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Abstract: This article examines games in which the payoffs and the state dynamics depend not only
on the state-action profile of the decision-makers but also on a measure of the state-action pair. These
game situations, also referred to as mean-field-type games, involve novel equilibrium systems to be
solved. Three solution approaches are presented: (i) dynamic programming principle, (ii) stochastic
maximum principle, (iii) Wiener chaos expansion. Relationship between dynamic programming and
stochastic maximum principle are established using sub/super weak differentials. In the non-convex
control action spaces, connections between the second order weaker differentials of the dual function
and second order adjoint processes are provided. Multi-index Wiener chaos expansions are used to
transform the non-standard game problems into standard ones with ordinary differential equations.
Aggregative and moment-based mean-field-type games are discussed.
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1. Introduction

The term ”mean-field” has been referred to a physics concept that attempts to describe the effect
of an infinite number of particles on the motion of a single particle. Researchers began to apply the
concept to social sciences in the early 1960s to study how an infinite number of factors affect individual
decisions. However, the key ingredient in a game-theoretic context is the influence of the distribution of
states and or control actions into the payoffs of the decision-makers who may have different preferences
and characters, and are not necessarily exchangeable per class (or indistinguishable per class/type). A
mean-field-type game is a game in which the payoffs and/or the state dynamics coefficient functions
involve not only the state and actions profiles but also the distributions of state-action process (or
its marginal distributions). In contrast to mean-field games [2, 3] in which a single player does not
influence of the mean-field terms, here, it is totally different. In mean-field-type games, a single player
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may have a strong impact on the mean-field terms. This paper presents the key ingredients and recent
development of mean-field-type game theory.

1.1. Related works

Stochastic games is a model for dynamic interactions in which the state evolves in a way that
depends on the actions of the decision-makers. The model was introduced in [1], who proved that two-
player zero-sum discounted games with finite states under perfect state observation have a value and
both players have optimal stationary strategies. In Shapley’s initial model of stochastic games, the state
transitions and instant payoff were given by the state-action profiles. However, explicit dependence on
the distribution of states or distribution of actions were not examined.

1.1.1. Mean-field-type games with one player

A stochastic optimization problem in which the first moments (expected values of the state) influ-
ences the state dynamics and the performance criterion were examined in [10]. This corresponds to
a first moment-based mean-field-type game with a single decision-maker. The model was extended
by [11] to include aggregative structures of the distribution of states and a new stochastic maximum
principle was established in the risk-neutral setting. The resulting system is not a simple augmented
state space approach because the expected value of the Hamiltonian is involved in it. The work of [17]
extends that result to performance criteria that include the entire probability measure of the states. The
work of [12, 13] consider both expected value of states and expected of control-actions in the perfor-
mance criteria. We refer the reader to [4, 14, 15, 16] for stochastic maximum principle of mean-field
type.

1.1.2. Mean-field-type games with several players

Mean-field-type games with two or more players can be seen as the multi-agent generalization
of the single agent mean-field-type control problem. In [18, 19] it is shown that the methodology
can be used for risk-sensitive mean-field-type games where weakened conditions on the drifts are
provided. State measurement noise and partial observation studies were conducted in [20, 21]. See
also [27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 46, 47, 48, 49, 50].

Wiener chaos expansion has been proposed in [30] to transform the mean-field-type games into
equivalent deterministic game problems where the state process is replaced by its polynomial chaos or
Wiener chaos expansion counterpart. The decomposition into decoupling series expansion is similar to
the one known in the theory of stochastic processes,as the Kosambi-Karhunen-Loeve theorem, is a rep-
resentation of a stochastic process as an infinite linear combination of orthogonal functions, analogous
to a Fourier series representation of a function on a bounded domain. Cooperative mean-field-type
games were introduced in [5, 41, 42, 43, 44, 45]. In [40] several applications of mean-field-type games
in engineering are provided.

1.2. Structure

The rest of the paper is structured as follows. Section 2 presents a generic model. Section 3 focuses
on solution methods. Classes of mean-field-type games are provided in Section 4. Section 5 examines
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the partial state observation case. Section 6 presents some recent development and or extensions of
mean-field-type games. Section 7 concludes the paper.

Table 1 summarizes the notations used in the article.

Table 1. Table of Notations
I , set of decision-makers
T , Length of the horizon

[0,T ] , horizon of the mean-field-type game
t , time index.
S , state space

s(t) , state at time t
∆(S) , set of probability measures on S

m(t, .) , probability measure of the state at time t
Ai , control action set of decision-maker i ∈ I

ai(.) , strategy of decision-maker i ∈ I
a = (ai)i∈I , strategy profile

b(t, s,m, a) , drift coefficient function
σ(t, s,m, a) , diffusion coefficient function
ri(t, s,m, a) , instant payoff of decision-maker i ∈ I

gi(s,m) , terminal payoff of decision-maker i ∈ I
Ri,T (m0, a) , cumulative payoff of i

Vi(t,m) , equilibrium payoff of i ∈ I
(pi, qi) , first order adjoint process of i ∈ I

(Pi,Qi) , second order adjoint process of i ∈ I
v∗i (t, s) , dual function of i ∈ I

Hi , ri + bpi + σqi of i ∈ I
Hi,s , ri,s + bs pi + σsqi

Hi,ss , ri,ss + bss pi + σssqi

2. Mean-field-type games

2.1. The interaction model

A basic mean-field-type game in continuous time is described by:

• The set of decision-makers I = {1, 2, . . . , I}, where I ∈ N.
• The horizon of the interaction is the interval [0,T ], T > 0.
• There is a non-empty state space S. The set of probability measures on S is denoted by ∆(S).
• For each decision-maker i, a non-empty control action set Ai is available. The set Ai is not neces-

sarily convex. The set of all control actions of all the decision-makers is A =
∏

i∈I Ai.

• An instant payoff of decision-maker i is ri : S × ∆(S) × A→ R
• The state evolution is explicitly given by a controlled Itô’s stochastic differential equation of
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mean-field type, called controlled McKean-Vlasov equation:

s(t) = s0 +

∫ t

0
bdt′ +

∫ t

0
σdB(t′), t > 0.

with s(0) = s0 ∈ S, and b, σ : S × ∆(S) × A → R, b is the drift coefficient functional and σ is
the diffusion coefficient functional, B is a one-dimensional standard Brownian motion on a given
probability space (Ω,P,F).

Given a initial state s0 which is drawn from the initial distribution m0, the game G(s0) proceeds
as follows. At each instant, each decision-maker observes the state (perfect monitoring, perfect state
observation), chooses a control action according her strategy (defined below) and observes/measures
her payoff.

For this game, we adopt the following notions: An admissible control of decision-maker i ∈ I is
progressively measurable process with respect to the filtration Ft, taking values in Ai. L2

F
([0,T ], A j)

denotes the set of F -adapted, A j-valued processes within [0,T ], and C([0,T ],X) denotes the set of
continuous (hence measurable) [0,T ] → X. The set of admissible controls of decision-maker i is
denoted byAi.

We identify two processes ai and ãi inAi if

P(ai = ãi, a.e. on [0,T ]) = 1.

A strategy for decision-maker i starting at time 0 is a measurable map (renamed again by) ai : [0,T ]×
C([0,T ],X) ×

∏
j,i L2

F
([0,T ], A j)→ Ai for which there exists ε > 0 such that for any

(t′, f1, f2) ∈ (0,T ] × {C([0,T ],X) ×
∏
j,i

L2
F

([0,T ], A j)}2,

if f1 = f2 on [0, t′] then ai(., f1) = ai(., f2), on [0, t′ + ε]. To each strategy profile one can associate a
control process profile. This will allow us to work with both open-loop and feedback form of strategies
by considering ai(., ss0,a,m). For open-loop strategies the information structure is limited to {t}, ai is
simply a measurable function of time (and the initial data). The stochastic maximum principle can be
used as a methodology for finding optimal open-loop strategies. The information structure for feedback
strategies is s and its distribution (and the initial data). The dual adjoint functions which are obtained
from the Bellman functions can be used for finding feedback strategies where here the feedback is a
state-and-mean-field feedback.

The cumulative payoff of decision-maker i is

Ri,T (m0, a) := gi(s(T ),m(T, .)) +

∫ T

0
ri(s(t),m(t, .), a(t)) dt,

where gi(s(T ),m(T, .)) is the terminal payoff of i. The risk-neutral payoff of i is E[Ri,T (m0, a)]. The
risk-neutral mean-field-type game G0,T (m0) is the normal-form game (I, (Ai,ERi,T )i∈I).

2.2. Solution concept

We now introduce the key problems addressed in this paper and some solution concepts.

AIMS Mathematics Volume 2, Issue 4, 706–735



710

2.2.1. Best-response correspondence

Given a−i := (a1, . . . , ai−1, ai+1, . . .), the best-response value problem associated with decision-maker
i, is

Vi(0,m0) =


supai∈Ai

E[Ri,T (m0, a)]
s(t) = ss0,a(t), s(0) = s0 ∼ m0

m(t, .) = mm0,a(t, .) = Pss0 ,a(t),

(1)

The strategies ai of i that achieve the above best-response value V(0,m0) are called best-response
strategies of i to a−i := (a j) j,i. The set of such strategies is denoted by BRi(a−i). We are interested in
characterizing best response strategies of every decision-maker.

2.2.2. Mean-field-type equilibria

An equilibrium point is a strategy profile a such that for every decision-maker i, ai ∈ BRi(a−i) and
the resulting mean-field is m(t, .) = Pss0 ,a(t). We are interested in characterizing equilibrium strategies of
every decision-maker.

