

AIMS Mathematics, 3(1): 21–34 DOI:10.3934/Math.2018.1.21 Received: 01 March 2017 Accepted: 22 December 2017 Published: 05 January 2018

http://www.aimspress.com/journal/Math

Research article

L^p -analysis of one-dimensional repulsive Hamiltonian with a class of perturbations

Motohiro Sobajima^{1,*}and Kentarou Yoshii²

- ¹ Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
- ² Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan

* Correspondence: Email: msobajima1984@gmail.com; Tel: +81-4-7124-1501.

Abstract: The spectrum of one-dimensional repulsive Hamiltonian with a class of perturbations $H_p = -\frac{d^2}{dx^2} - x^2 + V(x)$ in $L^p(\mathbb{R})$ ($1) is explicitly given. It is also proved that the domain of <math>H_p$ is embedded into weighted L^q -spaces for some q > p. Additionally, non-existence of related Schrödinger (C_0 -)semigroup in $L^p(\mathbb{R})$ is shown when $V(x) \equiv 0$.

Keywords: repulsive Hamiltonian; WKB methods **Mathematics Subject Classification:** 47E05, 47A10

1. Introduction

In this paper we consider

$$H := -\frac{d^2}{dx^2} - x^2 + V(x)$$
(1)

in $L^p(\mathbb{R})$, where $V \in C(\mathbb{R})$ is a real-valued and satisfies $V(x) \ge -a(1 + x^2)$ for some constant $a \ge 0$ and

$$\int_{\mathbb{R}} \frac{|V(x)|}{\sqrt{1+x^2}} \, dx < \infty. \tag{2}$$

The operator (1) describes the quantum particle affected by a strong repulsive force from the origin. In fact, in the classical sense the corresponding Hamiltonian (functional) is given by $\hat{H}(x, p) = p^2 - x^2$ and then the particle satisfying $\dot{x} = \partial_p \hat{H}$ and $\dot{p} = -\partial_x \hat{H}$ goes away much faster than that for the free Hamiltonian $\hat{H}_0(x, p) = p^2$.

In the case where p = 2, the essential selfadjointness of *H*, endowed with the domain $C_0^{\infty}(\Omega)$, has been discussed by Ikebe and Kato [7]. After that several properties of *H* is found out in a mount of

subsequent papers (for studies of scattering theory e.g., Bony et al. [2], Nicoleau [10] and also Ishida [8]).

In contrast, if *p* is different from 2, then the situation becomes complicated. Actually, papers which deals with the properties of *H* is quite few because of absence of good properties like symmetricity. In the L^p -framework, it is quite useful to consider the accretivity and sectoriality of the second-order differential operators. In fact, the case $-\frac{d^2}{dx^2} + V(x)$ with a nonnegative potential *V* is formally sectorial in L^p , and therefore one can find many literature even *N*-dimensional case (e.g., Kato [9], Goldstein [6], Tanabe [14], Engel-Nagel [5]). However, it seems quite difficult to describe such a kind of non-accretive operators in a certain unified theory in the literature.

The present paper is in a primary position to make a contribution for theory of non-accretive operators in L^p as mentioned above. The aim of this paper is to give a spectral properties of $H = -\frac{d^2}{dx^2} - x^2 + V(x)$ for the case where V(x) can be regarded as a perturbation of the leading part $-\frac{d^2}{dx^2} - x^2$; note that if $V(x) = [\log(e + |x|)]^{-\alpha}$ ($\alpha \in \mathbb{R}$), then $\alpha < 1$ is admissible, which is same threshold as in the short range potential for $-\frac{d^2}{dx^2} - x^2$ stated in Bony [2] and also Ishida [8].

Here we define the minimal realization $H_{p,\min}$ of H in $L^p = L^p(\mathbb{R})$ as

$$\begin{cases} D(H_{p,\min}) := C_0^{\infty}(\mathbb{R}), \\ H_{p,\min}u(x) := -u''(x) - x^2u(x) + V(x)u(x). \end{cases}$$
(3)

Theorem 1.1. For every $1 , <math>H_{p,\min}$ is closable and the spectrum of the closure H_p is explicitly given as

$$\sigma(H_p) = \left\{ \lambda \in \mathbb{C} ; |\operatorname{Im} \lambda| \le \left| 1 - \frac{2}{p} \right| \right\}.$$

Moreover, for every 1 ,*one has consistence of the resolvent operators:*

$$(\lambda + H_p)^{-1}f = (\lambda + H_q)^{-1}f \text{ a.e. on } \mathbb{R} \quad \forall \lambda \in \rho(H_p) \cap \rho(H_q), \quad \forall f \in L^p \cap L^q.$$

Remark 1.1. If p = 2, then our assertion is nothing new. The crucial part is the case $p \neq 2$ which is the case where the symmetricity of *H* breaks down. The similar consideration for $-\frac{d^2}{dx^2} + V$ (but in L^2 -setting) can be found in Dollard-Friedman [4].

This paper is organized follows: In Section 2, we prepare two preliminary results. In Section 3, we consider the fundamental systems of $\lambda u + Hu = 0$, and estimate the behavior of their solutions. By virtue of that estimates, we will describe the resolvent set of H_p in Section 4. In section 5, we prove never to be generated C_0 -semigroups by $\pm iH_p$ under the condition V = 0.

2. Preliminary results

First we state well-known results for the essentially selfadjointness of Schrödinger operators in L^2 which is firstly described in [7]. We would like to refer also Okazawa [12].

Theorem 2.1 (Okazawa [12, Corollary 6.11]). Let V(x) be locally in $L^2(\mathbb{R})$ and assume that $V(x) \ge -c_1 - c_2|x|^2$, where $c_1, c_2 \ge 0$ are constants. Then $H_{2,\min}$ is essentially selfadjoint.

AIMS Mathematics

Next we note the asymptotic behavior of solutions to second-order linear ordinary differential equations of the form

$$y''(x) = (\Phi(x) + \Psi(x))y(x)$$

in which the term $\Psi(x)y(x)$ can be treated as a perturbation of the leading part $\Phi(x)y(x)$.

