Mathematics

Research article

Some Convolution Properties of Multivalent Analytic Functions

Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad*and Sarfraz Ahmad

Department of Mathematics Abbottabad University of Science and Technology Abbottabad, Pakistan.

* Correspondence: zahoorqazi5@gmail.com

Abstract

In this paper, we introduce a new subclass of multivalent functions associated with conic domain in an open unit disk. We study some convolution properties, sufficient condition for the functions belonging to this new class.

Keywords: Multivalent functions; Hadamard product; Conic domain; Analytic functions; Sufficient condition

1. Introduction

Let $A(p)$ denote the class of all functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p}, \quad(p \in N=\{1,2,3 \ldots . .\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disk $E=\{z:|z|<1\}$. For $p=1, A(1)=A$. Let f, $g \in A(p)$, where f is given by (1.1) and g is defined by

$$
g(z)=z^{p}+\sum_{n=1}^{\infty} b_{n+p} z^{n+p}, \quad(z \in E) .
$$

Then the Hadamard product (or convolution) $f * g$ of the functions f and g is defined by

$$
(f * g)(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} b_{n+p} z^{n+p}=(g * f)(z) .
$$

Let $U C V$ and $U S T$ denote the usual classes of uniformly convex and uniformly starlike functions and are defined by

$$
U C V=\left\{f(z) \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|\right\}, \quad z \in E,
$$

$$
U S T=\left\{f(z) \in A: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|\right\}, \quad z \in E .
$$

These classes were first introduced by Goodman [2,3] and further investigated by [14] and [6].
Kanas and Wiśniowska [4, 5] introduced the conic domain $\Omega_{k}, k \geq 0$ as

$$
\Omega_{k}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}\right\} .
$$

For fixed k this domain represents the right half plane ($k=0$), a parabola $(k=1$), the right branch of hyperbola ($0<k<1$) and an ellipse ($k>1$). For detail study about Ω_{k} and its generalizations, see [$8,9,10]$. The extremal functions for these conic regions are

$$
p_{k}(z)= \begin{cases}\frac{1+z}{1-z}, & k=0, \tag{1.2}\\ 1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, & k=1, \\ \frac{1}{1-k^{2}} \cosh \left\{\left(\frac{2}{\pi} \arccos k\right) \log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right\}-\frac{k^{2}}{1-k^{2}}, & 0<k<1, \\ \frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2 K(k)} \int_{0}^{\frac{u(z)}{\sqrt{k}}} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}} \sqrt{1-\kappa^{2} t^{2}}}\right)+\frac{k^{2}}{k^{2}-1}, & k>1,\end{cases}
$$

where

$$
u(z)=\frac{z-\sqrt{\kappa}}{1-\sqrt{\kappa} z}, \quad z \in \mathbb{E},
$$

and $\kappa \in(0,1)$ is chosen such that $k=\cosh \left(\pi K^{\prime}(\kappa) /(4 K(\kappa))\right)$. Here $K(\kappa)$ is Legendre's complete elliptic integral of first kind and $K^{\prime}(\kappa)=K\left(\sqrt{1-\kappa^{2}}\right)$ and $K^{\prime}(t)$ is the complementary integral of $K(t)$.
Now we define the following:
Definition. Let $f \in A(p)$ given by (1.1) is said to belong to $k-U R_{p}, k \geq 0$ if it satisfies the following condition

$$
\operatorname{Re}\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)>k\left|\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right|, \quad z \in E,
$$

where $f^{(p)}(z)$ is the pth derivative of $f(z)$.

Special Cases:

i) For $k=0$, we have $0-U R_{p}=R_{p}$, introduced and studied by Noor et-al. [7].
ii) For $k=0, p=1$, we have $0-U R_{1}=R$, introduced and studied by Singh et-al. [15].