2.2.3. Well-posedness of the state equation

As the state dynamics is a stochastic differential equation of mean-field type, the existence and
uniqueness of solution to the state equation is not always guaranteed. Below, we provide sufficiency
conditions for existence and uniqueness of a solution.

Lemma 1 (Existence). If the coefficient functions b, σ are continuously differentiable with respect to
s,m and the Gateaux-derivatives are bounded, then for each strategy profile (ai)i∈I ∈

∏
i∈IAi, there is

a unique solution to the state dynamics which we denote by s(t) := ss0,a(t).

A proof of this Lemma can be directly obtained from [7] by choosing a strategy profile (ai)i∈I ∈∏
i∈IAi.

Lemma 2. The probability law of the state solves (in the weak sense) the following Fokker-Planck-
Kolmogorov equation of mean-field type:

mt + (bm)s −
1
2

(σ2m)ss = 0, m(0, .) = m0(.). (2)

The proof is by now standard using integration by parts in the sense of distribution.

3. Solution approaches

In this section we present three different solution approaches for solving mean-field-type game
problems. We also provide some relationships between these methods. We introduce a notion of
Gâteaux differentiability with respect to a measure.

Let S be a vector space, b ∈ Lα(Ω × [0,T ] × S × ∆(S), R), O ⊂ Lα
∗

is an open set.
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Definition 1 (Gâteaux derivative). The Gâteaux differential bm[m̃] of the functional b at m ∈ O in the
direction m̃ is defined as

lim
ε→0+

d
dε

b(., t, s,m + εm̃) =

∫
bm(., t, s,m)(ξ) m̃(dξ).

If the limit exists for all direction m̃, then one says that b is Gâteaux differentiable at m.

If m ∈ Lα and bm ∈ Lα
∗

, the limit above is finite. The limit appearing in Definition 1 is taken relative
to the topology of Lα

∗

.

Note that one can connect the derivative with the respect to s of the Gateaux derivative bm to the
notion of functional derivative to respect to measure and also to the Wasserstein gradient.

We provide Gâteaux differentiation of ‖s‖α−based functions:

• α−norm: Let g(m) = (
∫
|s|αm(t, ds))1/α =: m1/α

α , and m ∈ Lα, then

lim
ε→0+

d
dε

g(m + εm̃) =
1
α

[∫
|ξ|α m(dξ)

] 1
α−1 [∫

|ξ|α m̃(dξ)
]
.

Thus, gm(m)(s) = sα

αmα−1
α
, and ∂sgm(m)(s) = sα−1

mα−1
α
, 0 = ∂m[gs].

• Lα−normed drift: Let

b̄ =

(∫
y∈S
|b|α(., t, sa(t), y, a(t))ma(t, dy)

) 1
α

,

i.e., the Lα−norm of b with respect to the measure ma(t, .). We compute the Gâteaux-derivative of
the Lα−normed drifts: b̄m(., t, s,m)(ξ) := bα(.,t,s,ξ)

αb̄α−1 . By changing variables, one has b̄m(., t, ξ,m)(s) =
bα(.,t,ξ,s)
αb̄α−1(t,ξ,m) . We differentiate with respect to the state s to get:

∂sb̄m(., t, ξ,m)(s) =
bα−1(., t, ξ, s)by(., t, ξ, s)

b̄α−1(t, ξ,m)
. (3)

E[L∂sb̄m(., t, S ,m)(s)] = E[L bα−1(.,t,S ,s)by(.,t,S ,s)
b̄α−1(t,S ,m) ] := Ẽ[L̃ bα−1(.,t,S̃ ,s)by(.,t,S̃ ,s)

b̄α−1(t,S̃ ,m) ], where the notation Ẽ de-
notes the expectation with respect to the variables with S̃ which is a copy of S . We now replace
the argument s by S to get Ẽ[L̃∂sb̄m(., t, S̃ ,m)(S )] = Ẽ[L̃ bα−1(.,t,S̃ ,S )by(.,t,S̃ ,S )

b̄α−1(t,S̃ ,m) ].

3.1. Dynamic programming principle

In contrast to classical differential games or classical mean-field games in which one can directly
use the standard Dynamic Programming Principle (DPP) on s(t), here, the presence of the term ma(t, .)
in the functions ri, b, σ may create a time-inconsistency, and s(t) is not the appropriate state for DPP.
The next Proposition identifies an appropriate state space under which DPP can be obtained and a
Hamilton-Jacobi-Bellman (HJB) equation can be derived.

Proposition 1. If there exists V such that
i ∈ I,
Vi,t +

∫
s
[supai

ri + bVi,sm + σ2

2 Vi,ssm]m(t, ds) = 0,
Vi(T,m) =

∫
s
m(T, ds)gi(s,m(T, .)),

m(t, .) = Psa(t)

(4)
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then Vi(0,m0) is an equilibrium payoff and the optimal strategy ai of i maximizes ri + bVi,sm + σ2

2 Vi,ssm.

Proof. In order to use a dynamic programming principle we look for an augmented state such that one
gets a Markovian system. By rewriting the payoff functional ERi,T as a function of the measures m(t, .)
and the strategies ai(.), we obtain a classical setup. Hence, we only need the evolution of the measures
m(t, .) which is given by (2). Then, one obtains a deterministic differential game problem with m as
state (in infinite dimensions). The best response of i is

Vi(0,m0) =

{
supai∈Ai

E[Ri,T (m0, a)]
m(t, .) solves (2).

Applying the classical DPP to the deterministic problem yields

Vi,t + sup
ai

[
∫

s
rim(t, ds) + 〈b̃,Vi,m〉] = 0,

where b̃(m)(t, s) = −(bm)s + 1
2 (σ2m)ss. We apply the theory of distributions to establish the following

equalities:

〈b̃,Vi,m〉 =

∫
s
b̃(m)Vi,m ds (5)

=

∫
s
−(bm)sVi,m +

1
2

(σ2m)ssVi,m (6)

=

∫
s
[bVi,sm +

σ2

2
Vi,ssm]m(t, ds), (7)

which is obtained by integration by part (in the sense of distribution). This completes the proof. �

Example 1 (Mean-field-free equations). If ri, gi, b, σ are all independent of m then Vi(t,m) =∫
vi(t, s) m(t, ds) = Em(t,.)vi(t, s(t)) where the function (vi(t, s))i solves the classical Bellman system

i ∈ I,
vi,t + Hi = 0,
vi(T, s) = gi(s,m(T, .)),

(8)

Moreover

vi(0, s0) =

{
supai∈Ai

E[Ri,T (s0, a)]
s(t) = ss0,a(t), s(0) = s0

(9)

Proposition 1 provides a sufficiency condition for equilibria. However, the existence of classical
solution to the infinite-dimensional HJB equation is not guaranteed and the value function may not be
differentiable as in the classical case. Weaker notion of solution such as viscosity solution using weak
sub/super-differential set will be introduced in the next section.

3.2. Dual functions

Since the DPP equilibrium system (4) is in infinite dimensions, the solvability of such an integro-
partial differential equation poses some technical difficulties. However, when the value function V is
weakly differentiable with respect to (s,m) then a finite dimensional quantity can be obtained as it is in
the dual space.
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Definition 2. The function v∗(t, s) = Vm(t, s) is the dual function associated to V.

Example 2. In the mean-field-free setting, i.e., when ri, gi, b, σ are independent of m, the dual function
v∗(t, s) = Vm(t, s) coincides with the function v(t, s). However, the two functions do not coincide in the
mean-field-dependent setting.

Proposition 2. If Vm,Vsm,Vssm exist and are continuous then the equilibrium dual function v∗ = Vm

solves the following system of partial differential equations
i ∈ I,
v∗i,t + Hi + EHi,m = 0,
v∗i (T, s) = gi(s,m(T, .)) + Egi,m,

m(t, .) = Psa(t), m(0, .) = m0(.)

(10)

where Hi(t, s,m, v∗i,s, v
∗
i,ss) = supai

[ri + bv∗i,s + σ2

2 v∗i,ss].

Proof. We differentiate the HJB system (4) in the direction m̃ = m,

i ∈ I,
(Vi,t)m + [supai

ri + bVi,sm + σ2

2 Vi,ssm]
+

∫
s̃
[supai

ri + bVi,sm + σ2

2 Vi,ssm]m(t, s̃,m)(s)m(t, ds̃) = 0,
Vi,m(T, s) = gi(s,m(T, .)) +

∫
s
m(T, ds)gi(s,m(T, .)),

m(t, .) = Psa(t)

(11)

Noting that (Vi,t)m = v∗i,t, Vi,sm = v∗i,s and Vi,ssm = v∗i,ss, the latter system (11) becomes the announced
one. This completes the proof.

�

As pointed out by [17], the dual function v∗i (0, s0) is not the equilibrium payoff of the decision-
maker i. The dual function plays an important role in establishing a stochastic maximum principle as
we will see in the next subsection.

3.3. Stochastic maximum principle

We now present first order and second-order adjoint processes that are useful in establishing nec-
essary conditions for mean-field-type equilibria. The advantage of the adjoint processes is that they
solve a class of linear backward SDEs of mean-field type. The following result provides existence and
uniqueness conditions.

Lemma 3 ([9, 11]). Consider the following mean-field backward SDE

p(t) = p(T ) +

∫ T

t
Ẽ[ f̂ (t′, p̃(t′), q̃(t′), p(t′), q(t′))] dt′ −

∫ T

t
q(t′)dB(t′),

where p(T ) is a progressively measurable, square integrable random variable. Let f̂ (t, ., ., ., .) be Lips-
chitz for all time t ∈ [0,T ] and t 7→ f̂ (t, 0, 0, 0, 0) be square integrable over [0,T ]. Then, the mean-field
backward SDE has a unique adapted solution satisfying

E
[

sup
t∈[0,T ]

|p(t)|2 +

∫ T

0
|q(t)|2dt

]
< ∞. (12)
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Consider the first-order adjoint processes (pi, qi)i∈I
dpi = −[Hi,s + Ẽ∂sHi,m]dt + qidB,
pi(T ) = gi,s(T ) + Ẽ{∂sgi,m(T )},
i ∈ I.