Theorem 2.2 (Olver [13, Theorem 6.2.2 (p.196)]). In a given finite or infinite interval (a_1, a_2) , let $a \in (a_1, a_2)$, $\Psi(x)$ a positive, real, twice continuously differentiable function, $\Psi(x)$ a continuous real or complex function, and

$$F(x) = \int \left\{ \frac{1}{\Phi(x)^{1/4}} \frac{d^2}{dx^2} \left(\frac{1}{\Phi(x)^{1/4}} \right) - \frac{\Psi(x)}{\Phi(x)^{1/2}} \right\} \, dx.$$

Then in this interval the differential equation

$$\frac{d^2w}{dx^2} = \{\Phi(x) + \Psi(x)\}w$$

has twice continuously differential solutions

$$w_1(x) = \frac{1}{\Phi(x)^{1/4}} \exp\left\{i\int \Phi(x)^{1/2} dx\right\} (1 + \varepsilon_1(x)),$$

$$w_2(x) = \frac{1}{\Phi(x)^{1/4}} \exp\left\{-i\int \Phi(x)^{1/2} dx\right\} (1 + \varepsilon_2(x)),$$

such that

$$|\varepsilon_j(x)|, \ \frac{1}{\Phi(x)^{1/2}}|\varepsilon_j(x)| \le \exp\left\{\frac{1}{2}\mathcal{V}_{a_j,x}(F)\right\} - 1 \quad (j = 1, \ 2)$$

provided that $\mathcal{V}_{a_j,x}(F) < \infty$ (where $\mathcal{V}_{a_j,x}(F) = \int |F'(t)| dt$ is the total variation of F). If $\Psi(x)$ is real, then the solutions $w_1(x)$ and $w_2(x)$ are complex conjugates.

For the above theorem, see also Beals-Wong [1, 10.12, p.355].

3. Fundamental systems of $\lambda u - u'' - x^2 u + V u = 0$

3.1. The case $\lambda \in \mathbb{R}$

We consider the behavior of solutions to

$$\lambda u(x) - u''(x) - x^2 u(x) + V(x)u(x) = 0, \quad x \in \mathbb{R},$$
(4)

where $\lambda \in \mathbb{R}$.

Proposition 3.1. There exist solutions $u_{\lambda,1}$, $u_{\lambda,2}$ of (4) such that $u_{\lambda,1}$ and $u_{\lambda,2}$ are linearly independent and satisfy

$$\begin{aligned} |u_{\lambda,1}(x)| &\leq C_{\lambda}(1+|x|)^{-\frac{1}{2}}, \quad |u_{\lambda,2}(x)| \leq C_{\lambda}(1+|x|)^{-\frac{1}{2}} \quad \forall x \in \mathbb{R}, \\ |u_{\lambda,1}(x)| &\geq \frac{1}{2}(1+|x|)^{-\frac{1}{2}}, \quad |u_{\lambda,2}(x)| \geq \frac{1}{2}(1+|x|)^{-\frac{1}{2}} \quad \forall x \geq R_{\lambda} \end{aligned}$$

for some constants C_{λ} , $R_{\lambda} > 0$ independent of x. In particular, $u_{\lambda,1}$, $u_{\lambda,2} \in L^{p}(\mathbb{R})$ if and only if 2 .

AIMS Mathematics

Volume 3, Issue 1, 21-34

Proof. First we consider (4) for x > 0. Using the Liouville transform

 $v(y) := (2y)^{\frac{1}{4}} u((2y)^{\frac{1}{2}}),$ or equivalently, $u(x) = x^{-\frac{1}{2}} v(\frac{x^2}{2}),$

we have

$$(\lambda - x^2)x^{-\frac{1}{2}}v\left(\frac{x^2}{2}\right) = u''(x) - V(x)u(x) = x^{\frac{3}{2}}v''\left(\frac{x^2}{2}\right) + \frac{3}{4}x^{-\frac{5}{2}}v\left(\frac{x^2}{2}\right) - x^{-\frac{1}{2}}V(x)v\left(\frac{x^2}{2}\right).$$

Therefore noting that $y = x^2/2$, we see that

$$v''(y) = \left[-\left(1 - \frac{\lambda}{4y}\right)^2 + \frac{\lambda^2 - 3}{16y^2} + \frac{V((2y)^{\frac{1}{2}})}{2y} \right] v(y) = (\Phi(y) + \Psi(y))v(y).$$
(5)

Here we have put for y > 0,

$$\Phi(y) := -\left(1 - \frac{\lambda}{4y}\right)^2, \quad \Psi(y) := \frac{\lambda^2 - 3}{16y^2} + \frac{V((2y)^{\frac{1}{2}})}{2y}.$$

Let

$$\Pi(y) := |\Phi(y)|^{-\frac{1}{4}} \left(-\frac{d^2}{dx^2} + \Psi(y) \right) |\Phi(y)|^{-\frac{1}{4}}, \quad y \ge \lambda_+ := \max\{\lambda, 0\}.$$

Then we see that for every $y \ge \lambda_+$,

$$|\Pi(y)| \le \left(1 - \frac{\lambda}{4y}\right)^{-3} \frac{3\lambda^2}{64y^2} + \left(1 - \frac{\lambda}{4y}\right)^{-2} \frac{\lambda}{4y^3} + \left(1 - \frac{\lambda}{4y}\right)^{-1} \frac{|\lambda^2 - 3|}{16y^2} + \frac{|V((2y)^{\frac{1}{2}})|}{2y} \le \frac{M_\lambda}{y^2} + \frac{|V((2y)^{\frac{1}{2}})|}{2y},$$

where M_{λ} is a positive constant depending only on λ . Therefore

$$\int_{\lambda_+}^{\infty} |\Pi(y)| \, dy \le M_{\lambda} \int_{\lambda_+}^{\infty} \frac{1}{y^2} \, dy + \int_{\sqrt{2\lambda_+}}^{\infty} \frac{|V(x)|}{x} \, dx < \infty$$

Thus $\Pi \in L^1((\lambda_+, \infty))$. By Theorem 2.2, we obtain that there exists a fundamental system $(v_{\lambda,1}, v_{\lambda,2})$ of (5) such that

$$v_{\lambda,1}(y)y^{i\frac{\lambda}{4}}e^{-iy} \to 1, \quad v_{\lambda,2}(y)y^{-i\frac{\lambda}{4}}e^{iy} \to 1 \quad \text{as } y \to \infty$$

(see also [11]). Taking $u_{\lambda,j}(x) = x^{-\frac{1}{2}}v_{\lambda,j}(x^2/2)$ for j = 1, 2, we obtain that $(u_{\lambda,1}, u_{\lambda,2})$ is a fundamental system of (4) on (λ_+, ∞) and

$$u_{\lambda,1}(y)x^{\frac{1}{2}+i\frac{\lambda}{2}}e^{-i\frac{x^2}{2}} \to 2^{-i\frac{\lambda}{4}}, \quad u_{\lambda,2}(x)x^{\frac{1}{2}-i\frac{\lambda}{2}}e^{i\frac{x^2}{2}} \to 2^{i\frac{\lambda}{4}},$$

as $x \to \infty$. The above fact implies that there exists a constant $R_{\lambda} > \lambda_+$ such that

$$\frac{1}{2}x^{-\frac{1}{2}} \le |u_{\lambda,j}(x)| \le \frac{3}{2}x^{-\frac{1}{2}}, \quad x \ge R_{\lambda}, \quad j = 1, 2.$$

