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Abstract: It is well known that the harmonic sum Hn(1) =
∑

1≤k≤n
1
k is never an integer for n > 1.

Erdös and Niven proved in 1946 that the multiple harmonic sum Hn({1}r) =
∑

1≤k1<···<kr≤n
1

k1···kr
can take

integer values for at most finite many integers n. In 2012, Chen and Tang refined this result by showing
that Hn({1}r) is an integer only for (n, r) = (1, 1) and (n, r) = (3, 2). In this paper, we consider the
integrality problem for the first and second elementary symmetric function of 1, 1/2s2 , ..., 1/nsn , we
show that none of them is an integer with some natural exceptions.
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1. Introduction

A well-known result in number theory states that the harmonic sum

Hn(1) :=
n∑

k=1

1
k

is never an integer for n > 1. The first published proof went back to 1915 by Leopold Theisinger. In
1946, Erdös and Niven proved that the multiple harmonic sum

Hn({1}r) =
∑

1≤k1<···<kr≤n

1
k1 · · · kr

is not an integer with finite exceptions. In 2012, Chen and Tang showed a stronger result stating that
Hn({1}r) is an integer only for (n, r) = (1, 1) and (n, r) = (3, 2).
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For an n-tuple vector s = (s1, s2, · · · , sn) with si ∈ Z
+ and n ≥ 2, we define the first ordinary multiple

harmonic sum H(1)
n (s1, . . . , sn) as

H(1)
n (s1, . . . , sn) :=

n∑
i=1

1
isi
,

and the second ordinary multiple harmonic sum H(2)
n (s1, . . . , sn) as

H(2)
n (s1, . . . , sn) :=

∑
1≤i< j≤n

1
isi js j
,

and the second star multiple harmonic sum H∗(2)
n (s1, . . . , sn) as

H∗(2)
n (s1, . . . , sn) =

∑
1≤i≤ j≤n

1
isi js j
.

We shall prove that H(1)
n (s1, . . . , sn), H(2)

n (s1, . . . , sn) and H∗(2)
n (s1, . . . , sn) are not integers except some

special cases.
Let p be a prime and vp(q) be the p-adic valuation of rational number q, that is, if q = apn

bpm with

gcd(a, p) = gcd(b, p) = 1 and m, n ∈ Z+, then vp( apn

bpm ) = n − m. It is well known that the following two
statements are true:

(1). For any x, y ∈ Q, one has

vp(x + y) ≥ min(vp(x), vp(y)),

and the equality holds if vp(x) , vp(y).
(2). For any x1, x2, . . . , xn ∈ Q, one has

vp(x1 + x2 + · · · + xn) ≥ min
(
vp(x1), vp(x2), . . . , vp(xn)

)
,

and the equality holds if there exists an i such that vp(xi) < vp(x j) for all integers j with j , i.
To express concisely, we take the following abbreviations: H(2)

n := H(2)
n (s1, . . . , sn), H∗(2)

n :=
H∗(2)

n (s1, . . . , sn). We denote the sum H(2)
n when si is fixed and s j → ∞ by H(2)

n (si = k) and H(2)
n (s j → ∞)

respectively.
Now we state our main results.

Theorem 1.1. Let n be an integer with n ≥ 2 and si ∈ Z
+ for 1 ≤ i ≤ n. Then H(1)

n is never an integer.

Theorem 1.2. Let n be an integer with n ≥ 2 and si ∈ Z
+ for 1 ≤ i ≤ n. Then each of the following is

true:
(i). H∗(2)

n is never an integer.
(ii). H(2)

n is never an integer except that n = 3, s2 = s3 = 1, in which case, H(2)
n is an integer.

Remark 1.1. We can get an approximating value by the following expansion

H(2)
n =

1
2

(( n∑
i=1

1
isi

)2
−

n∑
i=1

1
i2si

)
.

Actually, if we fix the valuation of n and s1, . . . , sn, we can get an approximate value by hand from the
expansion above.

In the next two sections, we first show that when n = 9 and n = 21, H(2)
n is not an integer, i.e. H(2)

9
and H(2)

21 are not integers. And the remaining cases will be treated in the final section. The proofs of
Theorems 1.1 and 1.2 are also given in the final section.
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2. The case n = 9

In this section, we show the fact that H(2)
9 is not an integer. At first, we have following lemmas.

