Mathematics

Research article

L^{p}-analysis of one-dimensional repulsive Hamiltonian with a class of perturbations

Motohiro Sobajima ${ }^{1, *}$ and Kentarou Yoshii ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
${ }^{2}$ Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan

* Correspondence: Email: msobajima1984@ gmail.com; Tel: +81-4-7124-1501.

Abstract

The spectrum of one-dimensional repulsive Hamiltonian with a class of perturbations $H_{p}=$ $-\frac{d^{2}}{d x^{2}}-x^{2}+V(x)$ in $L^{p}(\mathbb{R})(1<p<\infty)$ is explicitly given. It is also proved that the domain of H_{p} is embedded into weighted L^{q}-spaces for some $q>p$. Additionally, non-existence of related Schrödinger $\left(C_{0}-\right)$ semigroup in $L^{p}(\mathbb{R})$ is shown when $V(x) \equiv 0$.

Keywords: repulsive Hamiltonian; WKB methods
Mathematics Subject Classification: 47E05, 47A10

1. Introduction

In this paper we consider

$$
\begin{equation*}
H:=-\frac{d^{2}}{d x^{2}}-x^{2}+V(x) \tag{1}
\end{equation*}
$$

in $L^{p}(\mathbb{R})$, where $V \in C(\mathbb{R})$ is a real-valued and satisfies $V(x) \geq-a\left(1+x^{2}\right)$ for some constant $a \geq 0$ and

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{|V(x)|}{\sqrt{1+x^{2}}} d x<\infty \tag{2}
\end{equation*}
$$

The operator (1) describes the quantum particle affected by a strong repulsive force from the origin. In fact, in the classical sense the corresponding Hamiltonian (functional) is given by $\hat{H}(x, p)=p^{2}-x^{2}$ and then the particle satisfying $\dot{x}=\partial_{p} \hat{H}$ and $\dot{p}=-\partial_{x} \hat{H}$ goes away much faster than that for the free Hamiltonian $\hat{H}_{0}(x, p)=p^{2}$.

In the case where $p=2$, the essential selfadjointness of H, endowed with the domain $C_{0}^{\infty}(\Omega)$, has been discussed by Ikebe and Kato [7]. After that several properties of H is found out in a mount of
subsequent papers (for studies of scattering theory e.g., Bony et al. [2], Nicoleau [10] and also Ishida [8]).

In contrast, if p is different from 2, then the situation becomes complicated. Actually, papers which deals with the properties of H is quite few because of absence of good properties like symmetricity. In the L^{p}-framework, it is quite useful to consider the accretivity and sectoriality of the second-order differential operators. In fact, the case $-\frac{d^{2}}{d x^{2}}+V(x)$ with a nonnegative potential V is formally sectorial in L^{p}, and therefore one can find many literature even N-dimensional case (e.g., Kato [9], Goldstein [6], Tanabe [14], Engel-Nagel [5]). However, it seems quite difficult to describe such a kind of nonaccretive operators in a certain unified theory in the literature.

The present paper is in a primary position to make a contribution for theory of non-accretive operators in L^{p} as mentioned above. The aim of this paper is to give a spectral properties of $H=-\frac{d^{2}}{d x^{2}}-x^{2}+V(x)$ for the case where $V(x)$ can be regarded as a perturbation of the leading part $-\frac{d^{2}}{d x^{2}}-x^{2}$; note that if $V(x)=[\log (e+|x|)]^{-\alpha}(\alpha \in \mathbb{R})$, then $\alpha<1$ is admissible, which is same threshold as in the short range potential for $-\frac{d^{2}}{d x^{2}}-x^{2}$ stated in Bony [2] and also Ishida [8].

Here we define the minimal realization $H_{p, \text { min }}$ of H in $L^{p}=L^{p}(\mathbb{R})$ as

$$
\left\{\begin{array}{l}
D\left(H_{p, \min }\right):=C_{0}^{\infty}(\mathbb{R}) \tag{3}\\
H_{p, \min } u(x):=-u^{\prime \prime}(x)-x^{2} u(x)+V(x) u(x) .
\end{array}\right.
$$

Theorem 1.1. For every $1<p<\infty, H_{p, \text { min }}$ is closable and the spectrum of the closure H_{p} is explicitly given as

$$
\sigma\left(H_{p}\right)=\left\{\lambda \in \mathbb{C} ;|\operatorname{Im} \lambda| \leq\left|1-\frac{2}{p}\right|\right\} .
$$

Moreover, for every $1<p<q<\infty$, one has consistence of the resolvent operators:

$$
\left(\lambda+H_{p}\right)^{-1} f=\left(\lambda+H_{q}\right)^{-1} \text { f a.e. on } \mathbb{R} \quad \forall \lambda \in \rho\left(H_{p}\right) \cap \rho\left(H_{q}\right), \quad \forall f \in L^{p} \cap L^{q} .
$$

Remark 1.1. If $p=2$, then our assertion is nothing new. The crucial part is the case $p \neq 2$ which is the case where the symmetricity of H breaks down. The similar consideration for $-\frac{d^{2}}{d x^{2}}+V$ (but in L^{2}-setting) can be found in Dollard-Friedman [4].

This paper is organized follows: In Section 2, we prepare two preliminary results. In Section 3, we consider the fundamental systems of $\lambda u+H u=0$, and estimate the behavior of their solutions. By virtue of that estimates, we will describe the resolvent set of H_{p} in Section 4. In section 5, we prove never to be generated C_{0}-semigroups by $\pm i H_{p}$ under the condition $V=0$.

2. Preliminary results

First we state well-known results for the essentially selfadjointness of Schrödinger operators in L^{2} which is firstly described in [7]. We would like to refer also Okazawa [12].

Theorem 2.1 (Okazawa [12, Corollary 6.11]). Let $V(x)$ be locally in $L^{2}(\mathbb{R})$ and assume that $V(x) \geq$ $-c_{1}-c_{2}|x|^{2}$, where $c_{1}, c_{2} \geq 0$ are constants. Then $H_{2, \min }$ is essentially selfadjoint.