We can extend $(u_{\lambda,1}, u_{\lambda,2})$ as a fundamental system on \mathbb{R} . By applying the same argument as above to (4) for x < 0, we can construct a different fundamental system $(\tilde{u}_{\lambda,1}, \tilde{u}_{\lambda,2})$ on \mathbb{R} satisfying

$$\frac{1}{2}|x|^{-\frac{1}{2}} \le |\tilde{u}_{\lambda,j}(x)| \le \frac{3}{2}|x|^{-\frac{1}{2}}, \quad x \le -\tilde{R}_{\lambda}, \quad j = 1, 2.$$

By definition of fundamental system, $u_{\lambda,j}$ can be rewritten as

$$u_{\lambda,1}(x) = c_{11}\tilde{u}_{\lambda,1}(x) + c_{12}\tilde{u}_{\lambda,2}(x), \quad u_{\lambda,2}(x) = c_{21}\tilde{u}_{\lambda,1}(x) + c_{22}\tilde{u}_{\lambda,2}(x).$$

Hence we have the upper and lower estimates of $u_{\lambda,j}$ (j = 1, 2), respectively.

AIMS Mathematics

Volume 3, Issue 1, 21-34

3.2. The case $\lambda \in \mathbb{C} \setminus \mathbb{R}$

We consider the behavior of solutions to

$$\lambda u(x) - u''(x) - x^2 u(x) + V(x)u(x) = 0,$$
(6)

where $\lambda \in \mathbb{C} \setminus \mathbb{R}$ with Im $\lambda > 0$. The case Im $\lambda < 0$ can be reduced to the problem Im $\lambda > 0$ via complex conjugation.

3.2.1. Properties of solutions to an auxiliary problem

We start with the following function φ_{λ} :

$$\varphi_{\lambda}(x) := x^{-\frac{1+\lambda i}{2}} e^{i\frac{x^2}{2}}, \quad x > 0.$$
 (7)

Then by a direct computation we have

Lemma 3.2. φ_{λ} satisfies

$$\lambda \varphi_{\lambda} - \varphi_{\lambda}^{\prime \prime} - x^2 \varphi_{\lambda} + g_{\lambda} \varphi_{\lambda} = 0, \quad x \in (0, \infty),$$
(8)

where $g_{\lambda}(x) := \frac{(1+\lambda i)(3+\lambda i)}{4x^2}, x > 0.$

Remark 3.1. If $\lambda = i$ or $\lambda = 3i$, then φ_{λ} is nothing but a solution of the original equation (6) with V = 0.

Next we construct another solution of (8) which is linearly independent of φ_{λ} . Before construction, we prepare the following lemma.

Lemma 3.3. Let λ satisfy Im $\lambda > 0$ and let φ_{λ} be given in (7). Then for every a > 0, there exists $F_a^{\lambda} \in \mathbb{C}$ such that

$$\int_{a}^{x} \varphi_{\lambda}(t)^{-2} dt \to F_{a}^{\lambda} \quad \text{as } x \to \infty$$

and then $x \mapsto \int_a^x \varphi_{\lambda}(t)^{-2} dt - F_a^{\lambda}$ is independent of a. Moreover, for every x > 0,

$$\left|\int_{a}^{x}\varphi_{\lambda}(t)^{-2} dt - F_{a}^{\lambda} - \frac{i}{2}x^{\lambda i}e^{-ix^{2}}\right| \leq C_{\lambda}x^{-\operatorname{Im}\lambda-2},$$

where $C_{\lambda} := \frac{|\lambda|}{4} \left(1 + \sqrt{1 + \left(\frac{\operatorname{Re} \lambda}{\operatorname{Im} \lambda + 2}\right)^2} \right).$

Remark 3.2. If a = 0 and $\lambda = i$, then F_0^i gives the Fresnel integral $\lim_{x\to\infty} \int_0^x e^{-it^2} dt$. Hence $F_0^i = \sqrt{\pi/8}(1-i)$.

Proof. By integration by part, we have

$$\int_{a}^{x} t^{1+\lambda i} e^{-it^{2}} dt = \left(\frac{i}{2} x^{\lambda i} e^{-ix^{2}} - \frac{i}{2} a^{\lambda i} e^{-ia^{2}}\right) + \frac{\lambda i}{4} \left(x^{\lambda i-2} e^{-ix^{2}} - a^{\lambda i-2} e^{-ia^{2}}\right) - \frac{\lambda i(\lambda i-2)}{4} \int_{a}^{x} t^{\lambda i-3} e^{-it^{2}} dt.$$

AIMS Mathematics

Volume 3, Issue 1, 21-34

Noting that $t^{\lambda i-3}e^{-it^2}$ is integrable in (a, ∞) , we have

$$\int_{a}^{x} t^{1+\lambda i} e^{-it^{2}} dt \rightarrow -\frac{i}{2} a^{\lambda i} e^{-ia^{2}} - \frac{\lambda i}{4} a^{\lambda i-2} e^{-ia^{2}} - \frac{\lambda i(\lambda i-2)}{4} \int_{a}^{\infty} t^{\lambda i-3} e^{-it^{2}} dt =: F_{a}^{\lambda}$$

as $x \to \infty$. And therefore $\int_a^x t^{1+\lambda i} e^{-it^2} dt - F_a^{\lambda}$ is independent of *a* and

$$\left| \int_{a}^{x} t^{1+\lambda i} e^{-it^{2}} dt - F_{a}^{\lambda} - \frac{i}{2} x^{\lambda i} e^{-ix^{2}} \right| = \left| \frac{\lambda}{4} x^{-\lambda-2} e^{-ix^{2}} + \frac{\lambda i(\lambda i-2)}{4} \int_{x}^{\infty} t^{\lambda i-3} e^{-it^{2}} dt \right| \le C_{\lambda} x^{-\operatorname{Im} \lambda-2}.$$

This is nothing but the desired inequality.