(13)

Lemma 4. If the functions b, σ, ri, gi are continuously differentiable with respect to (s,m), all their first-
order derivatives with respect to (s,m) are continuous in (s,m, a), and bounded. Then, the first-order
adjoint system is a linear SDE with almost surely bounded coefficient functions. There is a unique
F−adapted solution such that

E

[
sup

t∈[0,T ]
|pi(t)|2 +

∫ T

0
|qi(t)|2dt

]
< +∞.

These strong smoothness conditions on b, σ, ri, gi can be considerably weakened using representa-
tions of weak sub/super-differential sets. We refer the reader to [8, 9] for more details on existence and
uniqueness of solutions to backward SDE of mean-field type.

Proof. By choosing f̂ (t, p̃(t), q̃(t), p(t), q(t)) = α0(t, .)+α1(t, .)p̃(t)+α2(t, .)q̃(t)+α3(t, .)p(t)+α4(t, .)q(t)
where αi(t, .) are measurable bounded coefficient functions, one gets a backward equation in the form
of the adjoint equations. Under the assumptions imposed on b, σ, ri, gi, the coefficient αi fulfill the
requirement and result follows as a direct application. �

Note that for linear-quadratic mean-field-type games, the payoff function ri = −s2 −
∫

y2m(t, dy) −
a2

i −
∫

a′i
(a′i)

2Pai(da′i) does not satisfy the above assumptions. In that case, one can relax the boundedness

assumption and replace it by L2−estimates if the second moment is finite.
Consider the second-order adjoint processes (Pi,Qi)i∈I

dPi = −{Hi,ss + Ẽ∂ssHi,m + (2bs + σ2
s)Pi + 2σsQi}dt + QidB,

Pi(T ) = gi,ss(T ) + Ẽ{∂ssgi,m(T )},
i ∈ I.

(14)

Lemma 5. If the functions b, σ, ri, gi are twice continuously differentiable with respect to (s,m), all
their derivatives up to second order with respect to (s,m) are continuous in (s,m, a), and bounded.
Then, the second order adjoint system is a linear backward SDE with almost surely bounded coefficient
functions. There is a unique F−adapted solution such that

E

[
sup

t∈[0,T ]
|Pi(t)|2 +

∫ T

0
|Qi(t)|2dt

]
< +∞.

Proof. Follows immediately from Lemma 3. �

Proposition 3 (Stochastic Maximum Principle). If (s, a) is a pair of equilibrium state and equilib-
rium strategy, then there is vector of F−adapted processes (pi, qi, Pi,Qi)i∈I such that Hi(s,m, a′i , a−i) −
Hi(s,m, a) + 1

2 Pi(σ(s,m, a′i , a−i) − σ(s,m, a))2 ≤ 0 for all a′i ∈ Ai, almost every time t ∈
[0,T ] and P−almost surely. In particular, if σ(t, s,m, a) = σ(t, s,m) is independent of ai then
supa′i∈Ai

Hi(s,m, a′i , a−i) ≤ Hi(s,m, a).

Proof. The proof follows similar steps as in [10] by replacing the derivative with the respect to first
moment component by the Gateaux-derivative with respect to m, for each decision-maker i when fixing
the strategies of the other decision-makers. �
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3.4. Relationships between DPP and SMP

In order to provide weaker conditions we introduce super- and subdifferentials of the viscosity
solution V. Define the first order super-differential of the dual function as

D1,+
t,w Vm(t,w) = {(d1, d2) ∈ R × T (S) | lim supt′,w′→t,w

Vm(t′,w′)−Vm(t,w)−d1(t′−t)−d2(w′−w)
|t′−t|+‖w′−w‖ ≤ 0}.

Similarly, the first order sub-differential is
D1,−

t,w Vm(t,w) = {(d1, d2) ∈ R × T (S) | lim inft′,w′→t,w
Vm(t′,w′)−Vm(t,w)−d1(t′−t)−d2(w′−w)

|t′−t|+‖w′−w‖ ≥ 0}.
Using these weak derivatives, one has a relationship between stochastic maximum principle and dy-

namic programming principle in terms of inclusion: p(t) ∈ D1,+
s Vm(t,w). In particular, if V is Gâteaux-

differentiable with respect to m and s then{
pi(t) = Vi,sm(s(t),m(t)) = d2,

qi(t) = σVi,ssm(s(t),m(t)).

Proposition 4. If the first and second order weak derivatives with respect to s of Vm exist then the
process pi(t) = Vi,sm(s(t)) solves the backward SDE:

dpi = −αidt + βidB, pi(T ) = gi,s(s(T ),m(T )) +

∫
s
∂sgi,mm(T, ds),

where αi = Hi,s + Ẽ[∂sHi,m], Hi,s is a notation for ri,s + bs pi + σsqi and should not be confused with
derivative of the functional Hi. βi = σVi,ssm = qi.

Proof. Let f̃i(t, s) = Vi,sm(t, s) = v∗i,s(t, s) Applying Ito’s formula applied to p̃i(t) = f̃i(t, s(t)) yields

dp̃i = [( f̃i)t + b( f̃i)s + σ2

2 ( f̃i)ss]dt + σ( f̃i)sdB ,

We identify the coefficient processes q̃i = σ( f̃i)s = σv∗i,ss = σVi,ssm. It remains to find the drift
coefficient of p̃i. 

p̃i = v∗i,s(t, s) = Vi,sm(t, s),
( f̃i)t = v∗i,ts,
b( f̃i)s = bv∗i,ss,
σ2

2 ( f̃i)ss = σ2

2 v∗i,sss

Summing together one obtains{
( f̃i)t + b( f̃i)s + σ2

2 ( f̃i)ss = v∗i,ts + bv∗i,ss + σ2

2 v∗i,sss (15)

In order to identify the latter term, one differentiates with respect to s the equation (10) satisfied by the
dual function v∗i . 

i ∈ I,
v∗i,st + ri,s + (bv∗i,s)s + (σ

2

2 vi,ss)s + ẼHi,sm = 0,
v∗i,s(T, s) = gi,s(s,m(T, .)) + Ẽgi,sm,

m(t, .) = Psa(t), m(0, .) = m0(.)

(16)

which is expanded as 

i ∈ I,
(v∗i,s)t + bv∗i,ss + σ2

2 v∗i,sss
+[ri,s + bsv∗i,s + σs(σv∗i,ss) + ẼHi,sm] = 0,
v∗i,s(T, s) = gi,s(s,m(T, .)) + Ẽgi,sm,

m(t, .) = Psa(t), m(0, .) = m0(.)

(17)

AIMS Mathematics Volume 2, Issue 4, 706–735



716

It follows that (v∗i,s)t + bv∗i,ss + σ2

2 v∗i,sss = −[ri,s + bsv∗i,s + σs(σv∗i,ss) + ẼHi,sm], and

dp̃i = −[ri,s + bsv∗i,s + σs(σv∗i,ss) + ẼHi,sm]dt + σv∗i,ssdB
= −[Hi,s + ẼHi,sm]dt + qidB

,

The two pair of processes (pi, qi) and ( p̃i = v∗i,s, q̃i = σv∗i,ss) solves the same backward SDE with
the same terminal condition. Under the assumptions above, these two processes are identical. This
completes the proof. �

Define the second order super-differential is D1,2,+
t,w Vm(t,w) = {(d1, d2, d3) ∈ R × T (S) × S n |

lim supt′,w′→t,w
Vm(t′,w′)−Vm(t,w)−d1(t′−t)−d2(w′−w)− 1

2 (w′−w)′d3(w′−w)
|t′−t|+‖w′−w‖2 ≤ 0}

Similarly, the second order sub-differential is D1,2,−
t,w Vm(t,w) = {(d1, d2, d3) ∈ R × T (S) × Rn × S n |

lim inft′,w′→t,w
Vm(t′,w′)−Vm(t,w)−d1(t′−t)−d2(w′−w)− 1

2 (w′−w)′d3(w′−w)
|t′−t|+‖w′−w‖2 ≥ 0}

Vi is a viscosity solution if and only if Vi(T,m) =
∫

s
gim(T, ds) for any measure m and for all

(t,m) ∈ [0,T ) × ∆(S),{
d1 +

∫
supai(.)∈Ai

Hi(t, s,m, a, d2, d3) ≤ 0, ∀ d ∈ D1,2,+
t,w Vi,m(t,w),

d1 +
∫

supai(.)∈Ai
Hi ≥ 0, ∀ d ∈ D1,2,−

t,w Vi,m(t,w).

In particular, if Vi,m ∈ C1,3 then {
Pi(t) = Vi,ssm(t, s(t)) = d3,

Qi(t) = σVi,sssm(t, s(t)).

Proposition 5. If the first and second order weak derivatives with respect to s of Vm exist then the
process Pi(t) = Vi,ssm(t, s(t)) solves the backward SDE:

dPi = −γidt + κidB, Pi(T ) = gi,ss(s(T ),m(T )) +

∫
s
∂ssgi,mm(T, ds),

where γi = Hi,ss + Ẽ∂ssHi,m + (2bs + σ2
s)Pi + 2σsQi, κi = σVi,sssm = Qi

Proof. We compute explicitly the second order terms. Let g̃i(t, s) = Vi,ssm(t, s) = v∗i,ss(t, s). Applying
Ito’s formula to P̃i(t) = g̃i(t, s(t)) yields

dP̃i = [(g̃i)t + b(g̃i)s + σ2

2 (g̃i)ss]dt + σ(g̃i)sdB ,

We identify the coefficient processes Q̃i = σ(g̃i)s = σv∗i,sss = σVi,sssm. It remains to find the drift
coefficient of P̃i. 