Next we note the asymptotic behavior of solutions to second-order linear ordinary differential equations of the form

$$
y^{\prime \prime}(x)=(\Phi(x)+\Psi(x)) y(x)
$$

in which the term $\Psi(x) y(x)$ can be treated as a perturbation of the leading part $\Phi(x) y(x)$.
Theorem 2.2 (Olver [13, Theorem 6.2.2 (p.196)]). In a given finite or infinite interval (a_{1}, a_{2}), let $a \in\left(a_{1}, a_{2}\right), \Psi(x)$ a positive, real, twice continuously differentiable function, $\Psi(x)$ a continuous real or complex function, and

$$
F(x)=\int\left\{\frac{1}{\Phi(x)^{1 / 4}} \frac{d^{2}}{d x^{2}}\left(\frac{1}{\Phi(x)^{1 / 4}}\right)-\frac{\Psi(x)}{\Phi(x)^{1 / 2}}\right\} d x
$$

Then in this interval the differential equation

$$
\frac{d^{2} w}{d x^{2}}=\{\Phi(x)+\Psi(x)\} w
$$

has twice continuously differential solutions

$$
\begin{aligned}
& w_{1}(x)=\frac{1}{\Phi(x)^{1 / 4}} \exp \left\{i \int \Phi(x)^{1 / 2} d x\right\}\left(1+\varepsilon_{1}(x)\right), \\
& w_{2}(x)=\frac{1}{\Phi(x)^{1 / 4}} \exp \left\{-i \int \Phi(x)^{1 / 2} d x\right\}\left(1+\varepsilon_{2}(x)\right)
\end{aligned}
$$

such that

$$
\left|\varepsilon_{j}(x)\right|, \frac{1}{\Phi(x)^{1 / 2}}\left|\varepsilon_{j}(x)\right| \leq \exp \left\{\frac{1}{2} \mathcal{V}_{a_{j}, x}(F)\right\}-1 \quad(j=1,2)
$$

provided that $\mathcal{V}_{a_{j}, x}(F)<\infty$ (where $\mathcal{V}_{a_{j}, x}(F)=\int\left|F^{\prime}(t)\right| d t$ is the total variation of F). If $\Psi(x)$ is real, then the solutions $w_{1}(x)$ and $w_{2}(x)$ are complex conjugates.

For the above theorem, see also Beals-Wong [1, 10.12, p.355].

3. Fundamental systems of $\lambda u-u^{\prime \prime}-x^{2} u+V u=0$

3.1. The case $\lambda \in \mathbb{R}$

We consider the behavior of solutions to

$$
\begin{equation*}
\lambda u(x)-u^{\prime \prime}(x)-x^{2} u(x)+V(x) u(x)=0, \quad x \in \mathbb{R}, \tag{4}
\end{equation*}
$$

where $\lambda \in \mathbb{R}$.
Proposition 3.1. There exist solutions $u_{\lambda, 1}, u_{\lambda, 2}$ of (4) such that $u_{\lambda, 1}$ and $u_{\lambda, 2}$ are linearly independent and satisfy

$$
\begin{aligned}
& \left|u_{\lambda, 1}(x)\right| \leq C_{\lambda}(1+|x|)^{-\frac{1}{2}}, \quad\left|u_{\lambda, 2}(x)\right| \leq C_{\lambda}(1+|x|)^{-\frac{1}{2}} \quad \forall x \in \mathbb{R}, \\
& \left|u_{\lambda, 1}(x)\right| \geq \frac{1}{2}(1+|x|)^{-\frac{1}{2}}, \quad\left|u_{\lambda, 2}(x)\right| \geq \frac{1}{2}(1+|x|)^{-\frac{1}{2}} \quad \forall x \geq R_{\lambda}
\end{aligned}
$$

for some constants $C_{\lambda}, R_{\lambda}>0$ independent of x. In particular, $u_{\lambda, 1}, u_{\lambda, 2} \in L^{p}(\mathbb{R})$ if and only if $2<p<$ ∞.

Proof. First we consider (4) for $x>0$. Using the Liouville transform

$$
v(y):=(2 y)^{\frac{1}{4}} u\left((2 y)^{\frac{1}{2}}\right), \quad \text { or equivalently, } \quad u(x)=x^{-\frac{1}{2}} v\left(\frac{x^{2}}{2}\right),
$$

we have

$$
\left(\lambda-x^{2}\right) x^{-\frac{1}{2}} v\left(\frac{x^{2}}{2}\right)=u^{\prime \prime}(x)-V(x) u(x)=x^{\frac{3}{2}} v^{\prime \prime}\left(\frac{x^{2}}{2}\right)+\frac{3}{4} x^{-\frac{5}{2}} v\left(\frac{x^{2}}{2}\right)-x^{-\frac{1}{2}} V(x) v\left(\frac{x^{2}}{2}\right) .
$$

Therefore noting that $y=x^{2} / 2$, we see that

$$
\begin{equation*}
v^{\prime \prime}(y)=\left[-\left(1-\frac{\lambda}{4 y}\right)^{2}+\frac{\lambda^{2}-3}{16 y^{2}}+\frac{V\left((2 y)^{\frac{1}{2}}\right)}{2 y}\right] v(y)=(\Phi(y)+\Psi(y)) v(y) . \tag{5}
\end{equation*}
$$

Here we have put for $y>0$,

$$
\Phi(y):=-\left(1-\frac{\lambda}{4 y}\right)^{2}, \quad \Psi(y):=\frac{\lambda^{2}-3}{16 y^{2}}+\frac{V\left((2 y)^{\frac{1}{2}}\right)}{2 y}
$$

Let

$$
\Pi(y):=|\Phi(y)|^{-\frac{1}{4}}\left(-\frac{d^{2}}{d x^{2}}+\Psi(y)\right)|\Phi(y)|^{-\frac{1}{4}}, \quad y \geq \lambda_{+}:=\max \{\lambda, 0\}
$$

Then we see that for every $y \geq \lambda_{+}$,

$$
|\Pi(y)| \leq\left(1-\frac{\lambda}{4 y}\right)^{-3} \frac{3 \lambda^{2}}{64 y^{2}}+\left(1-\frac{\lambda}{4 y}\right)^{-2} \frac{\lambda}{4 y^{3}}+\left(1-\frac{\lambda}{4 y}\right)^{-1} \frac{\left|\lambda^{2}-3\right|}{16 y^{2}}+\frac{\left|V\left((2 y)^{\frac{1}{2}}\right)\right|}{2 y} \leq \frac{M_{\lambda}}{y^{2}}+\frac{\left|V\left((2 y)^{\frac{1}{2}}\right)\right|}{2 y}
$$

where M_{λ} is a positive constant depending only on λ. Therefore

$$
\int_{\lambda_{+}}^{\infty}|\Pi(y)| d y \leq M_{\lambda} \int_{\lambda_{+}}^{\infty} \frac{1}{y^{2}} d y+\int_{\sqrt{2 \lambda_{+}}}^{\infty} \frac{|V(x)|}{x} d x<\infty .
$$

Thus $\Pi \in L^{1}\left(\left(\lambda_{+}, \infty\right)\right)$. By Theorem 2.2, we obtain that there exists a fundamental system ($v_{\lambda, 1}, v_{\lambda, 2}$) of (5) such that

$$
v_{\lambda, 1}(y) y^{i \frac{\lambda}{4}} e^{-i y} \rightarrow 1, \quad v_{\lambda, 2}(y) y^{-i \frac{\lambda}{4}} e^{i y} \rightarrow 1 \quad \text { as } y \rightarrow \infty
$$