Lemma 3.4. Let φ_{λ} be as in (7) and define ψ_{λ} as

$$\psi_{\lambda}(x) := \varphi_{\lambda}(x) \int_{a}^{x} \frac{1}{\varphi_{\lambda}(t)^{2}} dt - F_{a}^{\lambda} \varphi_{\lambda}(x), \quad x > 0.$$
(9)

Then ψ_{λ} is independent of a and $(\varphi_{\lambda}, \psi_{\lambda})$ is a fundamental system of (8). Moreover, there exists $a_0 > 0$ such that

$$\frac{1}{3}x^{-\frac{\operatorname{Im}\lambda+1}{2}} \le |\psi_{\lambda}(x)| \le x^{-\frac{\operatorname{Im}\lambda+1}{2}}, \quad x \in [a_0, \infty).$$

Proof. From Lemma 3.3 we have

$$x^{\frac{\operatorname{Im}\lambda+1}{2}}\left|\psi_{\lambda}(x)-\frac{i}{2}x^{-\frac{1-\lambda i}{2}}e^{-i\frac{x^{2}}{2}}\right|=x^{\frac{\operatorname{Im}\lambda+1}{2}}|\varphi_{\lambda}(x)|\left|\int_{a}^{x}\frac{1}{\varphi_{\lambda}(t)^{2}}\,dt-F_{a}^{\lambda}-\frac{i}{2}x^{\lambda i}e^{-ix^{2}}\right|\leq C_{\lambda}x^{-2}.$$

Putting $a_0 = (6C_{\lambda})^{\frac{1}{2}}$, we deduce the desired assertion.

3.2.2. Fundamental system of the original problem

Next we consider

$$\lambda w - w'' - x^2 w + g_\lambda w = \tilde{g}_\lambda h, \quad x > 0 \tag{10}$$

with a given function *h*, where g_{λ} is given as in Lemma 3.2 and $\tilde{g}_{\lambda} := g_{\lambda} - V$. To construct solutions of (6), we will define two types of solution maps $h \mapsto w$ and consider their fixed points.

First we construct a solution of (6) which behaves like ψ_{λ} at infinity.

Definition 3.5. *For b* > 0*, define*

$$Uh(x) := \psi_{\lambda}(x) - \psi_{\lambda}(x) \int_{b}^{x} \varphi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) \, ds - \varphi_{\lambda}(x) \int_{x}^{\infty} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) \, ds, \quad x \in [b, \infty)$$

for h belonging to a Banach space

$$X_{\lambda}(b) := \left\{ h \in C([b,\infty)) \; ; \; \sup_{x \in [b,\infty)} \left(x^{\frac{\mathrm{Im}\lambda+1}{2}} |h(x)| \right) < \infty \right\}, \quad ||h||_{X_{\lambda}(b)} := \sup_{x \in [b,\infty)} \left(x^{\frac{\mathrm{Im}\lambda+1}{2}} |h(x)| \right).$$

AIMS Mathematics

Volume 3, Issue 1, 21-34

Remark 3.3. For arbitrary fixed b > 0, all solutions of (10) can be described as follows:

$$w_{c_1,c_2}(x) = c_1\varphi_{\lambda}(x) + c_2\psi_{\lambda}(x) + \int_b^x \left(\varphi_{\lambda}(x)\psi_{\lambda}(s) - \varphi_{\lambda}(s)\psi_{\lambda}(x)\right)\tilde{g}_{\lambda}(s)h(s)\,ds,$$

where $c_1, c_2 \in \mathbb{C}$. Suppose that $h \in C_0^{\infty}((b, \infty))$ with supp $h \subset [b_1, b_2]$. Then $w_{c_1, c_2} \in C([b, \infty))$. In particular, for $x \ge b_2$,

$$w_{c_1,c_2}(x) = \left(c_1 + \int_{b_1}^{b_2} \psi_{\lambda}(s)\tilde{g}_{\lambda}(s)h(s)\,ds\right)\varphi_{\lambda}(x) + \left(c_2 - \int_{b_1}^{b_2} \varphi_{\lambda}(s)\tilde{g}_{\lambda}(s)h(s)\,ds\right)\psi_{\lambda}(x).$$

Therefore w_{c_1,c_2} behaves like ψ_{λ} (that is, $w_{c_1,c_2} \in X_{\lambda}(b)$) only when

$$c_1 = -\int_{b_1}^{b_2} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) \, ds = -\int_{b}^{\infty} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) \, ds.$$

In Definition 3.5 we deal with such a solution with $c_2 = 1$.

Well-definedness of U in Definition 3.5 and its contractivity are proved in next lemma.

Lemma 3.6. The following assertions hold:

- (i) for every b > 0, the map $U : X_{\lambda}(b) \to X_{\lambda}(b)$ is well-defined;
- (ii) there exists $b_{\lambda} > 0$ such that U is contractive in $X_{\lambda}(b_{\lambda})$ with

$$||Uh_1 - Uh_2||_{X_{\lambda}(b)} \le \frac{1}{5} ||h_1 - h_2||_{X_{\lambda}(b)}, \quad h_1, h_2 \in X_{\lambda}(b_{\lambda})$$

and then U has a unique fixed point $w_1 \in X_{\lambda}(b_{\lambda})$; (iii) w_1 can be extended to a solution of (6) in \mathbb{R} satisfying

$$\frac{1}{12}x^{-\frac{\mathrm{Im}\lambda+1}{2}} \le |w_1(x)| \le 2x^{-\frac{\mathrm{Im}\lambda+1}{2}}, \quad x \in [b_\lambda, \infty).$$

Proof. (i) By Lemma 3.4 we have $\psi_{\lambda} \in X_{\lambda}(b)$. Therefore to prove well-definedness of *U*, it suffices to show that the second term in the definition of *U* belongs to $X_{\lambda}(b)$.

Let $h \in X_{\lambda}(b)$. Then for $x \in [b, \infty)$,

$$x^{\frac{\mathrm{Im}\,\lambda+1}{2}} \left| \varphi_{\lambda}(x) \int_{x}^{\infty} \psi_{\lambda}(s) \tilde{g}(s) h(s) \, ds \right| \leq x^{\mathrm{Im}\,\lambda} ||h||_{X} \int_{x}^{\infty} s^{-\mathrm{Im}\,\lambda-1} |\tilde{g}_{\lambda}(s)| \, ds \leq ||h||_{X} ||s^{-1} \tilde{g}_{\lambda}||_{L^{1}(b,\infty)}$$

and

$$x^{\frac{\operatorname{Im}\lambda+1}{2}} \left| \psi_{\lambda}(x) \int_{b}^{x} \varphi_{\lambda}(s) \tilde{g}(s) h(s) \, ds \right| \leq \|h\|_{X} \int_{b}^{x} s^{-1} |\tilde{g}_{\lambda}(s)| \, ds \leq \|h\|_{X} \|s^{-1} \tilde{g}_{\lambda}\|_{L^{1}(b,\infty)}$$