Lemma 2.1. For a fixed prime p and a positive integer n with p < n, let k := [ n
p ],

Tp :=
∑

1≤i< j≤n,
vp(i)vp( j)≥1

1
isi js j

and
m := min

(
− vp(psp),−vp((2p)s2p), . . . ,−vp((kp)skp)

)
.

If vp(Tp) < m, then H(2)
n < Z

+.

Proof. Since vp( 1
isi js j ) ≥ m for any 1 ≤ i , j ≤ n with vp(i)vp( j) = 0, it then follows that

vp(H(2)
n − Tp) ≥ m.

On the other hand, since vp(Tp) < m, we have vp(Tp) < m ≤ vp(H(2)
n − Tp). Thus

vp(H(2)
n ) = vp

(
Tp + (H(2)

n − Tp)
)
= vp(Tp) < 0,

the last inequality is true because vp(Tp) < m < 0. So H(2)
n is not an integer. �

Remark 2.1. Let tp = Tp psp(2p)s2p · · · (kp)skp . Then

vp(tp) = vp(Tp) +
k∑

i=1

vp
(
(ip)sip

)
.

So vp(Tp) < m if and only if

vp(tp) < m +
k∑

i=1

vp
(
(ip)sip

)
. (2.1)

Remark 2.2. For a fixed k with 2 ≤ k ≤ n, if sk < s′k, then

H(2)
n (s1, . . . , sk, . . . , sn) > H(2)

n (s1, . . . , s′k, . . . , sn),

Moreover, for any tk satisfies sk ≥ tk, we denote all H(2)
n (tk) as H(2)

n (sk ≥ tk), then

H(2)
n (sk → ∞) < H(2)

n (sk ≥ tk) ≤ H(2)
n (sk = tk).

Lemma 2.2. We have that H(2)
9 is not an integer.

Proof. By Lemma 2.1 and Remark 2.1, we consider the cases satisfying (2.1) for p = 3. Namely,

v3(t3) < m + s3 + s6 + 2s9 = min(s3 + s6, s3 + 2s9, s6 + 2s9), (2.2)

where m = min(−s3,−s6,−2s9), t3 = 3s3 + 6s6 + 9s9 . Next, we consider the following cases.
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Case 1. s3 = s6 = 2s9. Since s3 = 2s9 ≥ 2, so 2 + 2s3 < 3s3 .Then we have t3 = 3s3 + 6s3 + 32s9 =

3s3(2 + 2s3) < 32s3 , which implies that

v3(t3) < 2s3 = min(s3 + s6, s3 + 2s9, s6 + 2s9)

Case 2. There is only one of s3, s6, 2s9 equals to min(s3, s6, 2s9). Hence it is obvious that v3(t3) =
min(s3, s6, 2s9) < min(s3 + s6, s3 + 2s9, s6 + 2s9).

Case 3. s6 = 2s9 < s3. Then one has t3 = 3s3 + 32s9(1 + 22s9). But 1 + 22s9 = 1 + 4s9 ≡ 2 (mod 3),
so we deduce that

v3(t3) =v3(3s3 + 32s9(1 + 22s9))
=v3(32s9(1 + 22s9)) = 2s9

<4s9 = min(s3 + s6, s3 + 2s9, s6 + 2s9)

Case 4. s3 = 2s9 < s6. Thus t3 = 2 × 32s9 + 6s6 = 2 × 32s9 + 2s63s6 , since 3 does not divide 2 or 2s6 ,
then it follows that

v3(t3) = v3(2 × 32s9) = 2s9 < 4s9 = min(s3 + s6, s3 + 2s9, s6 + 2s9).

