanofluid and a magnetic source considering an exceptional case as ∇·H , 0
in [17]. In that study, the determination of shape parameter in view of minimum radial distances in
a different grid distribution, and the usage of perturbed-like multiquadric RBFs are focused. In the
present study, natural convection flow in a porous Fe3O4-water-filled cavity in presence of a magnetic
source is investigated considering the effects of Kelvin forces and non-Darcian in governing dimen-
sionless equations. The Brinkman-Forchheimer-extended Darcy model is simulated utilizing the radial
basis function based pseudo spectral (RBF-PS) method with multi quadric (MQ) RBFs. A way to
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determine the shape parameter in MQ RBF is also proposed. The effects of physical non-dimensional
parameters are investigated. To the author’s knowledge, this method is firstly applied to this problem.

2. Physical and mathematical background

The problem configuration is depicted in Figure 1. No-slip boundary conditions for velocity are
imposed. The left hot wall and the cold right wall are maintained at Th = 1 and Tc = 0, respectively.
The top and bottom walls are adiabatic (∂T/∂n = 0). A magnetic source close to the left wall is placed.

Fe3O4-water nanofluid flow is unsteady, laminar and incompressible. The problem is two-
dimensional and unsteady. The nanoparticles and the base fluid (water) are in thermal equilibrium.
The porous medium is homogeneous, isotropic, electrically insulated, and the fluid and solid of porous
medium are also in thermal equilibrium. Thermophysical properties of water and magnetite are given
in Table 1. The constant thermophysical properties of the fluid are considered except the density varia-
tion treated by Boussinessq approximation. The radiation effect, induced currents and Hall current are
neglected.

x

y

v
u

gTh Tc•

magnetic source

Figure 1. Problem configuration.

Table 1. Physical Properties.

ρ(kg/m3) cp(J/kgK) k(W/mK) β × 10−5(1/K) σ(S/m)
Water 997.1 4179 0.613 21 0.05
Fe3O4 5200 670 6 1.3 25000

The magnetic field intensity and its components are defined as [23]

Hx =
γ

2π
y − b̄

(b̄ − y)2 + (ā − x)2
, (2.1a)

Hy =
γ

2π
ā − x

(b̄ − y)2 + (ā − x)2
(2.1b)

H =

√
H

2
x + H

2
y (2.1c)

where (ā, b̄) is the location of the magnetic source and γ is the strength of the magnetic field at the
source.

AIMS Mathematics Volume 3, Issue 1, 195–210



198

Under the aforementioned assumptions, the physical governing equations are

∂u
∂x

+
∂v
∂y

= 0 (2.2a)

µn f

ρn fε
∇2u =

1
ε

∂u
∂t

+
1
ε2

(
u
∂u
∂x

+ v
∂u
∂y

)
+

1
ρn f

∂p
∂x

+
µ2

0

ρn f

A︷                   ︸︸                   ︷
σn f

(
H

2
yu − HxHyv

)
−

1
ρn f

µ0M
∂H
∂x︸   ︷︷   ︸

B

+
µn f

κρn f
u +

cF
√
κ
|u|u︸              ︷︷              ︸

F

(2.2b)

µn f

ρn fε
∇2v =

1
ε

∂v
∂t

+
1
ε2

(
u
∂v
∂x

+ v
∂v
∂y

)
+

1
ρn f

∂p
∂y

+
µ2

0

ρn f

A’︷                   ︸︸                   ︷
σn f

(
H

2
xv − HxHyu

)
−

1
ρn f

µ0M
∂H
∂y︸   ︷︷   ︸

B’

+
µn f

κρn f
v +

cF
√
κ
|u|v︸              ︷︷              ︸

F’

− gβn f (T − Tc)︸         ︷︷         ︸
G

(2.2c)

kn f∇
2T = (ρcp)n f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
− µ2

0

C︷               ︸︸               ︷
σn f (Hxv − Hyu)2 (2.2d)