Hence we have $Uh \in C([b, \infty))$ and therefore $Uh \in X_{\lambda}(b)$, that is, $U : X_{\lambda}(b) \to X_{\lambda}(b)$ is well-defined. (ii) Let $h_1, h_2 \in X_{\lambda}(b)$. Then we have

$$Uh_1(x) - Uh_2(x) = -\psi_{\lambda}(x) \int_b^x \varphi_{\lambda}(s) \tilde{g}_{\lambda}(s) (h_1(s) - h_2(s)) \, ds - \varphi_{\lambda}(x) \int_x^\infty \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) (h_1(s) - h_2(s)) \, ds.$$

AIMS Mathematics

Volume 3, Issue 1, 21–34

Proceeding the same computation as above, we deduce

$$||Uh_1 - Uh_2||_{X_{\lambda}(b)} \le 2||s^{-1}\tilde{g}_{\lambda}||_{L^1(b,\infty)}||h_1 - h_2||_{X_{\lambda}(b)}.$$

Choosing *b* large enough, we obtain $||Uh_1 - Uh_2||_{X_{\lambda}(b)} \le 5^{-1}||h_1 - h_2||_{X_{\lambda}(b)}$, that is *U* is contractive in $X_{\lambda}(b)$. By contraction mapping principle, we obtain that *U* has a unique fixed point $w_1 \in X_{\lambda}(b)$.

(iii) Since w_1 satisfies (10) with $h = w_1$, w_1 is a solution of the original equation (6) in $[b, \infty)$. As in the last part of the proof of Proposition 3.1, we can extend w_1 as a solution of (6) in \mathbb{R} . Since $Uw_1 = w_1$ and $U0 = \psi_{\lambda}$, it follows from the contractivity of U that

$$||w_1 - \psi_{\lambda}||_X = ||Uw_1 - U0||_X \le \frac{1}{5}||w_1||_X \le \frac{1}{5}||w_1 - \psi_{\lambda}||_X + \frac{1}{5}||\psi_{\lambda}||_X.$$

Consequently, we have $||w_1 - \psi_\lambda||_X \le 4^{-1} ||\psi_\lambda||_X \le 4^{-1}$ and then for $x \ge b$,

$$|w_1(x)| \ge |\psi_{\lambda}(x)| - |w_1(x) - \psi_{\lambda}(x)| \ge \left(\frac{1}{3} - ||w_1 - \psi_{\lambda}||_X\right) x^{-\frac{\mathrm{Im}\lambda + 1}{2}} \ge \frac{1}{12} x^{-\frac{\mathrm{Im}\lambda + 1}{2}}.$$

Next we construct another solution of (6) which behaves like φ_{λ} at infinity.

Definition 3.7. Let b > 0 be large enough. Define

$$\widetilde{U}h(x) := \varphi_{\lambda}(x) + \int_{b}^{x} \left(\varphi_{\lambda}(x)\psi_{\lambda}(s) - \varphi_{\lambda}(s)\psi_{\lambda}(x)\right) \widetilde{g}_{\lambda}(s)h(s) \, ds$$

for h belonging to a Banach space

$$Y_{\lambda}(b) := \left\{ h \in C([b,\infty)) \; ; \; \sup_{x \in [b,\infty)} \left(x^{-\frac{\mathrm{Im}\lambda - 1}{2}} |h(x)| \right) < \infty \right\}, \; \; ||h||_{Y_{\lambda}(b)} := \sup_{x \in [b,\infty)} \left(x^{-\frac{\mathrm{Im}\lambda - 1}{2}} |h(x)| \right).$$

Lemma 3.8. The following assertions hold:

(i) for every b > 0, the map $\widetilde{U} : Y_{\lambda}(b) \to Y_{\lambda}(b)$ is well-defined;

(ii) there exists $b_{\lambda} > 0$ such that \widetilde{U} is contractive in $Y_{\lambda}(b_{\lambda})$ with

$$\|\widetilde{U}h_1 - \widetilde{U}h_2\|_{Y_{\lambda}(b)} \le \frac{1}{5} \|h_1 - h_2\|_{Y_{\lambda}(b)}, \quad h_1, h_2 \in Y_{\lambda}(b_{\lambda})$$

and then \widetilde{U} has a unique fixed point $\widetilde{w}_1 \in Y_{\lambda}(b_{\lambda})$; (iii) \widetilde{w}_1 can be extended to a solution of (6) in \mathbb{R} satisfying

$$\frac{1}{2}x^{\frac{\mathrm{Im}\,\lambda-1}{2}} \le |\tilde{w}_1(x)| \le 2x^{\frac{\mathrm{Im}\,\lambda-1}{2}}, \quad x \in [b_\lambda,\infty).$$

Proof. The proof is similar to the one of Lemma 3.6.

AIMS Mathematics

Volume 3, Issue 1, 21-34

Lemma 3.9. For every $\lambda \in \mathbb{C}$ with Im $\lambda > 0$, there exist a fundamental system (w_1, w_2) of (6) and positive constants $c_{\lambda}, C_{\lambda}, R_{\lambda}$ such that

$$|w_1(x)| \le C_{\lambda}(1+|x|)^{\frac{|m|\lambda-1}{2}}, \quad x \le 0, \qquad \qquad |w_1(x)| \le C_{\lambda}(1+|x|)^{-\frac{|m|\lambda+1}{2}}, \quad x \ge 0, \qquad (11)$$

$$|w_2(x)| \le C_{\lambda} (1+|x|)^{-\frac{\mathrm{Im}\,\lambda+1}{2}}, \quad x \le 0, \qquad \qquad |w_2(x)| \le C_{\lambda} (1+|x|)^{\frac{\mathrm{Im}\,\lambda-1}{2}}, \quad x \ge 0 \tag{12}$$

and

$$|w_1(x)| \ge c_{\lambda}(1+|x|)^{-\frac{\mathrm{Im}\,\lambda+1}{2}}, \quad x \ge R_{\lambda}, \quad |w_2(x)| \ge c_{\lambda}(1+|x|)^{-\frac{\mathrm{Im}\,\lambda+1}{2}}, \quad x \le -R_{\lambda}.$$
 (13)

Proof. In view of Lemma 3.6, it suffices to find w_2 satisfying the conditions above.

Let w_* and \tilde{w}_* be given as in Lemmas 3.6 and 3.8 with V(x) replaced with V(-x). Noting that w_1 can be rewritten as $w_1(x) = c_1 w_*(-x) + c_2 \tilde{w}_*(-x)$, we see from Lemma 3.6 and 3.8 that (11) and the first half of (13) are satisfied. Set $w_2(x) = w_*(-x)$ for $x \in \mathbb{R}$. As in the same way, we can verify (12).