2. Preliminary Results

Lemma 2.1. [12]. For $\alpha \leq 1$ and $\beta \leq 1$

$$
p(\alpha) * p(\beta) \subset p(\delta), \quad \delta=1-2(1-\alpha)(1-\beta)
$$

The result is sharp.
Lemma 2.2. [1]. Let $\left\{d_{n}\right\}_{0}^{\infty}$ be a convex null sequence. Then the function

$$
q(z)=\frac{d_{0}}{2}+\sum_{n=1}^{\infty} d_{n} z^{n}
$$

is analytic in E and $\operatorname{Req}(z)>0 \quad z \in E$.

Lemma 2.3. [13]. For $0 \leq \theta \leq \pi$,

$$
\frac{1}{2}+\sum_{n=1}^{m} \frac{\cos n \theta}{n+1} \geq 0
$$

Lemma 2.4. [7]. If f and g belong to the class R_{p} and

$$
h^{(p-1)}(z)=f^{(p-1)}(z) * g^{(p-1)}(z) .
$$

Then h also belong to the class R_{p}.

3. Main Result

Theorem 3.1. Let $f \in k-U R_{P}$ then

$$
\operatorname{Re}\left(\frac{f^{(p)}(z)}{p!}\right)>\frac{k-1+2 \log 2}{k+1}
$$

Proof. Let $f \in k-U R_{p}$ then by definition, we have

$$
\operatorname{Re}\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)>k\left|\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right| .
$$

After some simple computations, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)>\frac{k}{k+1}, \tag{3.1}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\operatorname{Re}\left(1+\sum_{n=1}^{\infty} \frac{(p+n)!(n+1)}{n!} a_{n+p} z^{n}\right)>\frac{k}{k+1}, \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(p+n)!(n+1)}{n!} a_{n+p} z^{n}\right)>\frac{2 k+1}{2 k+2} . \tag{3.3}
\end{equation*}
$$

Consider the function

$$
\begin{equation*}
h(z)=1+2 \sum_{n=1}^{\infty} \frac{z^{n}}{n+1} . \tag{3.4}
\end{equation*}
$$

Clearly h is analytic, $h(0)=1$ in E and

$$
\begin{equation*}
\operatorname{Reh}(z)=\operatorname{Re}\left(1-\frac{2}{z}[z+\log (1-z)]\right)>-1+2 \log 2 \tag{3.5}
\end{equation*}
$$

From (3.3) and (3.4), we have

$$
\begin{equation*}
\left(\frac{f^{(p)}(z)}{p!}\right)=\left(1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(p+n)!(n+1)}{n!} a_{n+p} z^{n}\right) *\left(1+2 \sum_{n=1}^{\infty} \frac{z^{n}}{n+1}\right) \tag{3.6}
\end{equation*}
$$

Now using (3.3), (3.5) and Lemma 2.2 with $\alpha=\frac{2 k+1}{2 k+2}, \beta=-1+2 \log 2$ and $\delta=\frac{k-1+2 \log 2}{k+1}$, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f^{(p)}(z)}{p!}\right)>\frac{k-1+2 \log 2}{k+1} \tag{3.7}
\end{equation*}
$$

This completes the result.
For some spacial value of k and p we obtain the following known result.
Corollary 3.2. [7]. Let $f \in R_{p}$ then

$$
\operatorname{Re}\left(\frac{f^{(p)}(z)}{p!}\right)>-1+2 \log 2 .
$$

Theorem 3.3. Let $f \in k-U R_{p}$ then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f^{(p-1)}(z)}{z}\right)>\frac{p!(2 k+1)}{2 k+2} . \tag{3.8}
\end{equation*}
$$

Proof. From (3.3), we have

$$
\operatorname{Re}\left(1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(p+n)!(n+1)}{n!} a_{n+p} z^{z}\right)>\frac{(2 k+1)}{2 k+2}
$$