Case 5. s3 = s6 < 2s9. We divide the proof into the following subcases.
Case 5.1. 2 ≤ s3 < 2s9 < 2s3. Then we have t3 = 3s3 + 6s3 + 32s9 ≤ 3s3(1 + 2s3) + 32s3−2 =

3s3(1 + 2s3 + 3s3−2). Since s3 ≥ 2, so 1 + 2s3 + 3s3−2 < 3s3 , which implies that

v3(t3) < 2s3 = min(s3 + s6, s3 + 2s9, s6 + 2s9)

as excepted.
Case 5.2. 2 ≤ s3 < 2s3 ≤ 2s9. One has

v3(t3) = v3(3s3(1 + 2s3) + 32s9)
= v3(3s3(1 + 2s3))
< 2s3 = min(s3 + s6, s3 + 2s9, s6 + 2s9).

Case 5.3. 1 = s3 = s6 < 2s9. In this case, we consider H(2)
9 (s2 = 4, s3 = s4 = s5 = s6 = s7 = s8 =

s9 = 1). Then it is easy to see that

v3(t3) = 2 = min(s3 + s6, s3 + 2s9, s6 + 2s9),

i.e. (2.2) does not hold any more. Thus we have to investigate (2.1) for another prime. Actually, we
choose p = 2, that is, we will prove the following inequality

v2(t2) < min(s2 + 2s4 + 1, s2 + 1 + 3s8, 2s4 + 1 + 3s8, s2 + 2s4 + 3s8).

Notice that 3s8, s2, 2s4 ≥ 1, then we only need to show

v2(t2) < min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1. (2.3)
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Subcase 5.3.1. s2 = 1. Then we deduce that t2 = 22×3+22s4+3+23+3s8 +22s4+3s8 which implies that

v2(t2) = 2 < 2 +min(2s4, 3s8) = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

Subcase 5.3.2. s2 > 1, and there’s only one of s2, 2s4, 3s8 equals to min(s2, 2s4, 3s8). Just like Case
2 stated, v2(t2) = min(s2, 2s4, 3s8) + 1, so

v2(t2) < min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

Subcase 5.3.3. 3s8 = 2s4 < s2. Then we have t2 = 2s2+2s4+1+24s4 +3×2s2+1+3×22s4+2. Obviously,
we only need to compare 2s4 + 2 with s2 + 2s4.

(1) 2s4 + 2 , s2 + 1. Then

v2(t2) = min(2s4 + 2, s2 + 1) ≤ 2 + 2s4 < 4s4 + 1 = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1,

(2) 2s4 + 2 = s2 + 1. We deduce that

v2(t2) = 2s4 + 3 < 4s4 + 1 = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

Subcase 5.3.4. 1 < s2 = 2s4 < 3s8. It infers that

t2 = 22s4+3s8+1 + 24s4 + 3 × 23s8+1 + 3 × 22s4+2.

Moreover, it’s easy to see 2s4 + 3s8 + 1 > max(4s4, 3s8 + 1, 2s4 + 2).
(1) s4 ≥ 3, so s2 ≥ 6. Then we have 2s4 + 2 ≤ 3s8 + 1 and 2s4 + 2 < 4s4, which implies that if

2s4 + 2 = 3s8 + 1, then

v2(t2) = v2(22s4+3s8+1 + 24s4 + 3 × 22s4+3)
= 2s4 + 3
< 1 + 4s4 = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

and if 2s4 + 2 < 3s8 + 1 we have

v2(t2) = 2 + 2s4 < 1 + 4s4 = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

(2) s4 = 2, so s2 = 4. Then we have 2s4 + 2 < min(4s4, 3s8 + 1), which infers that

v2(t2) = 2s4 + 2 < 1 + 4s4 = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

(3) s4 = 1 and s8 = 1, so s2 = 2. Then t2 = 27 + 3 × 24, and we derive that

v2(t2) = 4 < 7 = min(s2 + 2s4 + 1, s2 + 1 + 3s8, 2s4 + 1 + 3s8).

(4) s4 = 1, s8 ≥ 2 ,so s2 = 2.
In this subcase, the inequality (2.3) does not hold. In fact, we have t2 = 23s8+3 + 26 + 3 × 23s8+1 and

min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1 = 1 +min(4, 2 + 2s8). Then it follows that v2(t2) = min(6, 3s8) >
1 +min(4, 2 + 2s8) (s8 ≥ 2).