Finally, we prove the last half of (13). Since $H_{2,\min}$ is essentially selfadjoint in $L^2(\mathbb{R})$, λ belongs to the resolvent set of H_2 , that is, $N(\lambda + H_2) = \{0\}$. This implies that $w_2 \notin L^2(\mathbb{R})$. Noting that $w_2 \in L^2((-\infty, 0))$, we have $w_2 \notin L^2((0, \infty))$. Now using the representation

$$w_2(x) = c_1 w_1(x) + c_2 \tilde{w}_1(x), \quad x \in \mathbb{R}$$

we deduce that $c_2 \neq 0$. Therefore using Lemma 3.6 (iii) and Lemma 3.8 (iii), we have

$$|w_2(x)| \ge |c_2| |\tilde{w}_1(x)| - |c_1| |w_1(x)| \ge \frac{|c_2|}{2} x^{\frac{\mathrm{Im}\lambda - 1}{2}} - 2|c_1| x^{-\frac{\mathrm{Im}\lambda + 1}{2}} \ge \frac{|c_2|}{4} x^{\frac{\mathrm{Im}\lambda - 1}{2}}$$

for *x* large enough.

4. Resolvent estimates in *L^p*

The following lemma, verified by the variation of parameters, gives a possibility of representation of the Green function for resolvent operator H in L^p .

Lemma 4.1. Assume that $\lambda \in \rho(\widetilde{H})$ in L^p , where \widetilde{H} is a realization of H in L^p . Then for every $u \in C_0^{\infty}(\mathbb{R})$,

$$u(x) = \frac{w_1(x)}{W_{\lambda}} \int_{-\infty}^x w_2(s) f(s) \, ds + \frac{w_2(x)}{W_{\lambda}} \int_x^\infty w_1(s) f(s) \, ds, \quad x \in \mathbb{R},$$

where $f := \lambda u - u'' - x^2 u + V u \in C_0^{\infty}(\mathbb{R})$ and $W_{\lambda} \neq 0$ is the Wronskian of (w_1, w_2) .

Proposition 4.2. Let $1 . If <math>|1 - \frac{2}{p}| < \text{Im }\lambda$, then the operator defined as

$$R(\lambda)f(x) := \frac{w_1(x)}{W_{\lambda}} \int_{-\infty}^x w_2(s)f(s)\,ds + \frac{w_2(x)}{W_{\lambda}} \int_x^\infty w_1(s)f(s)\,ds, \quad f \in C_0^\infty(\mathbb{R})$$

can be extended to a bounded operator on L^p . More precisely, there exists $M_{\lambda} > 0$ such that

$$\|R(\lambda)f\|_{L^{p}} \le M_{\lambda} \left[|\mathrm{Im}\lambda|^{2} - \left(1 - \frac{2}{p}\right)^{2} \right]^{-1} \|f\|_{L^{p}}, \quad f \in L^{p}(\mathbb{R}).$$
(14)

AIMS Mathematics

Volume 3, Issue 1, 21–34

In particular, $H_{p,\min}$ is closable and its closure H_p satisfies

$$\left\{\lambda \in \mathbb{C} ; |\mathrm{Im}\,\lambda| > \left|1 - \frac{2}{p}\right|\right\} \subset \rho(H_p).$$

Proof. Let $f \in C_0^{\infty}(\mathbb{R})$. Set

$$u_1(x) := w_1(x) \int_{-\infty}^x w_2(s) f(s) \, ds, \quad u_2(x) := w_1(x) \int_x^\infty w_1(s) f(s) \, ds.$$

We divide the proof of $u_1 \in L^p(\mathbb{R})$ into two cases $x \ge 0$ and x < 0; since the proof of $u_2 \in L^p(\mathbb{R})$ is similar, this part is omitted.

The case u_1 for $x \ge 0$, it follows from Lemma 3.9 and Hölder inequality that

$$\begin{aligned} |u_{1}(x)| &\leq C_{\lambda}^{2}(1+|x|)^{-\frac{\mathrm{Im}\lambda+1}{2}} \left[\int_{-\infty}^{0} (1+|s|)^{-\frac{\mathrm{Im}\lambda+1}{2}} |f(s)| \, ds + \int_{0}^{x} (1+|s|)^{\frac{\mathrm{Im}\lambda-1}{2}} |f(s)| \, ds \right] \\ &\leq C_{\lambda}^{2} \left(\frac{\mathrm{Im}\,\lambda+1}{2} p' - 1 \right)^{-\frac{1}{p'}} \|f\|_{L^{p}(\mathbb{R}_{-})} (1+|x|)^{-\frac{\mathrm{Im}\lambda+1}{2}} \\ &+ C_{\lambda}^{2}(1+|x|)^{-\frac{\mathrm{Im}\lambda+1}{2}} \left(\int_{0}^{x} (1+|s|)^{\frac{\mathrm{Im}\lambda-1}{2}} p' - \alpha p' \, ds \right)^{\frac{1}{p'}} \left(\int_{0}^{x} (1+|s|)^{\alpha p} |f(s)|^{p} \, ds \right)^{\frac{1}{p}} \\ &\leq C_{\lambda}^{2} \left(\frac{\mathrm{Im}\,\lambda+1}{2} p' - 1 \right)^{-\frac{1}{p'}} \|f\|_{L^{p}(\mathbb{R}_{-})} (1+|x|)^{-\frac{\mathrm{Im}\lambda+1}{2}} \\ &+ C_{\lambda}^{2} \left(\frac{\mathrm{Im}\,\lambda-1}{2} p' - \alpha p' + 1 \right)^{-\frac{1}{p'}} (1+|x|)^{-\frac{1}{p}-\alpha} \left(\int_{0}^{x} (1+|s|)^{\alpha p} |f(s)|^{p} \, ds \right)^{\frac{1}{p}} \end{aligned}$$
(15)

with $0 < \alpha < \frac{\text{Im}\lambda+1}{2} + 1/p'$. By the triangle inequality we have

$$\|u_1\|_{L^p(\mathbb{R}_+)} \le C_{\lambda}^2 \left(\frac{\operatorname{Im} \lambda + 1}{2} p' - 1\right)^{-\frac{1}{p'}} \left(\frac{\operatorname{Im} \lambda + 1}{2} p - 1\right)^{-\frac{1}{p}} \|f\|_{L^p(\mathbb{R}_-)} + \mathcal{I}_1(\alpha)$$

and

$$(\mathcal{I}_{1}(\alpha))^{p} = C_{\lambda}^{2p} \left(\frac{\operatorname{Im} \lambda - 1}{2} p' - \alpha p' + 1 \right)^{-\frac{p}{p'}} \int_{0}^{\infty} (1 + |x|)^{-1 - \alpha p} \left(\int_{0}^{x} (1 + |s|)^{\alpha p} |f(s)|^{p} \, ds \right) dx$$
$$= C_{\lambda}^{2p} \left(\frac{\operatorname{Im} \lambda - 1}{2} p' - \alpha p' + 1 \right)^{-\frac{p}{p'}} (\alpha p)^{-1} \int_{0}^{\infty} |f(s)|^{p} \, ds.$$