P̃i = v∗i,ss(t, s) = Vi,ssm(t, s),
(g̃i)t = v∗i,tss,

b(g̃i)s = bv∗i,sss,
σ2

2 (g̃i)ss = σ2

2 v∗i,ssss

Summing together one obtains{
(g̃i)t + b(g̃i)s + σ2

2 (g̃i)ss = v∗i,tss + bv∗i,sss + σ2

2 v∗i,ssss (18)
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In order to identify the latter term, one can differentiate twice with respect to s the equation (10)
satisfied by the dual function v∗i .

i ∈ I,
v∗i,sst + ri,ss + (bv∗i,s)ss + (σ

2

2 v∗i,ss)ss + ẼHi,ssm = 0,
v∗i,ss(T,m) = gi,ss(s,m(T, .)) + Ẽgi,ssm,

m(t, .) = Psa(t), m(0, .) = m0(.)

(19)

{
(bv∗i,s)ss = (bsv∗i,s + bv∗i,ss)s = bssv∗i,s + 2bsv∗i,ss + bv∗i,sss,

(σ
2

2 v∗i,ss)ss = [σsσv∗i,ss + σ2

2 v∗i,sss]s = (σssσ + σ2
s)v
∗
i,ss + 2σsσv∗i,sss + σ2

2 v∗i,ssss

By substitution we obtain 
0 = v∗i,sst + ri,ss + (bv∗i,s)ss + (σ

2

2 v∗i,ss)ss + ẼHi,ssm

= v∗i,tss + bv∗i,sss + σ2

2 v∗i,ssss
+ri,ss + bssv∗i,s + σss(σv∗i,ss)+
+(2bs + σ2

s)v
∗
i,ss + 2σs(σv∗i,sss) + ẼHi,ssm

−[v∗i,tss + bv∗i,sss + σ2

2 v∗i,ssss]
= ri,ss + bssv∗i,s + σssσv∗i,ss+

+(2bs + σ2
s)v
∗
i,ss + 2σs(σv∗i,sss) + ẼHi,ssm

= Hi,ss + (2bs + σ2
s)P̃i + 2σsQ̃i + ẼHi,ssm

dP̃i = [(g̃i)t + b(g̃i)s + σ2

2 (g̃i)ss]dt + σ(g̃i)sdB
= [v∗i,tss + bv∗i,sss + σ2

2 v∗i,ssss]dt + (σv∗i,sss)dB
= −[Hi,ss + ẼHi,ssm + (2bs + σ2

s)P̃i + 2σsQ̃i]dt + Q̃idB
,

where Hi,ss = ri,ss + bss pi + σssqi. This completes the proof. �

3.5. Wiener chaos expansion

The space of square integrable real-valued deterministic functions over [0,T ], is denoted as
L2([0,T ],R). From Riesz and Fischer’s theorem, the space L2([0,T ],R) of square Lebesgue-integrable
functions over [0,T ] is an (infinite-dimensional) complete metric space. Thus, L2([0,T ],R) is an
Hilbert space (with the inner product 〈 f , g〉 =

∫ T

0
f gdt) .

Lemma 6 ([22], prop. 5.14). Every Hilbert space, that is not reduced to singleton {0}, has an orthonor-
mal basis. In particular, L2([0,T ],R) has an orthonormal basis. Let {m̂k(.), k ∈ Z+} be an orthonormal
basis in the Hilbert space L2([0,T ],R). Then, the following are equivalent:

• {m̂k(.), k ∈ Z+} is an orthonormal basis in the Hilbert space L2([0,T ],R).

• ∀ f ∈ L2([0,T ],R), f (t) =
∑

k∈Z+
〈 f , m̂k〉m̂k(t) =

∑
k∈Z+

(∫ T

0
f (t′)m̂k(t′)dt′

)
m̂k(t).

• One has ‖ f ‖2L2([0,T ],R) =
∑

k∈Z+
|〈 f , m̂k〉|

2 =
∑

k∈Z+

(∫ T

0
f (t)m̂k(t) dt

)2
for all f ∈ L2([0,T ],R).

• The system 〈 f , m̂k〉 = 0 ∀k ∈ Z+ implies that f = 0 (identically null function over [0,T ]).

See Robinson ([22], prop. 5.14) for a proof of this result.
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Example 3. Orthonormal Basis of L2([0,T ],R):

• An important orthogonal basis of L2[0,T ] is the set {1, cos( 2π
T kt), sin(2π

T kt)} k≥1. Normalizing by
the respective norms in L2([0,T ],R), one gets an orthonormal basis.
• One can use the Gram-Schmidt algorithm to construct new bases from more-or-less arbitrary

collections of vectors. This is an inductive process which any basis of square integrable functions
over [0,T ], { fk | k ∈ Z+}. (i) Since f0 , 0, we set m̂0 =

f0
|| f0 ||L2([0,T ],R)

and (ii) then inductively

f̂k+1(t) = fk+1(t) −
k∑

i=0

〈 fk+1, m̂i〉m̂i(t),

f̂k+1 , 0 because otherwise it can be written as a linear combination of the vector m̂0(), . . . , m̂k().
Thus, set m̂k+1 =

f̂k+1

|| f̂k+1 ||L2([0,T ],R)
to get a unit vector. (iii) Then the set {m̂k(.) | k ∈ Z+} is an orthonor-

mal basis of L2([0,T ],R).

Lemma 7. From any orthonormal basis {m̂k}k of L2([0,T ],R),we set ξk =
∫ T

0
m̂k(t)dB(t) be the stochas-

tic Itô’s integral. Then, the random variables {ξk}k are identically distributed and Gaussian with zero
mean and variance equals to ∫ T

0
m̂2

k(t)dt = ‖m̂k‖
2
L2([0,T ],R) = 1.

Furthermore, the standard Brownian motion can be decomposed as follows:

B(t) =

∫ t

0
dB(t′) =

∫ T

0
1l[0,t](t′)dB(t′)

=

∫ T

0

∑
k≥0

m̂k(t′)〈1l[0,t](.), m̂k(.)〉

 dB(t′)

=
∑
k≥0

〈1l[0,t](.), m̂k(.)〉
∫ T

0
m̂k(t′)dB(t′)

=
∑
k≥0

(∫ t

0
m̂k(t′)dt′

)
ξk. (20)

The expansion

B(t) =
∑
k≥0

ξk

∫ t

0
m̂k(t′)dt′

converges in the mean-square sense:

E

‖B(t) −
K∑

k=0

ξk

∫ t

0
m̂k(t′)dt′‖2

→ 0

as K goes to infinity, for t ≤ T.
The mean-square error is

E

‖ +∞∑
k=K+1

ξk

∫ t

0
m̂k(t′)dt′‖2

 =

+∞∑
k=K+1

(∫ t

0
m̂k(t′)dt′

)2

= O(
t
K

).
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As a result of the above Lemma, we can view the Ito’s process

s(t) = s(0) +

∫ t

0
b(t′, s(t′),m(t′), a(t′))dt′ +

∫ t

0
σ(t′, s(t′),m(t′), a(t′))dB(t′),

as a function of t, s(0),w and the set of random variables ξ = (ξk)k. We denote the solution of the state
equation as s(t) := ss0,a(t).

Definition 3. With the one-dimensional Hermite polynomials

Ĥk(t) =
(−1)k

k!
e

t2
2

dk

dtk

[
e−

t2
2

]
,

the basis polynomials of the Wiener chaos space are defined by

χα(ξ) =
√
α!

∏
i

Ĥαi(ξi)

where α! is the product of all the components’ factorials, α denotes the multi-index from the set

{α = (αi)i | αi ≥ 0, | |α| =
+∞∑
i=0

αi < +∞}.

Note that, for a multi-index α such that |α| < +∞, the number of the terms in the product
∏

i Ĥαi

is finite. From Definition 3 and the properties of the Hermite polynomials one directly shows the
orthogonality of the above polynomial basis, which are often referred to as Wick polynomials. If the
controlled state process s ∈ L2(Ω × [0,T ],R) then one can decompose it as

s(t) =
∑
α

〈s(t), χα(ξ)〉χα(ξ) =
∑
α

E[s(t)χα(ξ)]χα(ξ),

where 〈x, y〉 = E[xy], when x and y are random variables. Particularly the coefficient function of order
zero, s0(t) = E[s(t)χ0(ξ)], obtains a special meaning. It coincides with the expectation of the process
x(t) , as the basis polynomial of order zero is identically one.

This is summarized in the following well-known result:

Theorem 3.1 (Cameron and Martin [23]). Assume that the state process s(t) is adapted to the filtration
generated by the Wiener chaos {χα(ξ)}α, and is in L2(Ω × [0,T ],R) i.e., it satisfies the integrability
condition E[

∫ T

0
|s(t)|2dt] < +∞. Then, s(t) can be expanded in [0,T ] as

s(t, ξ) =
∑
α

sα(t)χα(ξ),

where the deterministic coefficient functions sα(t) = E[x(t)χα(ξ)] can be interpreted as projections of
the process s(t) onto the corresponding chaos basis.