+ µ0T
∂M
∂T

u∂H
∂x

+ v
∂H
∂y

︸                        ︷︷                        ︸
D

−µn f

2 (
∂u
∂x

)2

+ 2
(
∂v
∂y

)2

+

(
∂u
∂y

+
∂v
∂x

)2︸                                      ︷︷                                      ︸
E

,

where A, A’ are Lorentz force components, B, B’ are Kelvin force components, C is the Joule heating,
D is thermal power per unit volume resulting from the magneto-caloric effect, E is the viscous dissipa-
tion, F, F’ are Brinkman term plus Forchheimer term, G is the buoyancy force term and [2, 10, 13]

M = K′H(T ′c − T ) is the magnetization ,

cF =
1.75(1 − ε)

dp ε3 is the form coefficient,

κ =
d2

p ε
3

150(1 − ε)2 is the permeability of the porous medium,

µ0 = 4π × 10−7 Tm/A is the magnetic permeability of vacuum,
ρn f = ρ f (1 − φ) + ρsφ is the density of
(ρcp)n f = (ρcp) f (1 − φ) + (ρcp)sφ is the heat capacitance of

µn f =
µ f

(1 − φ)2.5 is the dynamic viscosity of

βn f = β f (1 − φ) + βsφ is the thermal expansion coefficient of

αn f =
kn f

(ρcp)n f
is the thermal diffusivity of

kn f = k f

(
ks − 2φ(k f − ks) + 2k f

ks + φ(k f − ks) + 2k f

)
is the thermal conductivity of
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σn f = σ f

(
3(σs/σ f − 1)φ

(σs/σ f + 2) − (σs/σ f − 1)φ
+ 1

)
is the electrical conductivity of

nanofluid. Also, T ′c is the Curie temperature, T is the fluid temperature, K′ is a constant, ε is the poros-
ity of the porous medium, dp is the solid particle size of the porous medium, and φ is the nanoparticle
volume fraction. Subindices f , s and n f correspond to fluid, solid and nanofluid, respectively.

In order to obtain the dimensionless equations, the non-dimensional parameters are defined as

(a′, b′) =
(ā, b̄)

L
, (x′, y′) =

(x, y)
L

, (H′x,H
′
y,H

′) =
(Hx,Hy,H)

H0

,

p′ =
pL2

ρ fα
2
f

, t′ =
tL2

α f
, u′ =

uL
α f
, v′ =

vL
α f
, T ′ =

T − Tc

Th − Tc
, (2.3)

where L is the characteristic length, H0 = H(ā, 0) =
γ

2π|b| .
These parameters in Eq.(2.3) are put into the dimensional equations Eq.(2.2). Then, the prime

notations are dropped and dimensionless equations in u − v − p − T form are derived as

∂u
∂x

+
∂v
∂y

= 0 (2.4a)

∇2u =
1
Pr
ρn fµ f

ρ fµn f

(
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∂t

+
1
ε

(
u
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+ v
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∂y

))
+

ε
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ρn fµ f
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∂p
∂x

+ εHa2σn fµ f

σ fµn f
(H2

y u − HxHyv)

+
ε

Da
u +

c f
√

Da

ε

Pr
ρn fµ f

ρ fµn f
|u|u − εMnF

µ f

µn f
(ε2 − ε1 − T )H

∂H
∂x

(2.4b)
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1
Pr
ρn fµ f

ρ fµn f

(
∂v
∂t

+
1
ε

(
u
∂v
∂x

+ v
∂v
∂y

))
+

ε

Pr
ρn fµ f

ρ fµn f

∂p
∂y

+ εHa2σn fµ f

σ fµn f
(H2

xv − HxHyu)

+
ε

Da
v +

c f
√

Da

ε

Pr
ρn fµ f

ρ fµn f
|u|v − εRa

ρn fµ fβn f

ρ fµn fβ f
T − εMnF

µ f

µn f
(ε2 − ε1 − T )H

∂H
∂y

(2.4c)