Choosing $\alpha = \frac{1}{pp'} \left(\frac{\operatorname{Im} \lambda - 1}{2} p' + 1 \right)$, we obtain

$$\|u_1\|_{L^p(\mathbb{R}_+)} \le C_{\lambda}^2 \left(\frac{\operatorname{Im} \lambda + 1}{2}p' - 1\right)^{-\frac{1}{p'}} \left(\frac{\operatorname{Im} \lambda + 1}{2}p - 1\right)^{-\frac{1}{p}} \|f\|_{L^p(\mathbb{R}_-)} + C_{\lambda}^2 \left(\frac{\operatorname{Im} \lambda - 1}{2} + \frac{1}{p'}\right)^{-1} \|f\|_{L^p(\mathbb{R}_+)}$$

The case u_1 for x < 0, by the same way as the case x > 0, we have

$$|u_1(x)|^p \le C_{\lambda}^{2p} \left(\frac{\mathrm{Im}\lambda + 1}{2} p' - \beta p' - 1 \right)^{-\frac{p}{p'}} (1 + |x|)^{-1 + \beta p} \int_{-\infty}^x (1 + |s|)^{-\beta p} |f(s)|^p \, ds, \tag{16}$$

AIMS Mathematics

Volume 3, Issue 1, 21–34

where $0 < \beta < \frac{\text{Im}\lambda+1}{2} - \frac{1}{p'}$. Taking $\beta = \frac{1}{pp'} \left(\frac{\text{Im}\lambda+1}{2}p' - 1 \right)$, we have

$$||u_1||_{L^p(\mathbb{R}_-)} \le C_{\lambda}^2 \left(\frac{\mathrm{Im}\lambda + 1}{2} - \frac{1}{p'}\right)^{-1} ||f||_{L^p(\mathbb{R}_-)}.$$

Proceeding the same argument for u_2 and combining the estimates for u_1 and u_2 , we obtain (14).

Corollary 4.3. Let $\mathcal{R}(\lambda)$ be as in Proposition 4.2. Then for every $f \in L^p(\mathbb{R})$, $\mathcal{R}(\lambda)f \in C(\mathbb{R})$ and

$$\sup_{x \in \mathbb{R}} \left((1+|x|)^{\frac{1}{p}} |\mathcal{R}(\lambda) f(x)| \right) \le \tilde{C}_{\lambda} ||f||_{L^{p}}.$$
(17)

Proof. Let $f \in C_0^{\infty}(\mathbb{R})$ and set u_1 and u_2 as in the proof of Proposition 4.2. Since the proof for u_1 and u_2 are similar, we only show the estimate of u_1 . From (15), we have for $x \ge 0$,

$$\begin{split} (1+|x|)^{\frac{1}{p}}|u_{1}(x)| &\leq C_{\lambda}^{2} \left(\frac{\operatorname{Im} \lambda + 1}{2}p' - 1\right)^{-\frac{1}{p'}} ||f||_{L^{p}(\mathbb{R}_{-})} (1+|x|)^{-\frac{\operatorname{Im} \lambda}{2} + \frac{1}{p} - \frac{1}{2}} \\ &+ C_{\lambda}^{2} \left(\frac{\operatorname{Im} \lambda - 1}{2}p' - \alpha p' + 1\right)^{-\frac{1}{p'}} (1+|x|)^{-\alpha} \left(\int_{0}^{x} (1+|s|)^{\alpha p} |f(s)|^{p} \, ds\right)^{\frac{1}{p}} \\ &\leq C_{\lambda}^{2} \left(\frac{\operatorname{Im} \lambda + 1}{2}p' - 1\right)^{-\frac{1}{p'}} ||f||_{L^{p}(\mathbb{R}_{-})} + C_{\lambda}^{2} \left(\frac{\operatorname{Im} \lambda - 1}{2}p' - \alpha p' + 1\right)^{-\frac{1}{p'}} ||f||_{L^{p}(\mathbb{R}_{+})}, \end{split}$$

where $0 < \alpha < \frac{\text{Im}\lambda+1}{2} + \frac{1}{p'}$. This implies (17) for $x \ge 0$. If $x \le 0$, then from (16) we can obtain

$$(1+|x|)^{\frac{1}{p}}|u_1(x)| \le C_{\lambda}^2 \left(\frac{\mathrm{Im}\lambda+1}{2}p'-\beta p'-1\right)^{-\frac{1}{p'}} \|f\|_{L^p(\mathbb{R}_-)},$$

where $0 < \beta < \frac{\text{Im}\lambda+1}{2} - \frac{1}{p'}$. This yields (17) for $x \le 0$. The proof is completed.

By interpolation inequality, we deduce the following assertion.

Proposition 4.4. Let $1 and <math>p \le q \le \infty$. Then

$$D(H_p) \subset \left\{ w \in C(\mathbb{R}) \; ; \; \langle x \rangle^{\frac{1}{p} - \frac{1}{q}} w \in L^q \right\}.$$

More precisely, there exists a constant $C_{p,q} > 0$ such that

$$\left\|\langle x \rangle^{\frac{1}{p}-\frac{1}{q}} u\right\|_{L^{q}} \leq C_{p,q} \Big(\|H_{p}u\|_{L^{p}} + \|u\|_{L^{p}} \Big), \quad u \in D(H_{p}).$$

Proof. The assertion follows from Proposition 4.2 and Corollary 4.3.