But fortunately, we can calculate the approximate value. Recall that s3 = s4 = s6 = 1 and s8 ≥ 2.
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If s5 ≥ 3, then by the expansion in Remark 1.1 and Remark 2.2 we have

1 < H(2)
9 (s3 = s4 = s6 = 1, s2 = 2, s5, s7, s8, s9 → ∞)

< H(2)
9 (s3 = s4 = s6 = 1, s2 = 2, s5 ≥ 3, s8 ≥ 2)

≤ H(2)
9 (s3 = s4 = s6 = s7 = s9 = 1, s2 = s8 = 2, s5 = 3) < 2.

Hence H(2)
9 (s3 = s4 = s6 = 1, s2 = 2, s5 ≥ 3, s8 ≥ 2) is not an integer.

If s5 = 2, we have to classify the case by s7, s9. Indeed, one has

1 < H(2)
9 (s3 = s4 = s6 = 1, s2 = s5 = 2, s8 ≥ 2, s7 = 1, s9 ≥ 2) < 2

and
1 < H(2)

9 (s3 = s4 = s6 = 1, s2 = s5 = 2, s8 ≥ 2, s7 ≥ 2, s9 = 1) < 2.

Moreover H(2)
9 (s3 = s4 = s6 = 1, s2 = s5 = 2, s8 ≥ 2, s7 = s9 = 1) is a decreasing function with the

single variable s8. Thus we derive that

H(2)
9 (s3 = s4 = s6 = s7 = s9 = 1, s2 = s5 = s8 = 2) ≈ 2.02,

and by Remark 2.2,

1 < H(2)
9 (s3 = s4 = s6 = s7 = s9 = 1, s2 = s5 = 2, s8 ≥ 3) < 1.99,

which yields that H(2)
9 (s3 = s4 = s6 = 1, s2 = s5 = 2, s8 ≥ 2) is not an integer.

if s5 = 1, as the discussion above, we get that

2 < H(2)
9 (s3 = s4 = s6 = s5 = 1, s2 = 2, s8 ≥ 2, s7 = s9 = 1) < 3,

2 < H(2)
9 (s3 = s4 = s6 = s5 = 1, s2 = 2, s8 ≥ 2, s7 = 1, s9 > 1) < 3,

2 < H(2)
9 (s3 = s4 = s6 = s5 = 1, s2 = 2, s8 ≥ 2, s9 = 1, s7 > 1) < 3,

1 < H(2)
9 (s3 = s4 = s6 = s5 = 1, s2 = 2, s8 ≥ 2, s7 > 1, s9 > 1) < 2.

so H(2)
9 (s3 = s4 = s6 = s5 = 1, s2 = 2, s8 ≥ 2) is not an integer.

Subcase 5.3.5. 1 < s2 = 3s8 < 2s4. Then

t2 = 22s4+3s8+1 + 26s8 + 3 × 22s4+1 + 3 × 23s8+2.

(1) s4 = 2 . We can get an approximate value in the same way.
i.e. 1 < H(2)

9 (s3 = s6 = s8 = 1, s2 = 3, s4 = 2) < 2. It implies that H(2)
9 (s3 = s6 = s8 = 1, s2 = 3, s4 =

2) is not an integer.
(2) s4 ≥ 3 and 2s4 > 3s8 + 1. Then

v2(t2) = 3s8 + 2 < 1 + 6s8 = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

(3) s4 ≥ 3 and 2s4 = 3s8 + 1. Then we have t = 26s8+2 + 26s8 + 3 × 23s8+3, which implies that

v2(t2) = 3s8 + 3 < 1 + 6s8 = min(s2 + 2s4, s2 + 3s8, 2s4 + 3s8) + 1.

Thus we finish the proof of Lemma 2.2. �
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3. The case n = 21

In this section, we take the same results of Lemma 2.1 and Remark 2.1 in proof. And we have the
following lemma. This is also needed in the proof of Theorem 1.2.

Lemma 3.1. We have that v7
(
H(2)

21
)
< 0. So H(2)

21 is not an integer.

Proof. By Lemma 2.1 and Remark 2.1, we consider the cases satisfying (2.1) for p = 7. That is,

v7(t7) < m + s7 + s14 + s21 = min(s7 + s14, s7 + s14, s14 + s21) (3.1)

where m = min(−s7,−s14,−s21), t3 = 7s7 + 14s14 + 21s21 .