Note that the variance starts with index 1 and not from 0. The polynomial chaos (PC) or Wiener
chaos framework was developed by Norbert Wiener [24, 25] and generalized by Cameron and Martin
later on [23]. The Fourier-Hermite series of s(t) is often called the Wiener chaos expansion (WCE).
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Theorem 3.2 (Error estimates, Theorem 2.1 in [26]). If there exists k such that ‖∂k
ξs(t, ξ)‖2 < +∞, then

the following error estimates holds:

‖s(t) −
∑
|α|≤K

sα(t)χα(ξ)‖2 ≤
‖∂k

ξs(t, ξ)‖2∏k−1
i=0 (K − i + 1)

=: εK .

It is important to notice that this error εK is much better than Monte-Carlo sampling (in the order
of O

(
1
√

K

)
for K samples) when the random processes of the basis capture the state process s. This

provides a more efficient way to solve mean-field-type game problem. However, the choice of a basis
is crucial and the chosen elements in the basis need to be sparse enough in order to reduce the curse of
dimensionality.

We now reformulate the mean-field-type game problems using the PC framework above. We replace
the state process s and the control process by their respective PC expansions. Therefore, s is determined
by its coefficient functions (sα)α. We can compute the cost as

Egi(s(T ),m(T )) = ĝi((sα(T ))α) (21)
Eri(t, s(t),m(t), a(t)) = r̂i(t, (sα(t))α, (aα(t))α).

and the state dynamics coefficients are

sα(t) = sα(0)1lα=0 + 〈χα(.),
∫ t

0
bdt′〉 + 〈χα(.),

∫ t

0
σdB(t′)〉.

Since the Lebesgue integral term is 〈χα(.),
∫ t

0
bdt′〉 =

∫ t

0
bαdt′, the Ito’s integral term becomes

〈χα(.),
∫ t

0
σdB(t′)〉 =

∫ t

0
σ∂t′[χα]dt′.

Using Hermite polynomials, we know that

∂t′[χα] =

∞∑
k=1

√
αkmk(t′)χα̂k(ξ)

where α̂k = (α1, . . . , αk−1, αk − 1, αk+1, . . .), i.e., α̂k
i = (αk − 1)1li=k +αi1li,k. It turns out that sα solves the

ordinary differential system:

ṡα(t) = bα(t) +

∞∑
k=1

√
αkmk(t)E[σ(t, .)χα̂k(ξ)]

with initial condition s(0)1lα=0.

Proposition 6. The best response problem (1) becomes the following: For each decision-maker i, given
the coefficient strategies of the others ({ai,α}α, j , i) the best response solves

sup(ai,α(·))α ER̂i,T ,

subject to
ṡα(t) = bα(t) +

∑∞
k=1
√
αkm̂k(t)E[σ(t, .)χα̂k]

sα(0) = s(0)1lα=0,

(22)

where R̂i,T = ĝi +
∫ T

0
r̂idt.
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Proof. We first rewrite the instantaneous payoff functions in terms Wiener chaos. We replace the state
process s(t) by its decomposition

∑
α sα(t)χα(ξ).

Eri(t, s(t),m(t), a(t)) =: r̂i(t, {sα(t)}α, {aα(t)}α) (23)

In addition, the coefficients dynamics sα(t) can be easily obtained from the state dynamics and sα solves
a standard differential system:

ṡα(t) = bα(t) +

∞∑
k=1

√
αkm̂k(t)E[σ(t, .)χα̂k(ξ)].

with initial condition s(0)1lα=0.Collecting together, we obtain a standard dynamic optimization problem
subject to coefficient dynamics with multiple index. This completes the proof. �

As we can observe, problem (22) is now a standard differential game with standard deterministic
state dynamics. Note that, in order to get these transformations, the underlying problem must be
included in the space of square integrable random process Hilbert space. This implies, that the variance
of the problem must be finite.

4. Aggregative mean-field-type games

In this section, equilibrium system for mean-field-type games with aggregative structures are pre-
sented.

4.1. Aggregative structures

In this subsection we take b, σ, ri, gi as functions of ma only through aggregative terms∫
φ.(s)ma(t, ds) = E[φ.(sa(t))], and

∫
φ.(a′)Pa(t, da′) = E[φ.(a(t))]. In that case the Gâteaux differ-

entiation with respect to m can be reduced to a finite-dimensional differentiation.


Ri,T =

[∫ T

0
ri(t, sa(t),E[φri(sa(t))], a(t),E[φri(a(t))]) dt + gi(sa(T ),E[φgi(sa(t))])

]
,

supai∈Ui
ERi,T subject to

dsa(t) = b(t, sa(t),E[φb(sa(t))], a(t),E[φb(a(t))]) dt + σ(t, sa(t),E[φσ(sa(t))], a(t),E[φσ(a(t))])dB(t),
sa(0) = s0.

(24)
If b, σ, ri are only functions of (t, sa,E[φ.(sa(t))], a,E[φ.(s(t))]), then the partial derivatives of the

dual functions pi = Vsm(t, sa(t)) and qi = σVssm(t, sa(t)) solve backward SDE system:{
dpi = {−Hi,s − φri,sE[ri,y] − φb,sE[by pi] − φσ,sE[σyqi]} + qidB,
pi(T ) = gi,s(sa(T ),E[φgi(sa(T ))]) + φgi,s(T )E[gi,y(sa(T ),E[φgi(sa(T ))])]

(25)

where Hi,s = ri,s + bs.pi + σsqi.

Note that the aggregative structure in the form Ẽ[φ(S (t), S̃ (t))] =
∫

w
φ(S ,w)m(t, dw) which is a

random variable, is already included in the cases φ(t, s,m) discussed in the previous section.
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4.2. Moment-based mean-field-type games

We take b, σ, ri as functions of the k−th moment of the state
∫

skma(t, ds) = E[(sa(t))k], and the
l−moment of the control action of decision-maker i

∫
(a′i)

lPai(t, da′i) = E[al
i(t)]. Thus, aggregative func-

tion is φ.(y) = yk. Then, the derivative of φ is φ.,y = kyk−1. For k > 1, the dynamics yields{
dpi = −{Hi,s + ksk−1EHi,y}dt + qidB,
pi(T ) = gi,s(sa(T ),E[(sa(T ))k]) + ksk−1(T )E[gi,y(sa(T ),E[(sa(T ))k])]

(26)

The existence of solution is not immediate. It requires the (k−1)−moment estimates of the state for
k > 1.

4.3. First moment mean-field-type games

We take b, σ, ri as functions of the first moments
∫

sma(t, ds) = E[sa(t)], and
∫

a′Pa(t, da′) = E[a(t)].
Then the aggregative functions are reduced to the identity function φ.(y) = y. Then, the derivative of
φ is φ.,y = 1. Hence, the first order risk-neutral adjoint processes pi(t) = Vi,sm(t, sa(t)) and qi(t) =

σVi,ssm(t, sa(t)) solve a simpler backward SDE system and (25) reduces to

dpi = {−Hi,s − E[Hi,y(t, sa,E[sa], pi, qi)]} + qidB
pi(T ) = gi,s(sa(T ),E[sa(T )]) + E[gi,y(sa(T ),E[sa(T )])].

However, the optimal control strategy equation is modified because of the presence of E[a(t)] In the
convex control set case, one obtains the variational inequality (Hi,a + EHi,ā)(ai − a′i) ≥ 0 where Hi,āi

denotes the Hamiltonian derivative with respect to the component āi = E[ai(t)].

5. Partial observation

This section examines situations in which the state is partially observed.

Ri,T (m0, a) =
∫ T

0
ri(t, ss0,a(t),mm0,a(t), a(t)) dt + gi(ss0,a(T ),mm0,a

1 (T )),
supai∈Ai

EaRi,T (m0, a) subject to
dss0,a(t) = b(t, ss0,a(t),mm0,a(t), a(t)) dt

+σ(t, ss0,a(t),mm0,a(t), a(t))dB(t)
+σo(t, ss0,a(t),mm0,a(t), a(t))dBo(t),

sa(0) = s0,

dya(t) = bo(t, ss0,a(t),mm0,a(t), a(t)) dt + dBo(t), ya(0) = 0,
mm0,a(t, .) := Pss0 ,a(t).

(27)

where Ea denotes the the expectation with respect to the probability space (Ω,F, {Ft}t,P
a) where Pa

is defined below. Under partial state observation an admissible strategy ai is a random process ai :
[0,T ]×Ω→ Ai that is adapted to F y

t = σ(y(t′), t′ ≤ t) and E
∫ T

0
|ai(t, .)|αdt < ∞. The set of admissible

strategies is denoted by Âi. Introduce the density process ρa(t) = e
∫ t

0 bo(t′)dya(t′)− 1
2

∫ t
0 |bo(t′)|2dt′ . Then, ρa(t)

solves the forward SDE dρa = ρabodya, ρa(0) = 1. By Girsanov transform, dPa = ρadP, the partial
observation problem is transformed into a full observation problem with respect to P and with a new
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state (ŝa, ρa).

supai∈Âi
E[

∫ T

0
ρa(t)ri(t, ŝs0,a(t),mm0,a(t), a(t)) dt + ρa(T )gi(ŝs0,a(T ),mm0,a(T ))]

subject to
dŝa(t) = b dt + σdB(t) + σo[dya(t) − bo dt],
= [b − σobo] dt + σdB + σodya(t),
ŝa(0) = s0,

dρa = ρabodya, ρa(0) = 1.

(28)

This problem is similar to (1) but with a new state (ŝs0,a, ρa). One obtains an augmented state (ŝ, ρ)
and the infinite-dimensional DPP can be directly applied by considering the probability measure
m(t, dŝdρ) = Pŝa(t),ρa(t). Similarly the stochastic maximum principle can be applied with the state (ŝ, ρ).

d
(

ŝa

ρ

)
=

(
b − σobo

0

)
dt +

(
σ σo

0 ρabo

) (
dB
dya

)
.