∇2T =
(ρcp)n f k f

(ρcp) f kn f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
− Ha2Ec

σn f k f

σ f kn f
(Hxv − Hyu)2

− Ec
µn f k f

µ f kn f

2 (
∂u
∂x

)2

+ 2
(
∂v
∂y

)2

+

(
∂u
∂y

+
∂v
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)2
− MnF Ec

k f

kn f

(
u
∂H
∂x

+ v
∂H
∂y

)
H(ε1 + T ) (2.4d)

in which |u| =
√

u2 + v2, c f = 1.75
√

150ε1.5 , and the dimensionless parameters Darcy, Hartmann, Rayleigh,
Eckert, Prandtl, Magnetic, temperature and Curie temperature numbers, respectively, are

Da =
κ

L2 , Ha = Lµ0H0

√
σ f

µ f
, Ra =

gβ f L3∆T
α f ν f

, Ec =
µ fα f

L2(ρcp) f ∆T
, (2.5)

Pr =
ν f

α f
, MnF =

µ0H2
0 K′∆T L2

µ fα f
, ε1 =

T1

∆T
, ε2 =

T ′c
∆T

. (2.6)

Pressure terms are eliminated by applying the definition of vorticity w = ∇ × u to the momentum
equations Eq.(2.4b)-Eq.(2.4c). The continuity equation is satisfied defining the velocity components
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in terms of stream function ψ as u = ∂ψ/∂y, v = −∂ψ/∂x. Then, stream function, vorticity and energy
equations are deduced as

∇2ψ = −w (2.7a)

∇2w =
1
Pr
ρn fµ f

ρ fµn f

[
∂w
∂t

+
1
ε

(
u
∂w
∂x

+ v
∂w
∂y

)]
− εRa

ρn fµ fβn f

ρ fµn fβ f

∂T
∂x

+ εHa2σn fµ f

σ fµn f

[
2Hx

∂Hx

∂x
v −

∂Hx

∂x
Hyu − Hx

∂Hy

∂x
u + H2

x
∂v
∂x
− HxHy

∂u
∂x

− 2Hy
∂Hy

∂y
u − H2

y
∂u
∂y

+
∂Hx

∂y
Hyv + Hx

∂Hy

∂y
v + HxHy

∂v
∂y

]
− εMnF

µ f

µn f
H

(
∂H
∂x

∂T
∂y
−
∂H
∂y

∂T
∂x

)
+

ε

Da
w +

c f
√

Da

ε

Pr
ρn fµ f

ρ fµn f

(
v
∂|u|
∂x
− u

∂|u|
∂y

+ |u|w
)
. (2.7b)

∇2T =
(ρcp)n f k f

(ρcp) f kn f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
− Ha2Ec

σn f k f

σ f kn f
(Hxv − Hyu)2

− Ec
µn f k f

µ f kn f

2 (
∂u
∂x

)2

+ 2
(
∂v
∂y

)2

+

(
∂u
∂y

+
∂v
∂x

)2
− MnF Ec

k f

kn f

(
u
∂H
∂x

+ v
∂H
∂y

)
H(ε1 + T ), (2.7c)

where

∂Hx

∂x
= Hxdx = 2|b|

(y − b)(a − x)
((x − a)2 + (y − b)2)2 ,

∂Hx

∂y
= Hxdy = |b|

(x − a)2 − (y − b)2

((x − a)2 + (y − b)2)2 , (2.8a)

∂Hy

∂y
= Hydx = 2|b|

(y − b)(x − a)
((x − a)2 + (y − b)2)2 ,

∂Hy

∂x
= Hydy = |b|

(x − a)2 − (y − b)2

((x − a)2 + (y − b)2)2 , (2.8b)

∂H
∂x

= Hdx = |b|
a − x

((x − a)2 + (y − b)2)3/2 ,
∂H
∂y

= Hdy = |b|
b − y

((x − a)2 + (y − b)2)3/2 . (2.8c)

3. Numerical approach

Radial basis functions based pseudo spectral (RBF-PS) method generates all space derivatives in
the problem by RBFs. Radial basis functions enable one to use any type of grids, and are attracted
by most of the researchers in mesh-free methods. The novel books [4], [5] involve both theory and
applications on RBFs.