Proposition 4.5. (i) If $2 and <math>0 < |\text{Im }\lambda| < 1 - \frac{2}{p}$, then $N(\lambda + H_p) \neq \{0\}$, and then

$$\left\{\lambda \in \mathbb{C} ; |\mathrm{Im}\,\lambda| \le 1 - \frac{2}{p}\right\} \subset \sigma(H_p);$$

(ii) If $1 and <math>0 < |\text{Im } \lambda| < \frac{2}{p} - 1$, then $\overline{N(\lambda + H_p)} \subsetneq L^p$, and then

$$\left\{\lambda \in \mathbb{C} ; |\mathrm{Im}\,\lambda| \leq \frac{2}{p} - 1\right\} \subset \sigma(H_p).$$

AIMS Mathematics

Volume 3, Issue 1, 21–34

Proof. (i) (2 Noting that

$$\frac{\operatorname{Im}\lambda+1}{2} > \frac{1}{p}, \quad -\frac{\operatorname{Im}\lambda-1}{2} > \frac{1}{p},$$

we have by (11),

$$\begin{split} \int_{-\infty}^{\infty} |w_1(x)|^p \, dx &\leq C_{\lambda} \left(\int_{-\infty}^{0} (1+|s|)^{\frac{\mathrm{Im}\,\lambda-1}{2}p} \, ds + \int_{0}^{\infty} (1+|s|)^{-\frac{\mathrm{Im}\,\lambda+1}{2}p} \, ds \right) \\ &\leq C_{\lambda} \left[\left(\frac{1-\mathrm{Im}\,\lambda}{2}p - 1 \right)^{-1} + \left(\frac{\mathrm{Im}\,\lambda+1}{2}p - 1 \right)^{-1} \right] < \infty. \end{split}$$

This means that $w_1, w_2 \in N(\lambda + H_p)$.

(ii) $(1 Note that <math>H_p$ is the adjoint operator of $H_{p'}$. Since $w_1 \in D(H_{p'})$ for every $u \in C_0^{\infty}(\mathbb{R})$,

$$\int_{-\infty}^{\infty} (\lambda u + H_p u) w_1 dx = \int_{-\infty}^{\infty} u (\lambda w_1 + H_{p'} w_1) dx = 0,$$

the closure of $R(\lambda + H_p)$ does not coincide with L^p , that is, $\overline{R(\lambda + H_p)} \subsetneq L^p$.

Since $\sigma(H_p)$ is closed in \mathbb{C} and we can argue the same assertion for $\text{Im}\lambda < 0$ via complex conjugation, we obtain the assertion.

Combining the assertions above, we finally obtain Theorem 1.1.

5. Absence of C_0 -semigroups on L^p ($p \neq 2, V = 0$)

In Theorem 1.1, we do not prove any assertions related to generation of C_0 -semigroups by $\pm iH_p$. In this subsection we prove

Theorem 5.1. Neither iH_p nor $-iH_p$ generates C_0 -semigroup on L^p .

Proof. We argue by a contradiction. Assume that iH_p generates a C_0 -semigroup T(t) on L^p . Then it follows from Theorem 1.1 (the coincidence of resolvent operators) that we have T(t)f = S(t)f for every t > 0 and $f \in L^2 \cap L^p$, where S(t) is the C_0 -group generated by the skew-adjoint operator iH_2 .

Fix $f_0 \in L^2 \cap L^p$ such that $\mathcal{F} f_0 \notin L^p$ (\mathcal{F} is the Fourier transform). Then by the Mehler's formula (see e.g., Cazenave [3, Remark 9.2.5]), we see that

$$[S(t)]f(x) = \left(\frac{1}{2\pi\sinh(2t)}\right)^{\frac{N}{2}} e^{-i\frac{1}{2\tanh(2t)}|x|^2} \int_{-\infty}^{\infty} e^{-\frac{i}{\sinh(2t)}x\cdot y} e^{-i\frac{1}{2\tanh(2t)}|y|^2} f(y) \, dy.$$

In other words, using the operators

$$M_{\tau}g(x) := e^{-i\frac{|x|^2}{2\tau}}g(x), \quad D_{\tau}g(x) := \tau^{-\frac{N}{2}}g(\tau^{-1}x),$$

we can rewrite S(t) as the following form $S(t)f = M_{tanh(2t)}\mathcal{F}D_{sinh(2t)}M_{tanh(2t)}f$. Taking $f_{t_0} = M_{tanh(2t_0)}^{-1}D_{sinh(2t_0)}^{-1}f_0 \in L^p$, we have

$$S(t_0)f_{t_0} = M_{\tanh(2t)}\mathcal{F}f_0 \notin L^p.$$

This contradicts the fact $T(t_0)f_{t_0} \in L^p$. This completes the proof.

AIMS Mathematics

Volume 3, Issue 1, 21–34

Acknowledgments

This work is partially supported by Grant-in-Aid for Young Scientists Research (B), No. 15K17558, 16K17619.

Conflict of Interest

All authors declare no conflicts of interest in this paper.

References

- 1. R. Beals, R. Wong, *Special functions*, Cambridge Studies in Advanced Mathematics, **126**, Cambridge University Press, Cambridge, 2010.
- 2. J.-F. Bony, R. Carles, D. Hafner, et al. *Scattering theory for the Schrödinger equation with repulsive potential*, J. Math. Pures Appl., **84** (2005), 509–579.
- 3. T. Cazenave, *Semilinear Schrödinger equations*, Courant Lecture Notes in Mathematics, **10**, Amer. Mathematical Society, 2003.
- 4. J. D. Dollard, C. N. Friedman, Asymptotic behavior of solutions of linear ordinary differential equations, J. Math. Anal. Appl., **66** (1978), 394–398.
- 5. K.-J. Engel, R. Nagel, *One-Parameter Semigroups for Linear Evolution Equations*, Graduate Texts in Math., **194**, Springer-Verlag, 2000.
- 6. J. A. Goldstein, *Semigroups of Linear Operators and Applications*, Oxford Mathematical Monographs, Oxford Univ. Press, New York, 1985.
- 7. T. Ikebe, T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Ration. Mech. An., 9 (1962), 77–92.
- A. Ishida, On inverse scattering problem for the Schrödinger equation with repulsive potentials, J. Math. Phys., 55 (2014), 082101.
- 9. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-New York, 1966.
- 10. F. Nicoleau, *Inverse scattering for a Schrodinger operator with a repulsive potential*, Acta Math. Sin., **22** (2006), 1485–1492.
- G. Metafune, M. Sobajima, An elementary proof of asymptotic behavior of solutions of u" = Vu, preprint (arXiv:1405.5659). Available from: http://arxiv.org/abs/1405.5659.
- 12. N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Jpn, **34** (1982), 677–701.
- 13. F. W. J. Olver, *Asymptotics and special functions*, Computer Science and Applied Mathematics, Academic Press, New York-London, 1974.

14. H. Tanabe, *Functional Analytic Methods for Partial Differential Equations*, Pure and Applied Mathematics, **204**, Marcel Dekker, New York, 1997.

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)