(see also [11]). Taking $u_{\lambda, j}(x)=x^{-\frac{1}{2}} v_{\lambda, j}\left(x^{2} / 2\right)$ for $j=1,2$, we obtain that $\left(u_{\lambda, 1}, u_{\lambda, 2}\right)$ is a fundamental system of (4) on (λ_{+}, ∞) and

$$
u_{\lambda, 1}(y) x^{\frac{1}{2}+i \frac{\lambda}{2}} e^{-i \frac{i^{2}}{2}} \rightarrow 2^{-i \frac{\lambda}{4}}, \quad u_{\lambda, 2}(x) x^{\frac{1}{2}-i \frac{\lambda}{2}} e^{i \frac{i^{2}}{2}} \rightarrow 2^{i \frac{\lambda}{4}}
$$

as $x \rightarrow \infty$. The above fact implies that there exists a constant $R_{\lambda}>\lambda_{+}$such that

$$
\frac{1}{2} x^{-\frac{1}{2}} \leq\left|u_{\lambda, j}(x)\right| \leq \frac{3}{2} x^{-\frac{1}{2}}, \quad x \geq R_{\lambda}, \quad j=1,2 .
$$

We can extend $\left(u_{\lambda, 1}, u_{\lambda, 2}\right)$ as a fundamental system on \mathbb{R}. By applying the same argument as above to (4) for $x<0$, we can construct a different fundamental system ($\tilde{u}_{\lambda, 1}, \tilde{u}_{\lambda, 2}$) on \mathbb{R} satisfying

$$
\frac{1}{2}|x|^{-\frac{1}{2}} \leq\left|\tilde{u}_{\lambda, j}(x)\right| \leq \frac{3}{2}|x|^{-\frac{1}{2}}, \quad x \leq-\tilde{R}_{\lambda}, \quad j=1,2
$$

By definition of fundamental system, $u_{\lambda, j}$ can be rewritten as

$$
u_{\lambda, 1}(x)=c_{11} \tilde{u}_{\lambda, 1}(x)+c_{12} \tilde{u}_{\lambda, 2}(x), \quad u_{\lambda, 2}(x)=c_{21} \tilde{u}_{\lambda, 1}(x)+c_{22} \tilde{u}_{\lambda, 2}(x) .
$$

Hence we have the upper and lower estimates of $u_{\lambda, j}(j=1,2)$, respectively.

3.2. The case $\lambda \in \mathbb{C} \backslash \mathbb{R}$

We consider the behavior of solutions to

$$
\begin{equation*}
\lambda u(x)-u^{\prime \prime}(x)-x^{2} u(x)+V(x) u(x)=0 \tag{6}
\end{equation*}
$$

where $\lambda \in \mathbb{C} \backslash \mathbb{R}$ with $\operatorname{Im} \lambda>0$. The case $\operatorname{Im} \lambda<0$ can be reduced to the problem $\operatorname{Im} \lambda>0$ via complex conjugation.

3.2.1. Properties of solutions to an auxiliary problem

We start with the following function φ_{λ} :

$$
\begin{equation*}
\varphi_{\lambda}(x):=x^{-\frac{1+\lambda i}{2}} e^{i \frac{x^{2}}{2}}, \quad x>0 . \tag{7}
\end{equation*}
$$

Then by a direct computation we have
Lemma 3.2. φ_{λ} satisfies

$$
\begin{equation*}
\lambda \varphi_{\lambda}-\varphi_{\lambda}^{\prime \prime}-x^{2} \varphi_{\lambda}+g_{\lambda} \varphi_{\lambda}=0, \quad x \in(0, \infty), \tag{8}
\end{equation*}
$$

where $g_{\lambda}(x):=\frac{(1+\lambda i)(3+\lambda i)}{4 x^{2}}, x>0$.
Remark 3.1. If $\lambda=i$ or $\lambda=3 i$, then φ_{λ} is nothing but a solution of the original equation (6) with $V=0$.

Next we construct another solution of (8) which is linearly independent of φ_{λ}. Before construction, we prepare the following lemma.

Lemma 3.3. Let λ satisfy $\operatorname{Im} \lambda>0$ and let φ_{λ} be given in (7). Then for every $a>0$, there exists $F_{a}^{\lambda} \in \mathbb{C}$ such that

$$
\int_{a}^{x} \varphi_{\lambda}(t)^{-2} d t \rightarrow F_{a}^{\lambda} \quad \text { as } x \rightarrow \infty
$$

and then $x \mapsto \int_{a}^{x} \varphi_{\lambda}(t)^{-2} d t-F_{a}^{\lambda}$ is independent of a. Moreover, for every $x>0$,

$$
\left|\int_{a}^{x} \varphi_{\lambda}(t)^{-2} d t-F_{a}^{\lambda}-\frac{i}{2} x^{\lambda i} e^{-i x^{2}}\right| \leq C_{\lambda} x^{-\operatorname{Im} \lambda-2}
$$

where $C_{\lambda}:=\frac{|\lambda|}{4}\left(1+\sqrt{1+\left(\frac{\operatorname{Re} \lambda}{\operatorname{Im} \lambda+2}\right)^{2}}\right)$.
Remark 3.2. If $a=0$ and $\lambda=i$, then F_{0}^{i} gives the Fresnel integral $\lim _{x \rightarrow \infty} \int_{0}^{x} e^{-i i^{2}} d t$. Hence $F_{0}^{i}=$ $\sqrt{\pi / 8}(1-i)$.

Proof. By integration by part, we have

$$
\int_{a}^{x} t^{1+\lambda i} e^{-i t^{2}} d t=\left(\frac{i}{2} x^{\lambda i} e^{-i x^{2}}-\frac{i}{2} a^{\lambda i} e^{-i a^{2}}\right)+\frac{\lambda i}{4}\left(x^{\lambda i-2} e^{-i x^{2}}-a^{\lambda i-2} e^{-i a^{2}}\right)-\frac{\lambda i(\lambda i-2)}{4} \int_{a}^{x} t^{\lambda i-3} e^{-i t^{2}} d t
$$

Noting that $t^{\lambda i-3} e^{-i t^{2}}$ is integrable in (a, ∞), we have

$$
\int_{a}^{x} t^{1+\lambda i} e^{-i t^{2}} d t \rightarrow-\frac{i}{2} a^{\lambda i} e^{-i a^{2}}-\frac{\lambda i}{4} a^{\lambda i-2} e^{-i a^{2}}-\frac{\lambda i(\lambda i-2)}{4} \int_{a}^{\infty} t^{\lambda i-3} e^{-i t^{2}} d t=: F_{a}^{\lambda}
$$

as $x \rightarrow \infty$. And therefore $\int_{a}^{x} t^{1+\lambda i} e^{-i t^{2}} d t-F_{a}^{\lambda}$ is independent of a and

$$
\left|\int_{a}^{x} t^{1+\lambda i} e^{-i t^{2}} d t-F_{a}^{\lambda}-\frac{i}{2} x^{\lambda i} e^{-i x^{2}}\right|=\left|\frac{\lambda}{4} x^{-\lambda-2} e^{-i x^{2}}+\frac{\lambda i(\lambda i-2)}{4} \int_{x}^{\infty} t^{\lambda i-3} e^{-i t^{2}} d t\right| \leq C_{\lambda} x^{-\operatorname{Im} \lambda-2}
$$