The new Hamiltonian for decision-maker i is

Hi(t, s, ρ,m, (p1, p2), q) = ρri + [b − σobo]p1 + trace(Γ′q),

where Γ :=
(
σ σo

0 ρabo

)
, and Γ′ is the transpose of the matrix Γ, and q :=

(
q11 q12

q21 q22

)
. For the

optimal control action, however, it should be conditioned on the observation filtration F y
t . A necessary

condition in the smooth case yields

E

[
δHi +

1
2

Pi[δσ]2 | F
y

t

]
≤ 0.

Note that the methodology extends to the case of individual observation per decision-maker i using
the filtration F yi

i,t .

6. Extensions

In this section focuses on recent development and or extensions of mean-field-type games.

6.1. Discrete time games

Consider a mean-field-type game setup with the following data:

Time step: t ∈ {0, 1, . . . ,T − 1}
Set of decision-makers: I

Initial state : s0 ∼ ms
0

Stochastic state dynamics: s(t + 1) ∼ qt+1(.| s(t),ms(t),ma(t), a(t))
Instant payoff of i : ri(t, s(t),ms(t),ma(t), a(t))

Terminal payoff of i : gi(s(T ),ms(T ))

Here the time space is a discrete set and denoted by {0, 1, . . . ,T − 1}, T ≥ 1 is the length of the
horizon, t denotes a time step, s is the state process of the system, ms

0 is the initial distribution of states.
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A decision-maker is denoted by i, has an action space Ai. The system state s(t) is stochastic and its
probability transition from t to t + 1 is given by qt+1 : S × ∆(S) ×

∏
i ∆(Ai) ×

∏
i Ai → ∆(S). Denote

by ms(t) the distribution of state and by ma(t) the distribution of actions at time t. Decision-maker i’s
cumulative payoff is

Ri,T (ms
0, a) =

T−1∑
t=0

ri(t, s(t),ms(t),ma(t), a(t)) + gi(s(T ),ms(T )),

The risk-neutral best response problem of i is
supai

ERi,T (ms
0, a) subject to

s(t + 1) ∼ qt+1(.| s(t),ms(t),ma(t), a(t)),
ms(t, .) = Ps(t), s0 ∼ ms

0,

(29)

Let express the expected payoff in terms of the measure m(t, .).

Eri(t, s(t),ms(t),ma(t), a(t)) =

∫
ri(t, s̄,ms(t),ma(t), a(t))ms(t, ds̄) = r̂i(t,m(t), a(t))

where r̂i depends only on the measure m(t) and the strategy profile a(t). Similarly one can rewrite the
expected value of the terminal payoff as

Egi(s(T ),ms(T )) =

∫
gi(s̄,ms(T ))ms(T, ds̄) = ĝi(ms(T )).

Proposition 7. On the space of measures, one has a deterministic dynamic game problem over multiple
stages. Therefore a dynamic programming principle (DPP) holds: Vi(t,ms(t)) = supa′i

{
r̂i(t,ms(t), a′i(t), a−i(t)) + Vi(t + 1,ms(t + 1))

}
ms(t + 1, ds′) =

∫
s
qt+1(ds′| s,ms(t),ma(t), a(t))ms(t, ds)

(30)

As we can see the best-response strategy may be dependent on the state, the mean-field ms, which is
referred to as (state-and-mean-field) feedback strategy. Therefore, ma(t) can be expressed as a function
of (s(t),ms(t)(t, .)). Thus, the payoff r̂i(t, .) can be expressed as a function (m(t, .), a(t)).

Proposition 8. Suppose a sequence of real-valued function Vi(t, .), t ≤ T defined on the set of proba-
bility measures over S is satisfying the DPP relation above. Then Vi(t,m) is the value function on ∆(S)
starting from m(t) = m. Moreover if the supremum is achieved for some action a∗i (.,m), then the best
response strategy is in (state-and-mean-field) feedback form, and the payoff value is

Ri(a∗) = Vi(0,m0).

Proposition 8 provides a sufficiency condition for best-response strategies in terms of (s,ms(t)). The
proof is immediate and follows from the verification theorem of DPP in deterministic dynamic games.
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Particular cases of interest

• Finite state space: Suppose that the state space and the action spaces are nonempty and finite. Let
the state transition be

P(s(t + 1) = s′ | s(t),ms(t),ma(t), a(t)) = qt+1(s′| s(t),ms(t),ma(t), a(t)),

DPP becomes  Vi(t,ms(t)) = supa′i

{
r̂i(t,m(t), a′it, a−i,t) + Vi(t + 1,ms(t + 1))

}
ms(t + 1, s′) =

∑
s∈S qt+1(s′| s,ms(t),ma(t), a(t))ms(t, s)

As for classical polymatrix games, a pure mean-field equilibrium may not exist in general in
mean-field-type games with finite actions. However mixed extension can be adopted. By ex-
tending the action space to the set of probability measures on Ai and the functions r̂it, ĝ,iT qt+1 to
the corresponding mixed extensions, one gets the existence of mean-field equilibria in behavioral
(mixed) strategies for payoffs that are independent of ma.

• Continuous state space: Consider the interactive state dynamics in discrete time

s(t + 1) = s(t) + b(t + 1, s(t),ms(t),ma(t), a(t), ηt+1)

where η is random process. The transition kernel of s(t + 1) given s(t),ms(t),ma(t), a(t) is

qt+1(ds′| s(t),ms(t),ma(t), a(t)) =

∫
η

P(ds′ 3 s(t) + bt+1(s(t),ms(t),ma(t), a(t), η))Pηt+1(dη)

where Pηt+1(dη) denotes the probability distribution of ηt+1. The Bellman equation 7 applies this
case.
• Mean-field free case: If ri(s, a,ms,ma) = ri(s, a) and gi(s,ms) = gi(s) for every decision-maker i

then
r̂i(m, a) =

∫
s
ri(s, a)ms(t, ds).

There exists a function vi such that

Vi(t,ms(t)) = 〈vi(t, .),ms(t, .)〉 =

∫
s
vi(t, s)ms(t, ds),

vi(t, s) is a mean-field free equilibrium payoff function of i. In that case, the dynamic programming
reduces to vi(t, s) = supa′it

Hi(t, s, a′it, a−i,t),

Hi = ri(t, s, a′it, a−i,t) +

∫
s′

vi(t + 1, s′)qt+1(ds′|s(t), a′i(t), a−i(t)),

which is the classical Bellman-Shapley equilibrium system. Note that in this case vi(t, s) =

∂m(t,s)V(t,m).

Finite state continuous time games

Discrete state (countable or finite) games of mean-field type can be analyzed using the above
methodologies. State process becomes a continuous time interactive Markovian decision process in
which mean-field terms such as distribution of states and distribution of control actions are involved in
it.
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6.2. Risk-sensitive games of mean-field type

Each decision-maker has a risk-sensitivity index θi ∈ R. When θi vanishes, one gets the risk-neutral
setup discussed above. Consider the risk-sensitive best response of i as

supai∈Ai
1
θi

log
(
EeθiRi,T

)
subject to

s(t) = s0 +
∫ t

0
bdt′ +

∫ t

0
σdB(t′), t > 0

s(t) = ss0,a(t), s(0) = s0 ∼ m0

m(t, .) = mm0,a(t, .) = Pss0 ,a(t)

(31)

Introduce the following augmented state (s, z) such that zi(0) = 0, and dzi(t) =

ri(t, sa(t),ma(t), a(t)) dt. Then,
eθiRi,T = eθizi(T )+θigi(sa(T ),ma(T )).

Thus, we obtain the following mean-field-type control problem for decision-maker i:

supai
Eeθi[zi(T )+gi(sa(T ),ma(T ))]

za
i (t) =

∫ t

0
ri dt′,

za
i (0) = 0,

s(t) = s0 +
∫ t

0
bdt′ +

∫ t

0
σdB(t′), t > 0

sa(0) = s0.

(32)

Let us introduce µ(t, dsdz) = Psa(t),za(t), the probability measure associated with the joint process
(sa(t), za(t)). Generically, the measure µ solves the Fokker-Planck-Kolmogorov forward equation in the
distributional (weak) sense. The term EeθiRi,T can be rewritten in a deterministic manner as∫

µ(T, dsdz) eθi(zi+gi(s,
∫

z̃ µ(T,.,dz̃))) .

This is a terminal cost in the sense that it is evaluated only at µ(T, .). µ is an infinite dimensional quantity
that serves as a state in the problem. The advantage now is that µ(.) is a deterministic quantity. Since
there is no running cost, one can write directly the HJB equation using classical calculus of variations
for

V̂θ
i (t, µ) = sup

ai∈Ai

∫
µ(T, dsdz) eθi(zi+gi(s,

∫
z̃ µ(T,.,dz̃))),

starting from µ(t, .) = µ at time t : The risk-sensitive best-value is Vθ
i (t, µ) := 1

θi
log V̂θ

i (t, µ).