Case 1. s7 = s14 = s21. Then we have t7 = 7s7(1 + 2s7 + 3s7) < 7s77s7 = 72s7 and it implies
v7(t7) < 2s7 = min(s7 + s14, s7 + s14, s14 + s21).

Case 2. There’s only one of s7, s14, s21 equals to min(s7, s14, s21). Just like the process we took
before, we have

v7(t7) = min(7s7 , 14s14 , 21s21) < min(s7 + s14, s7 + s14, s14 + s21).

Case 3. s7 = s14 < s21. We can simplify t7 = 7s7(1 + 2s7) + 7s213s21 . Since 7 does not divide 1 + 2s7 ,
then

v7(t7) = min(s7, s21) = s7 < 2s7 = min(s7 + s14, s7 + s14, s14 + s21).

Case 4. s14 = s21 < s7. Consider the following cases:
(1) s14 < 2s14 ≤ s7. Thus 2s14 + 3s14 < 7s14 . So we have 7s14(2s14 + 3s14) < 72s14 < 7s7 . It means

v7(t7) = v7(7s14(2s14 + 3s14) + 7s7)
= v7(7s14(2s14 + 3s14))
< 2s14 = min(s7 + s14, s7 + s14, s14 + s21).

(2) s14 < s7 < 2s14. Then t7 = 7s14(7s7−s14 + 2s14 + 3s14) < 7s14(7s14−1 + 5s14) < 72s14 . Hence v7(t7) <
2s14 = min(s7 + s14, s7 + s21, s14 + s21).

Case 5. s7 = s21 < s14. Then t7 = 7s7(1 + 3s7) + 7s142s14 . Since 7 divides 1 + 3s7 sometimes, let
v := v7(1 + 3s7).

Case 5.1. v , s14 − s7. Then v7(t7) = min(s7 + v, s14) ≤ s7 + v. Since 1 + 3s7 < 7s7 , so v < s7, which
implies that

v7(t7) ≤ s7 + v < 2s7 = min(s7 + s14, s7 + s21, s14 + s21).

Case 5.2. v = s14 − s7. Since 3s7 ≡ −1 (mod 7v), then 32s7 ≡ 1 (mod 7v).
On the other hand, it is easy to see 3 is a primitive root module 7, which yields that the order of 3

modulo 7v is (7 − 1)7v−1 = ϕ(7v) (see [6], Theorem 3.6), that is, 3 is a primitive root module 7v. Then
2s7 ≥ ϕ(7v) = 6 × 7v−1. Hence s7 ≥ 3 × 7v−1 ≥ 3v, so we have s7+v

2 ≤ s7 − v. Then it follows that

a = 7s7 + 14s14 + 21s21 = 7s7 + 14s7+v + 21s7

= 7s7+v(
1 + 3s7

7v + 4
s7+v

2 )

< 7s7+v(3s7−v + 4s7−v)
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< 7s7+v7s7−v = 72s7 .

Thus v7(t7) < 2s7 = min(s7 + s14, s7 + s14, s14 + s21).
Therefore, Lemma 3.1 is proved. �

4. Proofs of Theorems 1.1 and 1.2

In this section, we present the proofs of Theorems 1.1 and 1.2. We begin with the proof of Theorem
1.1.

Proof of Theorem 1.1. If n ≥ 2, then by Bertrand’s postulate, there exists one prime p such
that n

2 < p ≤ n. Then p ≤ n < 2p. Thus one has

H(1)
n =

∑
1≤i≤n,

i=p

1
isi
+

∑
1≤i≤n,

i,p

1
isi
=

1
psp
+

∑
1≤i≤n,

i,p

1
isi
.

Since vp( 1
isi ) = 0 > vp( 1

psp ) = −sp for any 1 ≤ i ≤ n with i , p, then

vp(H(1)
n ) = vp(

1
psp

) = −sp < 0.

i.e. for n ≥ 2, H(1)
n is never an integer. �

In order to prove Theorem 1.2, we need the following lemmas.