RBFs approximate an unknown ϕ (ψ,T or ω) in a diffusion-convection type equation, ∇2ϕ = u ·∇ϕ,
as

ϕi =

Nb+Ni∑
j=1

α j fi j, (3.1)
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where Nb is the number of boundary nodes, Ni is the number of interior nodes, f ’s are RBFs depending
on radial distance r = ||x − x j|| (x = (x, y) is the field point and x j = (x j, y j) is the collocation point),
and α j’s are initially unknown coefficients.

Eq.(3.1) can also be expressed in matrix-vector form as

ϕ = Fα, (3.2)

where the matrix F is of size (Nb + Ni) × (Nb + Ni), and the coefficient vector α is {α1, . . . , αNb+Ni}.
Eq.(3.2) can be rewritten as

α = F−1ϕ. (3.3)

Eq.(3.1) and Eq.(3.3) lead to the first and second order space derivatives of ϕ as

∂ϕ

∂x
=
∂F
∂x
α =

∂F
∂x

F−1ϕ,
∂ϕ

∂y
=
∂F
∂y
α =

∂F
∂y

F−1ϕ, (3.4a)

∂2ϕ

∂x2 =
∂

∂x

(
∂ϕ

∂x

)
=
∂2F
∂x2 F−1ϕ,

∂2ϕ

∂y2 =
∂2F
∂y2 F−1ϕ. (3.4b)

RBF-PS method for the space derivatives is carried out to simulate the equations (2.7a), (2.7b),
(2.7c). The time derivative is managed by Backward-Euler method. Thus, an iterative system with the
application of these two methods to the non-dimensional system is built as follows

D2ψ
n+1 = −wn (3.5a)(

D2 −C1
I

∆t
−C1M

)
T n+1 = −C1

T n

∆t
−C2Ha2Ec(Hxv − Hyu)2

−C3Ec[2(Dxu)2 + 2(Dyv)2 + (Dyu + Dxv)2]
−C7MnF Ec(uHdx + vHdy)H(ε1 + T n) (3.5b)(

D2 −
C4

Pr
I

∆t
−

C4

Pr
M −

I

Da

)
wn+1 = −

C4

Pr
wn

∆t
−C5RaDxT n+1

+ C6Ha2[2HxHxdxv − HxdxHyu − HxHydxu + H2
x(Dxv) − HxHy(Dxu)

− 2HyHydyu − H2
y (Dyu) + HxdyHyv + HxHydyv + HxHy(Dyv)

]
−C8MnF H

[
Hdx(DyT n+1) − Hdy(DxT n+1)

]
+

C9
√

DaPr

(
vDx|u| − uDy|u| + |u|wn

)
(3.5c)

where n is the number of time iteration, I is the identity matrix, C1,C2,C3,C4, C5,C6,C7,C8,C9 are
constants seen in Eqs.(2.7c), (2.7a), (2.7b), and D2,Dx,Dy,M matrices are

D2 =

(
∂2F
∂x2 +

∂2F
∂y2

)
F−1, Dx =

∂F
∂x

F−1, Dy =
∂F
∂y

F−1, M = [u]dDx + [v]dDy. (3.6)

Initially, ψ,T and ω are taken as zero except on the boundary. The velocity components are com-
puted after Eq.(3.5a) by u = un+1 = Dyψ

n+1, v = vn+1 = −Dxψ
n+1. Then, no-slip boundary conditions

for velocity are imposed. Boundary conditions of vorticity are handled by using the definition of vortic-
ity as ωbc = Dxvn+1−Dyun+1. Once the vorticity equation is solved, a relaxation parameter τ(0 < τ < 1)
is used as ωn+1 ← τωn+1 + (1 − τ)ωn.
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The iterations continue until the criterion

3∑
k=1

||ϕn+1
k − ϕn

k ||∞

||ϕn+1
k ||∞

< 10−5, (3.7)

is satisfied.
The average Nusselt number through the left hot wall is computed by

Nu = −
kn f

k f

∫ 1

0

∂T
∂x

dy. (3.8)

4. Numerical results and discussion

The multiquadric radial basis function f =
√

r2 + c2 is used. The shape parameter c is determined
by taking the average value of minimum of r distances (different than zero) of any point. In this view,
c is considered depending on the node distribution. This determination is done with regard to the node
distribution given in Figure 2.
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0

0.1

0.2

0.3

0.4
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0.6
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0.8

0.9

1

Figure 2. Node distribution.