This is nothing but the desired inequality.
Lemma 3.4. Let φ_{λ} be as in (7) and define ψ_{λ} as

$$
\begin{equation*}
\psi_{\lambda}(x):=\varphi_{\lambda}(x) \int_{a}^{x} \frac{1}{\varphi_{\lambda}(t)^{2}} d t-F_{a}^{\lambda} \varphi_{\lambda}(x), \quad x>0 \tag{9}
\end{equation*}
$$

Then ψ_{λ} is independent of a and $\left(\varphi_{\lambda}, \psi_{\lambda}\right)$ is a fundamental system of (8). Moreover, there exists $a_{0}>0$ such that

$$
\frac{1}{3} x^{-\frac{\operatorname{Im} \lambda+1}{2}} \leq\left|\psi_{\lambda}(x)\right| \leq x^{-\frac{\operatorname{Im} \pi+1}{2}}, \quad x \in\left[a_{0}, \infty\right) .
$$

Proof. From Lemma 3.3 we have

$$
\left.x^{\frac{\ln \lambda+1}{2}}\left|\psi_{\lambda}(x)-\frac{i}{2} x^{-\frac{1-\lambda i}{2}} e^{-i \frac{x^{2}}{2}}\right|=x^{\frac{\ln \lambda+1}{2}}\left|\varphi_{\lambda}(x)\right| \int_{a}^{x} \frac{1}{\varphi_{\lambda}(t)^{2}} d t-F_{a}^{\lambda}-\frac{i}{2} x^{\lambda i} e^{-i x^{2}} \right\rvert\, \leq C_{\lambda} x^{-2} .
$$

Putting $a_{0}=\left(6 C_{\lambda}\right)^{\frac{1}{2}}$, we deduce the desired assertion.

3.2.2. Fundamental system of the original problem

Next we consider

$$
\begin{equation*}
\lambda w-w^{\prime \prime}-x^{2} w+g_{\lambda} w=\tilde{g}_{\lambda} h, \quad x>0 \tag{10}
\end{equation*}
$$

with a given function h, where g_{λ} is given as in Lemma 3.2 and $\tilde{g}_{\lambda}:=g_{\lambda}-V$. To construct solutions of (6), we will define two types of solution maps $h \mapsto w$ and consider their fixed points.

First we construct a solution of (6) which behaves like ψ_{λ} at infinity.
Definition 3.5. For $b>0$, define

$$
U h(x):=\psi_{\lambda}(x)-\psi_{\lambda}(x) \int_{b}^{x} \varphi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) d s-\varphi_{\lambda}(x) \int_{x}^{\infty} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) d s, \quad x \in[b, \infty)
$$

for h belonging to a Banach space

$$
X_{\lambda}(b):=\left\{h \in C([b, \infty)) ; \sup _{x \in[b, \infty)}\left(x^{\frac{\operatorname{lm}(\mathrm{m}+1}{2}}|h(x)|\right)<\infty\right\}, \quad\|h\|_{X_{\lambda}(b)}:=\sup _{x \in[b, \infty)}\left(x^{\frac{\mathrm{Im} \alpha+1}{2}}|h(x)|\right) .
$$

Remark 3.3. For arbitrary fixed $b>0$, all solutions of (10) can be described as follows:

$$
w_{c_{1}, c_{2}}(x)=c_{1} \varphi_{\lambda}(x)+c_{2} \psi_{\lambda}(x)+\int_{b}^{x}\left(\varphi_{\lambda}(x) \psi_{\lambda}(s)-\varphi_{\lambda}(s) \psi_{\lambda}(x)\right) \tilde{g}_{\lambda}(s) h(s) d s
$$

where $c_{1}, c_{2} \in \mathbb{C}$. Suppose that $h \in C_{0}^{\infty}((b, \infty))$ with supp $h \subset\left[b_{1}, b_{2}\right]$. Then $w_{c_{1}, c_{2}} \in C([b, \infty))$. In particular, for $x \geq b_{2}$,

$$
w_{c_{1}, c_{2}}(x)=\left(c_{1}+\int_{b_{1}}^{b_{2}} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) d s\right) \varphi_{\lambda}(x)+\left(c_{2}-\int_{b_{1}}^{b_{2}} \varphi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) d s\right) \psi_{\lambda}(x)
$$

Therefore $w_{c_{1}, c_{2}}$ behaves like ψ_{λ} (that is, $w_{c_{1}, c_{2}} \in X_{\lambda}(b)$) only when

$$
c_{1}=-\int_{b_{1}}^{b_{2}} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) d s=-\int_{b}^{\infty} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s) h(s) d s
$$

In Definition 3.5 we deal with such a solution with $c_{2}=1$.
Well-definedness of U in Definition 3.5 and its contractivity are proved in next lemma.
Lemma 3.6. The following assertions hold:
(i) for every $b>0$, the map $U: X_{\lambda}(b) \rightarrow X_{\lambda}(b)$ is well-defined;
(ii) there exists $b_{\lambda}>0$ such that U is contractive in $X_{\lambda}\left(b_{\lambda}\right)$ with

$$
\left\|U h_{1}-U h_{2}\right\|_{X_{\lambda}(b)} \leq \frac{1}{5}\left\|h_{1}-h_{2}\right\|_{X_{\lambda}(b)}, \quad h_{1}, h_{2} \in X_{\lambda}\left(b_{\lambda}\right)
$$

and then U has a unique fixed point $w_{1} \in X_{\lambda}\left(b_{\lambda}\right)$;
(iii) w_{1} can be extended to a solution of (6) in \mathbb{R} satisfying

$$
\frac{1}{12} x^{-\frac{\operatorname{lm}+1}{2}} \leq\left|w_{1}(x)\right| \leq 2 x^{-\frac{\ln \downarrow+1}{2}}, \quad x \in\left[b_{\lambda}, \infty\right) .
$$

Proof. (i) By Lemma 3.4 we have $\psi_{\lambda} \in X_{\lambda}(b)$. Therefore to prove well-definedness of U, it suffices to show that the second term in the definition of U belongs to $X_{\lambda}(b)$.