µt = −∂s[bµ] − divz( fµ) +
1
2
∂ss(σ′σµ), (33)

with initial distribution µ(0, dx, dz) = m0(dx)δ0(dz) and σ′ is the transpose of σ.
The risk-sensitive HJB system yields

0 = V̂θ
i,t(t, µ) +

∫
Hθ

i µ(t, dsdz),

V̂θ
i (T, µ) =

∫
µ(T, dsdz) eθi(zi+gi(s,

∫
z̃ µ(T,.,dz̃))),

i ∈ I (34)
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where Hθ
i (t, s, z, µ, V̂i,zµ, V̂i,ssµ) = supai

b∂sV̂i,µ + 〈r, ∂zV̂i,µ〉 +
σ2

2 ∂ssV̂i,µ. Note that

V̂θ
i (T, µ) =

∫
µ(T, dsdz) eθi(zi+gi(s,

∫
z̃ µ(T,.,dz̃)))

=

∫
s,zi

eθi(zi+gi(s,
∫

z̃i

∫
z̃−i

µ(T,.,dz̃)))
∫

z−i

µ(T, dsdz)

=

∫
s,zi

eθi(zi+gi(s,
∫

z̃i
µi(T,.,dz̃i)))µi(T, dsdzi) = V̂θ

i (T, µi), (35)

where µi(t, dsdzi) =
∫

z−i
µ(t, dsdzidz−i), is the marginal of µwith respect to (s, zi), and V̂θ

i (t, µ) = Ṽi(t, µi),
The above calculation shows that the value function 1

θi
log V̂θ

i depends only on the measure µi

Proposition 9. If there exists a function Ṽ with

Ṽi,t, Ṽi,sµi , Ṽi,ssµi , Ṽi,zzµi ,

satisfying

0 = Ṽi,t +

∫
Hθ

i µi(t, dsdzi),

Ṽi(T, µi) =

∫
µi(T, dsdzi) eθi(zi+gi(s,

∫
z̃ µi(T,.,dz̃))),

µi(t, dsdzi) =

∫
z−i

µ(t, dsdzidz−i),

µt = −∂s[bµ] − divz(rµ) +
1
2
∂ss(σ2µ),

µ(0, dsdz) = m0(ds)δ0(dz),
i ∈ I, (36)

where the integrand Hamiltonian is

Hθ
i (t, s, z, µi, Ṽi,sµi , Ṽi,ziµi , Ṽi,ssµi) = supai

[bṼi,sµi + riṼi,ziµi + σ2

2 Ṽi,ssµi]

= Ṽi,ziµi supai
[ri + b Ṽi,sµi

Ṽi,ziµi
+ σ2

2
Ṽi,ssµi
Ṽi,ziµi

] = Ṽi,ziµi Hi(t, s, z, µi,
Ṽi,sµi
Ṽi,ziµi

,
Ṽi,ssµi
Ṽi,ziµi

)

then 1
θi

log Ṽi(0, µ) is an equilibrium payoff for decision-maker i and the best-response strategy ai min-
imizes Hθ

i given the other decision-makers’ strategies a−i.

Proof. Apply the recipe of Proposition 1 with the augmented state (s, z) and the measure µ �

From the relation

Vθ
i (t, µ) :=

1
θi

log V̂θ
i (t, µ) =⇒ eθiVθ

i (t,µ) = V̂θ
i (t, µ), (37)

It follows that
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V̂θ
i,µ(t, µ) = θiVθ

i,µ(t, µ)eθiVθ
i (t,µ) = θiVθ

i,µ(t, µ)V̂θ
i (t, µ),

V̂θ
i,sµ(t, µ) = θiVθ

i,sµ(t, µ)V̂θ
i (t, µ),

V̂θ
i,zµ(t, µ) = θiVθ

i,zµ(t, µ)V̂θ
i (t, µ),

V̂θ
i,ssµ(t, µ) = θiVθ

i,ssµ(t, µ)V̂θ
i (t, µ),

V̂θ
i,t(t, µ) = θiVθ

i,t(t, µ)V̂θ
i (t, µ).

Thus,
Hθ

i (t, s, z, µi, V̂i,sµi , V̂i,ziµi , V̂i,ssµi) = V̂i,ziµi Hi(t, s, z, µi,
V̂i,sµi

V̂i,ziµi
,

V̂i,ssµi

V̂i,ziµi
)

Hi(t, s, z, µi,
Vθ

i,sµi
Vθ

i,ziµi

,
Vθ

i,ssµi
Vθ

i,ziµi

)

0 = θiVθ
i,t(t, µ)V̂θ

i (t, µ) +

∫
θiVθ

i,zµV̂
θ
i (t, µ).Hi(t, s, z, µi,

Vθ
i,sµi

Vθ
i,ziµi

,
Vθ

i,ssµi

Vθ
i,ziµi

)µi(t, dsdzi),

Vθ
i (T, µi) =

1
θi

log
[∫

µi(T, dsdzi) eθi(zi+gi(s,
∫

z̃ µi(T,.,dz̃)))
]
,

By symplifying by θiV̂θ
i (t, µ) , 0, we obtain that the risk-sensitive best-response payoff Vθ

i (t, µ)
solves the functional PDE given by

0 = Vθ
i,t(t, µ) +

∫
Vθ

i,zµ.Hi(t, s, z, µi,
Vθ

i,sµi

Vθ
i,ziµi

,
Vθ

i,ssµi

Vθ
i,ziµi

)µi(t, dsdzi),

Vθ
i (T, µi) =

1
θi

log
[∫

µi(T, dsdzi) eθi(zi+gi(s,
∫

z̃ µi(T,.,dz̃)))
]
,

µi(t, dsdzi) =

∫
z−i

µ(t, dsdzidz−i),

µt = −∂s[bµ] − divz(rµ) +
1
2
∂ss(σ2µ),

µ(0, dsdz) = m0(ds)δ0(dz),
i ∈ I, (38)

Let ṽ∗i (t, s, zi) := Ṽi,µi(µi)(t, s, zi). It follows that ṽ∗i (t, s, zi) solves the following PDE system:

0 = ṽ∗i,t + ṽ∗i,zi
Hi(t, s, zi, µi,

ṽ∗i,s
ṽ∗i,zi
,

ṽ∗i,ss

ṽ∗i,zi
) +

∫
ṽ∗i,z̃i

Hi,µiµi(t, ds̃, dz̃i).

The terminal condition for this PDE is

ṽ∗i (T, s, zi) = eθi(zi+gi(s,m(T ))) + θi

∫
gi,m(s̃,m(T ))(s)eθi(z̃i+gi(s̃,m(T ))) µi(T, ds̃, dz̃i).

From the equality Ṽθ
i,µ(t, µ) = θiVθ

i,µ(t, µ)Ṽθ
i (t, µ), we deduce that the function v∗i (t, s, zi) :=

Vθ
i,µi

(µi)(t, s, zi) =
Ṽθ

i,µ

θiṼθ
i

=
ṽ∗i (t,s,zi)
θiṼθ

i
is the dual function associated with the risk-sensitive best response

value of decision-maker i.
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Note that, as in the risk-neutral case, in general, the risk-sensitive dual function v∗(t, s, zi) is different
than the risk-sensitive payoff function Vθ(t, µi) or Vθ(t, µ).

Itô’s formula applied to
pθi (t) =

ṽ∗i,s(t,s(t),zi(t))
ṽ∗i,zi

(t,s(t),zi(t))
=

Ṽi,sµi (t,s(t),zi(t))
Ṽi,ziµi (t,s(t),zi(t))

,

provides a risk-sensitive first-order adjoint equation with the risk-sensitive Hamiltonian Hθ
i =

Hi(t, s,m, pθi , q
θ
i + pθi li).

Proposition 10. For θi , 0, the risk-sensitive first order adjoint process (pθi , q
θ
i , li, ηi)i∈I solves

dpθi = −{Hi,s + 1
ηi
E[ηiHi,sµi]}dt + qθi [−lidt + dB],

pθi (T ) = gi,s + 1
ηi(T )E{ηi(T )∂sgi,m},

dηi = ηilidB,
ηi(T ) = θieθi[zi(T )+gi(s(T ),m(T,.))

Proposition 10 provides a risk-sensitive first order system for stochastic maximum principle of
mean-field type. By identification of processes, one obtains

pθi (t) =
ṽ∗i,s(t,s(t),zi(t))
ṽ∗i,zi

(t,s(t),zi(t))
=

Ṽi,sµi (t,s(t),zi(t))
Ṽi,ziµi (t,s(t),zi(t))

,

qθi = σ
ṽ∗i,ss

ηi
− pθi li,

ηi(t) = ṽ∗i,zi
(t, s(t), zi(t)),

li = σ
ηi,s

ηi
= σ∂s[ log ηi]

Proof. A proof can be obtained by following similar steps as for the proof of Proposition 4. �

6.3. Coalitional mean-field-type games

One of the fundamental element in the theory of cooperative games is the formulation of the optimal
behavior for the decision-makers. Decision-maker behavior (control action and imputations) satisfying
specific optimality behaviors then constitutes a solution of the game. In other words, a solution concept
of a dynamic cooperative game is produced by a set of optimality principles such as dynamic bargaining
solution and payoff allocation procedure. Altruism and cooperation are fascinating research areas.
Intuitively, one has attempted to claim that the decision-makers are better off when they all work
cooperatively. However, we are often observing very strange behaviors that are far from cooperation.
So, if cooperation is answer, what is the question and why these strange behaviors?

Let us consider a simple example cooperative mean-field-type game [42] with two decision-makers.
Assume that if they work together (jointly) they will be able to get V({12},m0, [0,T ]). DM 1 gets
V({1},m0, [0,T ]) if he or she works alone and DM 2 gets V({2},m0, [0,T ]). From these three values, it
is not clear why these decision-makers should work together. In order to formalize it in terms of their
interest, we introduce a cost of making a coalition, C({12},m0, [0,T ]) ≥ 0 which is the cost incurred
when both decision-makers pool their effort (it includes information exchanging cost, coalition creation
cost, etc). While this cost is often neglected in the literature, it may be important in many setups. Thus,
a necessary condition for possible cooperation between the decision-makers is

V({12},m0, [0,T ]) −C({12},m0, [0,T ]) > V({1},m0, [0,T ]) + V({2},m0, [0,T ]).
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Then, the next question is: what will be their payoff if they cooperate? To answer to this question,
we need to know how to share the outcome of the cooperation. It is clear that allocating the equal share
1
2 [V({12},m0, [0,T ]) − C({12},m0, [0,T ])] to each decision-maker is not necessary appropriate since it
can be less than mini(V({i},m0, [0,T ])). Thus, the allocation has to be done in a more clever way.