The validation of the method is done computing the average Nusselt number through the heated
left wall considering different well known problems. The results of Table 2 and Table 3 are in good
agreement with [11]. This also validates that the proposed way of finding a suitable shape parameter
works well.

Regarding the grid independence search in Table 4, Nb = 120, Ni = 1201 number of grid points are
used in the computations unless otherwise declared.

Figure 3 illustrates the effect of Hartmann number on fluid flow and heat transfer. Primary vortex in
streamlines becomes smaller and is pushed from left to right due to the intense magnetic field imposed
by magnetic source. Conductive heat transfer reveals in isotherms as Ha increases. The influence of
the magnetic source on vorticity contours is more pronounced.
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Figure 4 illustrates the effect of Darcy number. Small Darcy number corresponds to small perme-
ability of the porous medium. This means that fluid flows very tough, so the fluid velocity decreases.
As is seen in streamlines, primary vortex is smaller at Da = 10−4 than the larger Darcy numbers. Also,
the effect of magnetic source almost disappears at Da = 10−4. Heat transfer in conduction is transferred
into convection as Darcy number augments due to the increase in permeability. While vorticity con-
tours are stagnant at the center, two new cells through the left and right walls together with the effect
of magnetic source also occur. Additionally, not much alteration is noted in hydrothermal behaviour if
Da ≥ 10 as is seen from Nu values at Da = 10 and Da = 100.

Figure 5 shows the magnetic number variation at large MnF numbers. The main vortex in stream-
lines for the case Da = 10 in Figure 4 is directed to the left wall. Isotherms exhibiting convective
behaviour starts to perturb near the magnetic source forming a small cell on the left wall. Strong circu-
lation on the middle of the left wall is also noticed in vorticity contours due to the presence of magnetic
source. Additionally, Nu is 3.24 for MnF = 100, 3.23 for MnF = 103, and 3.00 for MnF = 104. So, the
convective heat transfer is diminished a little bit.

Table 2. Nu comparison for ε = 0.999, Pr = 0.72, Da = 107.

Ra [11] Present Nb,Ni c ∆t, τ

103 1.117 1.1024 96, 817 0.02884 0.05, 0.1
104 2.225 2.2044 96, 817 0.02884 0.05, 0.1
105 4.533 4.4429 96, 817 0.02884 0.01, 0.1
106 8.762 8.7342 160, 2001 0.01955 0.01, 0.1

Table 3. ε = 0.9, Pr = 1, Da = 10−6.

Ra [11] Present Nb,Ni c ∆t, τ

107 1.073 1.0614 96, 817 0.02884 0.1, 0.25
108 2.98 2.9580 96, 817 0.02884 0.1, 0.25
109 12.05 12.06 160, 2001 0.01955 0.1, 0.25

Table 4. Grid independence with ε = 0.9, Da = Ha = 10, MnF = 100, φ = 0.04, Ec =

10−5.

Ra Nu Nb,Ni c

105 3.4219 96, 817 0.02884
3.4109 104, 937 0.02720
3.4029 112, 1065 0.02574
3.3969 120, 1201 0.02444
3.3924 128, 1345 0.02327

The influence of magnetic number in lower effect of buoyancy-driven force is examined in Figure
6. While there is no significant change at MnF = 100, secondary cells are formed in streamlines at
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larger magnetic numbers. Perturbation occurs in isotherms at MnF = 104. Vorticity contours are also
divided into new cells. The increase in average Nusselt number emphasizes that the convective heat
transfer rises with the augmentation of magnetic number at Ra = 103.

The change in Rayleigh number is presented in Figure 7 and Figure 8. The increase in Rayleigh
number points to the increase in buoyancy-driven force. The circulation in the flow increases as is
seen in streamlines. Primary vortex expands. Isotherms demonstrates the dominance of convective
heat transfer forming the temperature gradient on the vertical walls. Center-stagnant vorticity contours
starts to form new cells through the corners of the right and left wall. The effect of magnetic source
is not noted due to the small Darcy number. In Figure 8, the inhibitive effect of smaller permeability
on fluid flow and heat transfer diminishes slowly. The increase in temperature gradient in isotherms is
noticed for Ra = 104 and Ra = 105. At Ra = 106, isotherms are reduced through the left top corner of
the cavity. This may be due to the existence of viscous dissipation.