Let $h \in X_{\lambda}(b)$. Then for $x \in[b, \infty)$,

$$
x^{\frac{\operatorname{lm}(2+1}{2}}\left|\varphi_{\lambda}(x) \int_{x}^{\infty} \psi_{\lambda}(s) \tilde{g}(s) h(s) d s\right| \leq x^{\operatorname{Im} \lambda}\|h\|_{X} \int_{x}^{\infty} s^{-\operatorname{Im} \lambda-1}\left|\tilde{g}_{\lambda}(s)\right| d s \leq\|h\|_{X}\left\|s^{-1} \tilde{g}_{\lambda}\right\|_{L^{\prime}(b, \infty)}
$$

and

$$
x^{\frac{\operatorname{Im} \lambda+1}{2}}\left|\psi_{\lambda}(x) \int_{b}^{x} \varphi_{\lambda}(s) \tilde{g}(s) h(s) d s\right| \leq\|h\|_{X} \int_{b}^{x} s^{-1}\left|\tilde{g}_{\lambda}(s)\right| d s \leq\|h\|_{X}\left\|s^{-1} \tilde{g}_{\lambda}\right\|_{L^{1}(b, \infty)}
$$

Hence we have $U h \in C([b, \infty))$ and therefore $U h \in X_{\lambda}(b)$, that is, $U: X_{\lambda}(b) \rightarrow X_{\lambda}(b)$ is well-defined.
(ii) Let $h_{1}, h_{2} \in X_{\lambda}(b)$. Then we have

$$
U h_{1}(x)-U h_{2}(x)=-\psi_{\lambda}(x) \int_{b}^{x} \varphi_{\lambda}(s) \tilde{g}_{\lambda}(s)\left(h_{1}(s)-h_{2}(s)\right) d s-\varphi_{\lambda}(x) \int_{x}^{\infty} \psi_{\lambda}(s) \tilde{g}_{\lambda}(s)\left(h_{1}(s)-h_{2}(s)\right) d s
$$

Proceeding the same computation as above, we deduce

$$
\left\|U h_{1}-U h_{2}\right\|_{X_{\lambda}(b)} \leq 2\left\|s^{-1} \tilde{g}_{\lambda}\right\|_{L^{1}(b, \infty)}\left\|h_{1}-h_{2}\right\|_{X_{\lambda}(b)} .
$$

Choosing b large enough, we obtain $\left\|U h_{1}-U h_{2}\right\|_{X_{\lambda}(b)} \leq 5^{-1}\left\|h_{1}-h_{2}\right\|_{X_{\lambda}(b)}$, that is U is contractive in $X_{\lambda}(b)$. By contraction mapping principle, we obtain that U has a unique fixed point $w_{1} \in X_{\lambda}(b)$.
(iii) Since w_{1} satisfies (10) with $h=w_{1}, w_{1}$ is a solution of the original equation (6) in $[b, \infty)$. As in the last part of the proof of Proposition 3.1, we can extend w_{1} as a solution of (6) in \mathbb{R}. Since $U w_{1}=w_{1}$ and $U 0=\psi_{\lambda}$, it follows from the contractivity of U that

$$
\left\|w_{1}-\psi_{\lambda}\right\|_{X}=\left\|U w_{1}-U 0\right\|_{X} \leq \frac{1}{5}\left\|w_{1}\right\|_{X} \leq \frac{1}{5}\left\|w_{1}-\psi_{\lambda}\right\|_{X}+\frac{1}{5}\left\|\psi_{\lambda}\right\|_{X} .
$$

Consequently, we have $\left\|w_{1}-\psi_{\lambda}\right\|_{X} \leq 4^{-1}\left\|\psi_{\lambda}\right\|_{X} \leq 4^{-1}$ and then for $x \geq b$,

$$
\left|w_{1}(x)\right| \geq\left|\psi_{\lambda}(x)\right|-\left|w_{1}(x)-\psi_{\lambda}(x)\right| \geq\left(\frac{1}{3}-\left\|w_{1}-\psi_{\lambda}\right\|_{X}\right) x^{-\frac{\mathrm{Im} /+1}{2}} \geq \frac{1}{12} x^{-\frac{\mathrm{Im} /+1}{2}}
$$

Next we construct another solution of (6) which behaves like φ_{λ} at infinity.
Definition 3.7. Let $b>0$ be large enough. Define

$$
\widetilde{U} h(x):=\varphi_{\lambda}(x)+\int_{b}^{x}\left(\varphi_{\lambda}(x) \psi_{\lambda}(s)-\varphi_{\lambda}(s) \psi_{\lambda}(x)\right) \tilde{g}_{\lambda}(s) h(s) d s
$$

for h belonging to a Banach space

$$
Y_{\lambda}(b):=\left\{h \in C([b, \infty)) ; \sup _{x \in[b, \infty)}\left(x^{-\frac{\operatorname{lm} \lambda-1}{2}}|h(x)|\right)<\infty\right\},\|h\|_{Y_{\lambda}(b)}:=\sup _{x \in[b, \infty)}\left(x^{-\frac{\operatorname{lm} \lambda-1}{2}}|h(x)|\right) .
$$

Lemma 3.8. The following assertions hold:
(i) for every $b>0$, the map $\widetilde{U}: Y_{\lambda}(b) \rightarrow Y_{\lambda}(b)$ is well-defined;
(ii) there exists $b_{\lambda}>0$ such that \widetilde{U} is contractive in $Y_{\lambda}\left(b_{\lambda}\right)$ with

$$
\left\|\widetilde{U} h_{1}-\widetilde{U} h_{2}\right\|_{Y_{\lambda}(b)} \leq \frac{1}{5}\left\|h_{1}-h_{2}\right\|_{Y_{\lambda}(b)}, \quad h_{1}, h_{2} \in Y_{\lambda}\left(b_{\lambda}\right)
$$

and then \widetilde{U} has a unique fixed point $\tilde{w}_{1} \in Y_{\lambda}\left(b_{\lambda}\right)$;
(iii) \tilde{w}_{1} can be extended to a solution of (6) in \mathbb{R} satisfying

$$
\frac{1}{2} x^{\frac{\operatorname{lm} \lambda-1}{2}} \leq\left|\tilde{w}_{1}(x)\right| \leq 2 x^{\frac{\operatorname{lm} \lambda-1}{2}}, \quad x \in\left[b_{\lambda}, \infty\right) .
$$

Proof. The proof is similar to the one of Lemma 3.6.