Cooperative game-theoretic solutions such as Bargaining solution, Core, Shapley value, Nucleolus
dealt with such problems. When stochasticity and time-dependence are involved, the solution concepts
require careful adaptations. In addition, if the payoff function and the state dynamics are of mean-field
type, the optimality equations need to be established. In terms of equilibrium payoffs, a mean-field-
type Nash equilibrium could plays the role of a benchmark in a cooperative game, i.e., gives what
decision-makers could secure for themselves if there is no agreement, i.e., V({i},m0, [0,T ])).

Let Rc,i be the total before-side-payment cooperative payoff of decision-maker i i.e.,

E[gi(sc(T ),mc(T )) +

∫ T

0
ri(t, sc(t),mc(t), ac(t))dt]

sc is the optimal state under cooperative (joint) decision-making scenario. One has
∑

j∈J Rc, j =

V(J ,m0, [0,T ])). However, one needs to find a better way to share the payoff V(J ,m0, [0,T ]) −
C(J ,m0, [0,T ]). This leads to the introduction of the notion of imputation, i.e., a vector profile
(γ j) j∈J such that

∑
j∈J ′ γ j ≥ V(J ′,m0, [0,T ]) − C(J ′,m0, [0,T ]) for any J ′ ⊂ J , and

∑
j∈J γ j =

V(J ,m0, [0,T ]) −C(J ,m0, [0,T ])
By virtue of mean-field type joint optimization, the sum of individual payoffs under cooperation is

greater or equal to its noncooperative counterpart, i.e.,∑
j∈J

Rc, j ≥
∑
j∈J

V({ j},m0, [0,T ]).

Thus, the dividend of cooperation (without the coalition making cost) is

DC =
∑
j∈J

Rc, j −
∑
j∈J

V({ j},m0, [0,T ]) ≥ 0.

Thus, the dividend of cooperation (with the coalition making cost) to be distributed among the
decision-makers is DC −C(J ,m0, [0,T ]).

As a first consequence, it is clear if the coalition making cost is too high (compared to the game
coalition value) then there is no reason for the decision-makers to form coalition.

Therefore for cooperation purpose we require the positivity of DC−C(J ,m0, [0,T ]). Using a coop-
erative game approach yields individual payoffs for the whole interval [0,T ]. The selected imputation
has, by definition, the property that each decision-maker’s payoff in the cooperative game is higher or
equal to what she would get in a noncooperative game played on the same time interval.

Let γi(t) = γ({i},J ,m0, [t,T ]) be the cooperative payoff-to-go after side payment for decision-maker
i at position [t,T ], 0 < t < T of the game. This is the amount of individual payoff that decision-maker
i will actually get. One way sharing the payoff is to use a dynamical Shapley value. The allocated
payoff to decision-maker i under Shaley value is

γi =
∑

J ′⊂J ,i<J ′

|J ′|!(|J| − |J ′| − 1)!
|J|!

[(V −C)(J ′ ∪ {i}, [t,T ]) − (V −C)(J ′, [t,T ])]. (39)
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For two decision-makers case, the payoffs of the decision-makers are

γ1 =

V({1},m0, [0,T ]) + 1
2 [V({12},m0, [0,T ]) −C({12},m0, [0,T ]) − V({1},m0, [0,T ]) − V({2},m0, [0,T ])] ,

γ2 =

V({2},m0, [0,T ]) + 1
2 [V({12},m0, [0,T ]) −C({12},m0, [0,T ]) − V({1},m0, [0,T ]) − V({2},m0, [0,T ])] .

Definition 4. A cooperative solution is time consistent if, at any position t ∈ [0,T ] the cooperation
solution payoff to go γ({i},m(t), [t,T ]) ≥ V({i},m(t), [t,T ]) where the deviating payoff V({i},m(t), [t,T ])
is computed along the cooperative state trajectory sc(t).

This notion of time consistency and its implementation in cooperative differential games was intro-
duced in [6]. A stronger notion of time consistency is that the cooperative payoff-to-go dominates the
noncooperative payoff-to-go for any state s(t), t ∈ [[0,T ]. This is called sub-game consistent solution.

Though one of the most commonly used allocation principles is the dynamical Shapley value, how-
ever, in the case when decision-makers may be asymmetric in their powers and sizes of payoffs, equal
imputation of cooperative gains may not be totally agreeable to asymmetric decision-maker. To over-
come this, one can suggest the allocation principle in which the decision-makers, shares of the gain
from cooperation are proportional to the relative sizes of their expected deviating payoffs. Thus, a
proportional time-consistent solution is given by

γi(s) =
V({i}, [t,T ])∑
i V({i}, [t,T ])

[V(J , [t,T ]) −C(J , [t,T ])]. (40)

If these quantities are positive, one gets γ({i},I, [t,T ]) ≥ V({i},m(t), [t,T ]),∀t, (individual rational-
ity) and

∑
i∈I γ({i},I, [t,T ]) = V(I,m(t), [t,T ]) −C(I, [s,T ]) (efficiency at any time).

For dynamic games, an additional and stringent condition on the solutions is required: The specific
optimality principle must remain optimal at any instant of time throughout the game duration along the
optimal state trajectory. This condition is known as dynamic stability or time consistency.

In the context of mean-field type games, the notion of time consistency is crucial since the initial
distribution of states and starting time influences naturally the Kolmogorov forward equation. A coop-
erative solution is sub-game consistent if an extension of the cooperative strategy to a situation with a
later starting time and to any possible state brought about by the prior optimal behavior of the decision-
makers remains optimal. Sub-game consistent is a stronger notion of time consistency. In the presence
of stochastic elements, sub-game consistency is required in a credible cooperative solution. In the field
of cooperative mean-field type games, little research has been published to date on sub-game consistent
solutions.

If the set A is a non-convex but a general separable complete metric space (Polish space), Pon-
tryagin’s approach suggests the following perturbation method called spike variation. The approach is
well-adapted to sub-game perfection in games. Fix (t, s) ∈ [0,T ] × S and define the control law aε as
the spike variation of â over the set [t, t + ε], ε > 0 i.e.,

aε(t′) = a(t′)1l[t,t+ε](t′) + â(t′)1l[0,T ]\[t,t+ε](t′),

where a is an arbitrary admissible control and 1l[t,t+ε] is the indicator function over the set [t, t + ε].
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Definition 5. Let RJ be objective to be maximized in a. We say that â is a sub-game perfect cooperative
strategy under spike variation if for any t0, s0, a,

lim
ε→0

1
ε

[RJ([t0,T ], s0, â) − RJ([t0,T ], s0, aε) ] ≥ 0.

Note that a sub-game perfect cooperative strategy under spike variation is in particular a time con-
sistent solution.

The key difference here is that the solution that we are looking for, should not depend on the initial
data (when and where we started).

Let Ht0,s0 be the Pontryagin function associated with the random variable s that starts from s0 at
t0 ∈ [0,T ]. Ht0,s0(t, s,m, a, p, q) = bpt0,s0 + σqt0,s0 + rt0,s0

J , where the notation rt0,s0 is obtained from r
when the aggregate term is m = mt0,s0,a. The first order adjoint equation process (pt0,s0 , qt0,s0) under
optimal cooperative control law becomes

dpt0,s0 = −[Ht0,s0
s + E∂sH

t0,s0
m ]dt + qt0,s0dB(t), t > t0,

pt0,x0(T ) = gt0,s0
s (T ) + E∂sg

t0,s0
m (T ).

(41)

The second order adjoint equation (Pt0,s0 ,Qt0,s0) is defined following similar steps as in (14) but with
conditioning on t0, s0.

Proposition 11. Let the assumptions of Lemma 5 hold. If (x̂, â) is an optimal solution of the cooperative
mean-field type game then there are two pairs of processes (p, q), (P,Q) that satisfy the first order and
the second order adjoint equations, such that

Ht,x̂(t)(t, x̂, m̂, â, pt,x̂(t), qt,x̂(t)) − Ht,x̂(t)(t, x̂, m̂, a, pt,x̂(t), qt,x̂(t))

+
1
2

Pt,x̂(t)(t) (σ(t, x̂, m̂, â) − σ(t, x̂, m̂, a))2
≥ 0,

for all a(.) ∈ A, almost every t and P−almost surely.

7. Concluding remarks

In this article, basic results on mean-field-type games were presented. Most of the results presented
here extend to the multi-dimensional state case (vector or matrix), and the state-of-the-art stochastic
maximum principle can carried out random coefficient functions, common noise as well as time delays
and backward-forward stochastic integro-differential equation. The state-of-art dynamic programming
principle works on infinite dimension, in the space of measures. By introducing dual functions which
are weak Gateaux-derivatives, relationships between stochastic maximum principle and dynamic pro-
gramming were established. The methodology was shown to be flexible enough to carry out partial
state observation and imperfect state measurement in the non-degenerate case using Girsanov trans-
form. Wiener chaos expansion of the underlying processes were proposed to solve the game problems
and truncature error bounds were derived using Kosambi-Karhunen-Loeve’s approach. This allows
one to solve efficiently of the mean-field-type problem much faster than standard methods as multi-
level Monte-Carlo sampling or stochastic collocation methods. The choice of a basis is crucial as the
number of elements influence the curse of dimensionality of the problem. Sparse representation and
non-intrusive proper generalized decomposition of the processes may be needed in order to signifi-
cantly reduce the complexity.
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