At a large Rayleigh number, an interesting phenomena occurs in fluid flow and heat transfer. This
is depicted in Figure 9. In this case, Nb = 160,Ni = 2001 number of grids are performed. It is seen
that as the effect of viscous dissipation increases, heat transfer starts to be changed forming almost
no isotherms close to the upper left corner (which is a similar case in Figure 8 at Ra = 106). In
other words, there is a change in fluid flow and heat transfer when Ec number is at a critical number.
Besides, average Nusselt number also becomes negative at Ec = 10−5. A similar phenomenon is also
noted in [6].
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Figure 3. Ha variation when Da = 10, φ = 0.04, εp = 0.6, MnF = 100, Ra = 105, Ec =

10−5.
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Figure 4. Da variation when Ha = 10, φ = 0.04, εp = 0.6, MnF = 100, Ra = 105, Ec =
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Figure 5. MnF variation when Ra = 105, Ha = Da = 10, φ = 0.04, εp = 0.6, Ec = 10−5.
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Table 5 indicates the increase in convective heat transfer with the rise in either porosity of the porous
medium or concentration of solid nanoparticles. At a large porosity, fluid flows faster than a smaller
porosity. Further, Nu increases with the augmentation of nanoparticle concentration due to the greater
thermal conductivity of nanoparticle Fe3O4 than the base fluid.

Table 5. Average Nusselt number values in different porosity and solid volume fractions as
Ra = 105, Da = 10, MnF = 100, Ha = 10, Ec = 10−5.

εp(φ = 0.04) Nu φ(εp = 0.6) Nu

0.6 3.2381 0 3.1297
0.7 3.3064 0.01 3.1596
0.8 3.3580 0.02 3.1876
0.9 3.3969 0.03 3.2138

0.04 3.2381
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Figure 6. MnF variation when Ra = 103, Ha = Da = 10, φ = 0.04, εp = 0.6, Ec = 10−5.
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Figure 7. Ra variation when Da = 10−4, φ = 0.04, εp = 0.6, MnF = 100, Ha = 10, Ec =

10−5.

ωTψ

R
a
 =

 1
0

4
R

a
 =

 1
0

5
R

a
 =

 1
0

6

Figure 8. Ra variation when Da = 10−3, φ = 0.04, εp = 0.6, MnF = 100, Ha = 10, Ec =

10−5.

AIMS Mathematics Volume 3, Issue 1, 195–210



208

ωTψ

E
c
 =

 1
e
-0

5
E

c
 =

 0

Figure 9. Ec variation when Da = 10−2, φ = 0.04, εp = 0.6, MnF = 100, Ra = 106, Ha =

10.

5. Conclusion

The effects of Brinkman and Forchheimer terms, Kelvin force terms and magnetic source on fer-
rofluid flow and heat transfer in a porous cavity are numerically studied. RBF-PS method with MQ
RBFs is carried out for simulation. For determining the shape parameter in MQ RBF, a way is also pro-
posed. The procedure is validated with different studies. In numerical results, streamlines, isotherms
and vorticity contours in different range of dimensionless parameters are presented. The following
concluding remarks are obtained

1. Increasing Hartmann number decreases the convective heat transfer due to the retarding effect of
Lorentz forces.

2. Decreasing Darcy number causes the fluid to flow slowly due to the smaller permeability. Also,
conductive heat transfer is pronounced at lower values of Darcy number.

3. Larger Magnetic number has a dominant effect on heat transfer at smaller Rayleigh number.
4. Buoyancy-driven effect enhances with the increase in Rayleigh number suppressing the effect of

magnetic source.
5. The augmentation of porosity of the porous medium and solid volume fraction results in rise of

convective heat transfer.
6. The shape parameter c decreases with the increase in number of grid points.
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