Lemma 4.1. Let n ≥ 2. If there is a prime p and p ∈ ( n
3 ,

n
2 ], then H(2)

n is not an integer.

Proof. Since p ∈ ( n
3 ,

n
2 ], then 2p ≤ n < 3p. Hence

H(2)
n =

∑
1≤i< j≤n,

vp(i)vp( j)>0

1
isi js j

+
∑

1≤i< j≤n,
vp(i)vp( j)=0

1
isi js j

=
1

2s2p psp+s2p
+

∑
1≤i< j≤n,

vp(i)vp( j)=0

1
isi js j
,

Since for any 1 ≤ i , j ≤ n with vp(i)vp( j) = 0, we have

vp(
1

isi js j
) ≥ min(−sp,−s2p) > −(sp + s2p) ≥ vp(

1
2s2p psp+s2p

).

The last inequality holds for the case of p = 2. Then

vp(H(2)
n ) = vp(

1
2s2p psp+s2p

) ≤ −(sp + s2p) < 0.

So if n ≥ 2 and there is a prime p such that p ∈ ( n
3 ,

n
2 ], then H(2)

n is not an integer. �

Let
H =

⋃
p∈P

[2p, 3p)

where P is the set consisting of all primes. Then for any integer n, it is easy to see that n ∈ H if and
only if there exists one prime p, such that p ∈ ( n

3 ,
n
2 ]. Moreover, we have the following lemma.
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Lemma 4.2. ([3]) The set Z+\H is finite and max(Z+\H) = 21.

We can now give the proof of Theorem 1.2 as the conclusion of this paper.

Proof of Theorem 1.2. We divide the proof into two parts. First of all, we prove that H(2)
n is

never an integer except that n = 3, s2 = s3 = 1.
Case 1. n ∈ H. Then by Lemma 4.1, we have H(2)

n is not an integer.
Case 2. n < H. By Lemma 4.2, we have Z+\H is finite and max(Z+\H) = 21. So if n > 21, then

n ∈ H. Furthermore, we have that

H = [4, 6)
⋃

[6, 9)
⋃

[10, 15)
⋃

[14, 21)
⋃

p>7,p∈P

[2p, 3p)

Thus it follows that if n < H, n equals to one of 2, 3, 9, 21. Next, we will prove that none of
H(2)

2 ,H
(2)
3 ,H

(2)
9 and H(2)

21 is an integer.
Case 2.1. n = 2. Then it is obvious that

H(2)
2 =

1
1s12s2

< Z,

so H(2)
2 is not an integer.

Case 2.2. n = 3. Then we have

H(2)
3 =

1
1s12s2

+
1

1s13s3
+

1
2s23s3

=
1s1 + 2s2 + 3s3

1s12s23s3
.

Since (2s2 − 1)(3s3 − 1) ≥ 2, we have 2s23s3 ≥ 2s2 + 3s3 + 1. Thus we get that H(2)
3 ≤ 1, and H(2)

3 = 1 if
and only if s2 = s3 = 1.

Case 2.3. n = 9 and n = 21. Then Lemma 2.2 and Lemma 3.1 give us the desired result.
Secondly, we give a brief proof to the fact that when n ≥ 2, H∗(2)

n is never an integer. This will finish
the proof of Theorem 1.2.

If n ≥ 2, then by Bertrand’s postulate, there is at least one prime p such that n
2 < p ≤ n. Then

p ≤ n < 2p, and vp(i) = 0 or 1 for any integer i with 1 ≤ i ≤ n. Thus one has

H∗(2)
n =

∑
1≤i≤ j≤n,

vp(i)=vp( j)=1

1
isi js j

+
∑

1≤i≤ j≤n,
vp(i)vp( j)=0

1
isi js j

=
1

p2sp
+

∑
1≤i≤ j≤n,

vp(i)vp( j)=0

1
isi js j
.

Since 0 ≥ vp( 1
isi js j ) > vp( 1

p2sp ) = −2sp for any 1 ≤ i, j ≤ n with vp(i)vp( j) = 0, then

vp(H∗(2)
n ) = vp(

1
p2sp

) = −2sp < 0.

So when n ≥ 2, H∗(2)
n is never an integer.

Therefore Theorem 1.2 is proved. �
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