Considering the equation (6) for $x<0$, we also obtain the following lemma.
Lemma 3.9. For every $\lambda \in \mathbb{C}$ with $\operatorname{Im} \lambda>0$, there exist a fundamental system (w_{1}, w_{2}) of (6) and positive constants $c_{\lambda}, C_{\lambda}, R_{\lambda}$ such that

$$
\begin{array}{ll}
\left|w_{1}(x)\right| \leq C_{\lambda}(1+|x|)^{\frac{\operatorname{mm} \lambda-1}{2}}, \quad x \leq 0, & \left|w_{1}(x)\right| \leq C_{\lambda}(1+|x|)^{-\frac{\operatorname{Im} \lambda+1}{2}}, \quad x \geq 0, \\
\left|w_{2}(x)\right| \leq C_{\lambda}(1+|x|)^{-\frac{\operatorname{Im} \lambda+1}{2}}, \quad x \leq 0, & \left|w_{2}(x)\right| \leq C_{\lambda}(1+|x|)^{\frac{\operatorname{Im} \lambda-1}{2}}, \quad x \geq 0 \tag{12}
\end{array}
$$

and

$$
\begin{equation*}
\left|w_{1}(x)\right| \geq c_{\lambda}(1+|x|)^{-\frac{\operatorname{Im} \lambda+1}{2}}, \quad x \geq R_{\lambda}, \quad\left|w_{2}(x)\right| \geq c_{\lambda}(1+|x|)^{-\frac{\operatorname{m} \lambda+1}{2}}, \quad x \leq-R_{\lambda} . \tag{13}
\end{equation*}
$$

Proof. In view of Lemma 3.6, it suffices to find w_{2} satisfying the conditions above.
Let w_{*} and \tilde{w}_{*} be given as in Lemmas 3.6 and 3.8 with $V(x)$ replaced with $V(-x)$. Noting that w_{1} can be rewritten as $w_{1}(x)=c_{1} w_{*}(-x)+c_{2} \tilde{w}_{*}(-x)$, we see from Lemma 3.6 and 3.8 that (11) and the first half of (13) are satisfied. Set $w_{2}(x)=w_{*}(-x)$ for $x \in \mathbb{R}$. As in the same way, we can verify (12).

Finally, we prove the last half of (13). Since $H_{2, \min }$ is essentially selfadjoint in $L^{2}(\mathbb{R}), \lambda$ belongs to the resolvent set of H_{2}, that is, $N\left(\lambda+H_{2}\right)=\{0\}$. This implies that $w_{2} \notin L^{2}(\mathbb{R})$. Noting that $w_{2} \in L^{2}((-\infty, 0))$, we have $w_{2} \notin L^{2}((0, \infty))$. Now using the representation

$$
w_{2}(x)=c_{1} w_{1}(x)+c_{2} \tilde{w}_{1}(x), \quad x \in \mathbb{R},
$$

we deduce that $c_{2} \neq 0$. Therefore using Lemma 3.6 (iii) and Lemma 3.8 (iii), we have

$$
\left|w_{2}(x)\right| \geq\left|c_{2}\right|\left|\tilde{w}_{1}(x)\right|-\left|c_{1}\right|\left|w_{1}(x)\right| \geq \frac{\left|c_{2}\right|}{2} x^{\frac{\operatorname{Im} \lambda-1}{2}}-2\left|c_{1}\right| x^{-\frac{\operatorname{Im} \lambda+1}{2}} \geq \frac{\left|c_{2}\right|}{4} x^{\frac{\operatorname{Im} \lambda-1}{2}}
$$

for x large enough.

4. Resolvent estimates in L^{p}

The following lemma, verified by the variation of parameters, gives a possibility of representation of the Green function for resolvent operator H in L^{p}.

Lemma 4.1. Assume that $\lambda \in \rho(\widetilde{H})$ in L^{p}, where \widetilde{H} is a realization of H in L^{p}. Then for every $u \in C_{0}^{\infty}(\mathbb{R})$,

$$
u(x)=\frac{w_{1}(x)}{W_{\lambda}} \int_{-\infty}^{x} w_{2}(s) f(s) d s+\frac{w_{2}(x)}{W_{\lambda}} \int_{x}^{\infty} w_{1}(s) f(s) d s, \quad x \in \mathbb{R}
$$

where $f:=\lambda u-u^{\prime \prime}-x^{2} u+V u \in C_{0}^{\infty}(\mathbb{R})$ and $W_{\lambda} \neq 0$ is the Wronskian of $\left(w_{1}, w_{2}\right)$.
Proposition 4.2. Let $1<p<\infty$. If $\left|1-\frac{2}{p}\right|<\operatorname{Im} \lambda$, then the operator defined as

$$
R(\lambda) f(x):=\frac{w_{1}(x)}{W_{\lambda}} \int_{-\infty}^{x} w_{2}(s) f(s) d s+\frac{w_{2}(x)}{W_{\lambda}} \int_{x}^{\infty} w_{1}(s) f(s) d s, \quad f \in C_{0}^{\infty}(\mathbb{R})
$$

can be extended to a bounded operator on L^{p}. More precisely, there exists $M_{\lambda}>0$ such that

$$
\begin{equation*}
\|R(\lambda) f\|_{L^{p}} \leq M_{\lambda}\left[|\operatorname{Im} \lambda|^{2}-\left(1-\frac{2}{p}\right)^{2}\right]^{-1}\|f\|_{L^{p}}, \quad f \in L^{p}(\mathbb{R}) \tag{14}
\end{equation*}
$$

In particular, $H_{p, \min }$ is closable and its closure H_{p} satisfies

$$
\left\{\lambda \in \mathbb{C} ;|\operatorname{Im} \lambda|>\left|1-\frac{2}{p}\right|\right\} \subset \rho\left(H_{p}\right)
$$

Proof. Let $f \in C_{0}^{\infty}(\mathbb{R})$. Set

$$
u_{1}(x):=w_{1}(x) \int_{-\infty}^{x} w_{2}(s) f(s) d s, \quad u_{2}(x):=w_{1}(x) \int_{x}^{\infty} w_{1}(s) f(s) d s
$$

We divide the proof of $u_{1} \in L^{p}(\mathbb{R})$ into two cases $x \geq 0$ and $x<0$; since the proof of $u_{2} \in L^{p}(\mathbb{R})$ is similar, this part is omitted.

The case u_{1} for $x \geq 0$, it follows from Lemma 3.9 and Hölder inequality that

$$
\begin{align*}
\left|u_{1}(x)\right| \leq & C_{\lambda}^{2}(1+|x|)^{-\frac{\operatorname{Im} \lambda+1}{2}}\left[\int_{-\infty}^{0}(1+|s|)^{-\frac{\operatorname{Im} \lambda+1}{2}}|f(s)| d s+\int_{0}^{x}(1+|s|)^{\frac{\operatorname{Im} \lambda-1}{2}}|f(s)| d s\right] \\
\leq & \left.C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-1\right)^{-\frac{1}{p^{\prime}}}\|f\|_{L^{p}(\mathbb{R})}\right)(1+|x|)^{-\frac{\operatorname{Im} \lambda+1}{2}} \\
& +C_{\lambda}^{2}(1+|x|)^{-\frac{\operatorname{Im} \Lambda+1}{2}}\left(\int_{0}^{x}(1+|s|)^{\frac{\operatorname{In} \lambda-1}{2} p^{\prime}-\alpha p^{\prime}} d s\right)^{\frac{1}{p^{\prime}}}\left(\int_{0}^{x}(1+|s|)^{\alpha p}|f(s)|^{p} d s\right)^{\frac{1}{p}} \\
\leq & \left.C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-1\right)^{-\frac{1}{p^{\prime}}}\|f\|_{L^{p}(\mathbb{R})}\right)(1+|x|)^{-\frac{\operatorname{Im} \lambda+1}{2}} \\
& +C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda-1}{2} p^{\prime}-\alpha p^{\prime}+1\right)^{-\frac{1}{p^{\prime}}}(1+|x|)^{-\frac{1}{p}-\alpha}\left(\int_{0}^{x}(1+|s|)^{\alpha p}|f(s)|^{p} d s\right)^{\frac{1}{p}} \tag{15}
\end{align*}
$$

with $0<\alpha<\frac{\operatorname{Im} \lambda+1}{2}+1 / p^{\prime}$. By the triangle inequality we have

$$
\left\|u_{1}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)} \leq C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-1\right)^{-\frac{1}{p^{\prime}}}\left(\frac{\operatorname{Im} \lambda+1}{2} p-1\right)^{-\frac{1}{p}}\|f\|_{L^{p}\left(\mathbb{R}_{-}\right)}+I_{1}(\alpha)
$$

and

$$
\begin{aligned}
\left(I_{1}(\alpha)\right)^{p} & =C_{\lambda}^{2 p}\left(\frac{\operatorname{Im} \lambda-1}{2} p^{\prime}-\alpha p^{\prime}+1\right)^{-\frac{p}{p^{\prime}}} \int_{0}^{\infty}(1+|x|)^{-1-\alpha p}\left(\int_{0}^{x}(1+|s|)^{\alpha p}|f(s)|^{p} d s\right) d x \\
& =C_{\lambda}^{2 p}\left(\frac{\operatorname{Im} \lambda-1}{2} p^{\prime}-\alpha p^{\prime}+1\right)^{-\frac{p}{p^{\prime}}}(\alpha p)^{-1} \int_{0}^{\infty}|f(s)|^{p} d s .
\end{aligned}
$$

Choosing $\alpha=\frac{1}{p p^{\prime}}\left(\frac{\operatorname{Im} \lambda-1}{2} p^{\prime}+1\right)$, we obtain

$$
\left\|u_{1}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)} \leq C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-1\right)^{-\frac{1}{p^{\prime}}}\left(\frac{\operatorname{Im} \lambda+1}{2} p-1\right)^{-\frac{1}{p}}\|f\|_{L^{p}\left(\mathbb{R}_{-}\right)}+C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda-1}{2}+\frac{1}{p^{\prime}}\right)^{-1}\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}
$$

The case u_{1} for $x<0$, by the same way as the case $x>0$, we have

$$
\begin{equation*}
\left|u_{1}(x)\right|^{p} \leq C_{\lambda}^{2 p}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-\beta p^{\prime}-1\right)^{-\frac{p}{p}}(1+|x|)^{-1+\beta p} \int_{-\infty}^{x}(1+|s|)^{-\beta p}|f(s)|^{p} d s, \tag{16}
\end{equation*}
$$

where $0<\beta<\frac{\operatorname{Im} \lambda+1}{2}-\frac{1}{p^{\prime}}$. Taking $\beta=\frac{1}{p p^{\prime}}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-1\right)$, we have

$$
\left\|u_{1}\right\|_{L^{p}(\mathbb{R})} \leq C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2}-\frac{1}{p^{\prime}}\right)^{-1}\|f\|_{L^{p}(\mathbb{R})} .
$$

Proceeding the same argument for u_{2} and combining the estimates for u_{1} and u_{2}, we obtain (14).
Corollary 4.3. Let $\mathcal{R}(\lambda)$ be as in Proposition 4.2. Then for every $f \in L^{p}(\mathbb{R}), \mathcal{R}(\lambda) f \in C(\mathbb{R})$ and

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left((1+|x|)^{\frac{1}{p}}|\mathcal{R}(\lambda) f(x)|\right) \leq \tilde{C}_{\lambda}\|f\|_{L^{p}} . \tag{17}
\end{equation*}
$$

Proof. Let $f \in C_{0}^{\infty}(\mathbb{R})$ and set u_{1} and u_{2} as in the proof of Proposition 4.2. Since the proof for u_{1} and u_{2} are similar, we only show the estimate of u_{1}. From (15), we have for $x \geq 0$,

$$
\begin{aligned}
(1+|x|)^{\frac{1}{p}}\left|u_{1}(x)\right| \leq & C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-1\right)^{-\frac{1}{p^{\prime}}}\|f\|_{L^{p}(\mathbb{R})}(1+|x|)^{-\frac{\operatorname{mm} \lambda}{2}+\frac{1}{p}-\frac{1}{2}} \\
& +C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda-1}{2} p^{\prime}-\alpha p^{\prime}+1\right)^{-\frac{1}{p^{\prime}}}(1+|x|)^{-\alpha}\left(\int_{0}^{x}(1+|s|)^{\alpha p}|f(s)|^{p} d s\right)^{\frac{1}{p}} \\
\leq & C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-1\right)^{-\frac{1}{p^{\prime}}}\|f\|_{L^{p}\left(\mathbb{R}_{-}\right)}+C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda-1}{2} p^{\prime}-\alpha p^{\prime}+1\right)^{-\frac{1}{p^{\prime}}}\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)},
\end{aligned}
$$

where $0<\alpha<\frac{\operatorname{Im} \lambda+1}{2}+\frac{1}{p^{\prime}}$. This implies (17) for $x \geq 0$. If $x \leq 0$, then from (16) we can obtain

$$
(1+\mid x)^{\frac{1}{p}}\left|u_{1}(x)\right| \leq C_{\lambda}^{2}\left(\frac{\operatorname{Im} \lambda+1}{2} p^{\prime}-\beta p^{\prime}-1\right)^{-\frac{1}{p^{\prime}}}\|f\|_{L^{p}(\mathbb{R}-)}
$$

where $0<\beta<\frac{\operatorname{Im} \lambda+1}{2}-\frac{1}{p^{\prime}}$. This yields (17) for $x \leq 0$. The proof is completed.
By interpolation inequality, we deduce the following assertion.
Proposition 4.4. Let $1<p<\infty$ and $p \leq q \leq \infty$. Then

$$
D\left(H_{p}\right) \subset\left\{w \in C(\mathbb{R}) ;\langle x\rangle^{\frac{1}{p}-\frac{1}{q}} w \in L^{q}\right\} .
$$

More precisely, there exists a constant $C_{p, q}>0$ such that

$$
\left\|\langle x\rangle^{\frac{1}{p}-\frac{1}{q}} u\right\|_{L^{q}} \leq C_{p, q}\left(\left\|H_{p} u\right\|_{L^{p}}+\|u\|_{L^{p}}\right), \quad u \in D\left(H_{p}\right) .
$$

Proof. The assertion follows from Proposition 4.2 and Corollary 4.3.
Proposition 4.5. (i) If $2<p<\infty$ and $0<|\operatorname{Im} \lambda|<1-\frac{2}{p}$, then $N\left(\lambda+H_{p}\right) \neq\{0\}$, and then

$$
\left\{\lambda \in \mathbb{C} ;|\operatorname{Im} \lambda| \leq 1-\frac{2}{p}\right\} \subset \sigma\left(H_{p}\right) ;
$$

(ii) If $1<p<2$ and $0<|\operatorname{Im} \lambda|<\frac{2}{p}-1$, then $\overline{N\left(\lambda+H_{p}\right)} \subsetneq L^{p}$, and then

$$
\left\{\lambda \in \mathbb{C} ;|\operatorname{Im} \lambda| \leq \frac{2}{p}-1\right\} \subset \sigma\left(H_{p}\right)
$$

Proof. (i) $\left(2<p \leq \infty, \operatorname{Im} \lambda<1-\frac{2}{p}\right)$ Noting that

$$
\frac{\operatorname{Im} \lambda+1}{2}>\frac{1}{p}, \quad-\frac{\operatorname{Im} \lambda-1}{2}>\frac{1}{p}
$$

we have by (11),

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|w_{1}(x)\right|^{p} d x & \leq C_{\lambda}\left(\int_{-\infty}^{0}(1+|s|)^{\frac{\operatorname{Im} \lambda-1}{2} p} d s+\int_{0}^{\infty}(1+|s|)^{-\frac{\operatorname{Im} \lambda+1}{2} p} d s\right) \\
& \leq C_{\lambda}\left[\left(\frac{1-\operatorname{Im} \lambda}{2} p-1\right)^{-1}+\left(\frac{\operatorname{Im} \lambda+1}{2} p-1\right)^{-1}\right]<\infty .
\end{aligned}
$$

This means that $w_{1}, w_{2} \in N\left(\lambda+H_{p}\right)$.
(ii) $\left(1<p<2, \operatorname{Im} \lambda<\frac{2}{p}-1\right)$ Note that H_{p} is the adjoint operator of $H_{p^{\prime}}$. Since $w_{1} \in D\left(H_{p^{\prime}}\right)$ for every $u \in C_{0}^{\infty}(\mathbb{R})$,

$$
\int_{-\infty}^{\infty}\left(\lambda u+H_{p} u\right) w_{1} d x=\int_{-\infty}^{\infty} u\left(\lambda w_{1}+H_{p^{\prime}} w_{1}\right) d x=0
$$

the closure of $R\left(\lambda+H_{p}\right)$ does not coincide with L^{p}, that is, $\overline{R\left(\lambda+H_{p}\right)} \subsetneq L^{p}$.
Since $\sigma\left(H_{p}\right)$ is closed in \mathbb{C} and we can argue the same assertion for $\operatorname{Im} \lambda<0$ via complex conjugation, we obtain the assertion.

Combining the assertions above, we finally obtain Theorem 1.1.

5. Absence of C_{0}-semigroups on $L^{p}(p \neq 2, V=0)$

In Theorem 1.1, we do not prove any assertions related to generation of C_{0}-semigroups by $\pm i H_{p}$. In this subsection we prove

Theorem 5.1. Neither $i H_{p}$ nor $-i H_{p}$ generates C_{0}-semigroup on L^{p}.
Proof. We argue by a contradiction. Assume that $i H_{p}$ generates a C_{0}-semigroup $T(t)$ on L^{p}. Then it follows from Theorem 1.1 (the coincidence of resolvent operators) that we have $T(t) f=S(t) f$ for every $t>0$ and $f \in L^{2} \cap L^{p}$, where $S(t)$ is the C_{0}-group generated by the skew-adjoint operator $i H_{2}$.

Fix $f_{0} \in L^{2} \cap L^{p}$ such that $\mathcal{F} f_{0} \notin L^{p}(\mathcal{F}$ is the Fourier transform). Then by the Mehler's formula (see e.g., Cazenave [3, Remark 9.2.5]), we see that

$$
[S(t)] f(x)=\left(\frac{1}{2 \pi \sinh (2 t)}\right)^{\frac{N}{2}} e^{-i \frac{1}{\tanh (2 \pi)}|x|^{2}} \int_{-\infty}^{\infty} e^{-\frac{i}{\sin (2 \pi)} x \cdot y} e^{-i \frac{1}{2 \operatorname{anch}(2 t)}|y|^{2}} f(y) d y .
$$

In other words, using the operators

$$
M_{\tau} g(x):=e^{-i \frac{\mid x \tau^{2}}{2 \tau}} g(x), \quad D_{\tau} g(x):=\tau^{-\frac{N}{2}} g\left(\tau^{-1} x\right),
$$

we can rewrite $S(t)$ as the following form $S(t) f=M_{\tanh (2 t)} \mathcal{F} D_{\sinh (2 t)} M_{\tanh (2 t)} f$. Taking $f_{t_{0}}=$ $M_{\tanh \left(2 t_{0}\right)}^{-1} D_{\sinh \left(2 t_{0}\right)}^{-1} f_{0} \in L^{p}$, we have

$$
S\left(t_{0}\right) f_{t_{0}}=M_{\tanh (2 t)} \mathcal{F} f_{0} \notin L^{p} .
$$

This contradicts the fact $T\left(t_{0}\right) f_{t_{0}} \in L^{p}$. This completes the proof.

Acknowledgments

This work is partially supported by Grant-in-Aid for Young Scientists Research (B), No. 15K17558, 16K17619.

Conflict of Interest

All authors declare no conflicts of interest in this paper.

References

1. R. Beals, R. Wong, Special functions, Cambridge Studies in Advanced Mathematics, 126, Cambridge University Press, Cambridge, 2010.
2. J.-F. Bony, R. Carles, D. Hafner, et al. Scattering theory for the Schrödinger equation with repulsive potential, J. Math. Pures Appl., 84 (2005), 509-579.
3. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, Amer. Mathematical Society, 2003.
4. J. D. Dollard, C. N. Friedman, Asymptotic behavior of solutions of linear ordinary differential equations, J. Math. Anal. Appl., 66 (1978), 394-398.
5. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., 194, Springer-Verlag, 2000.
6. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, Oxford Univ. Press, New York, 1985.
7. T. Ikebe, T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Ration. Mech. An., 9 (1962), 77-92.
8. A. Ishida, On inverse scattering problem for the Schrödinger equation with repulsive potentials, J. Math. Phys., 55 (2014), 082101.
9. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-New York, 1966.
10. F. Nicoleau, Inverse scattering for a Schrodinger operator with a repulsive potential, Acta Math. Sin., 22 (2006), 1485-1492.
11. G. Metafune, M. Sobajima, An elementary proof of asymptotic behavior of solutions of $u^{\prime \prime}=V u$, preprint (arXiv:1405.5659). Available from: http://arxiv.org/abs/1405.5659.
12. N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Jpn, 34 (1982), 677-701.
13. F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York-London, 1974.
14. H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Pure and Applied Mathematics, 204, Marcel Dekker, New York, 1997.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