Now consider the convex null sequence $\left\{d_{n}\right\}_{0}^{\infty}$ define by $d_{0}=0, d_{n}=\frac{2}{(n+1)^{2}}, n \geq 1$, using Lemma 2.2, we have

$$
\operatorname{Re}\left(\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{(n+1)^{2}} z^{n}\right)>0
$$

or equivalently

$$
\begin{equation*}
\operatorname{Re}\left(1+2 \sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}} z^{n}\right)>\frac{1}{2} \tag{3.9}
\end{equation*}
$$

From (3.3) and (3.9), we have

$$
\begin{equation*}
\frac{f^{(p-1)}(z)}{p!z}=\left(1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(p+n)!(n+1)}{n!} a_{n+p} z^{n}\right) *\left(1+2 \sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}} z^{n}\right) . \tag{3.10}
\end{equation*}
$$

From (3.10) and Lemma (2.1) with $\alpha=\frac{2 k+1}{2 k+2}$ and $\beta=\frac{1}{2}$, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f^{(p-1)}(z)}{z}\right)>\frac{p!(2 k+1)}{2 k+2} \tag{3.11}
\end{equation*}
$$

Which is the required result.
Corollary 3.4. [7]. Let $f \in R_{p}$ then

$$
\operatorname{Re}\left(\frac{f^{(p-1)}(z)}{z}\right)>\frac{p!}{2}, \quad z \in E
$$

Corollary 3.5. [15]. Let $f \in R$ then

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)>\frac{1}{2}, \quad z \in E .
$$

Theorem 3.6. Let $f \in k-U R_{p}$ then for every $n \geq 1$, the nth partial sum of f satisfies

$$
\operatorname{Re} S_{n}^{(p)}(z, f)>\frac{p!k}{k+1}, \quad z \in E .
$$

and hence $S_{n}(z, f)$ is p-valent in E.
Proof. From (3.2) and (3.4), we have

$$
\begin{equation*}
\frac{s_{n}^{(p)}(z, f)}{p!}=\left(1+\sum_{n=1}^{\infty} \frac{(p+n)!(n+1)}{p!n} a_{n+p} z^{z^{n}}\right) *\left(1+\sum_{n=1}^{\infty} \frac{z^{n}}{n+1}\right) . \tag{3.12}
\end{equation*}
$$

Putting $z=r e^{i \theta}, 0 \leq r \leq 1,0 \leq \theta \leq \pi$ and the minimum principle for harmonic functions with Lemma 2.3, we have

$$
\begin{align*}
\operatorname{Re}\left(1+\sum_{n=1}^{k} \frac{z^{n}}{n+1}\right) & =\operatorname{Re}\left(1+\sum_{n=1}^{k} \frac{r^{n} e^{i n \theta}}{n+1}\right), 0 \leq \theta \leq \pi \\
& =\operatorname{Re}\left(1+\sum_{n=1}^{k} \frac{r^{n}}{n+1}(\cos n \theta+i \sin n \theta)\right) \\
& =\left(1+\sum_{n=1}^{k} \frac{r^{n} \cos n \theta}{n+1}\right) \\
& =\left(1+\sum_{n=1}^{k} \frac{r^{n} \cos n \theta}{n+1}\right) \geq \frac{1}{2} . \tag{3.13}
\end{align*}
$$

Using (3.2), (3.12), (3.13) and Lemma 2.1 with $\alpha=\frac{k}{k+1}$ and $\beta=\frac{1}{2}$, we have

$$
\begin{equation*}
\operatorname{Re}\left(s_{n}^{(p)}(z, f)\right)>\frac{p!k}{k+1} . \tag{3.14}
\end{equation*}
$$

This completes the proof. From the result given by [11], we see that $s_{n}(z, f)$ is p-valent in E for every $n \geq 1$.
Corollary 3.7. [7]. Let $f \in R_{p}$, then for every $n \geq 1$, the nth partial sum of f satisfies

$$
\operatorname{Re} S_{n}^{(p)}(z, f)>0, \quad z \in E
$$

and hence $s_{n}(z, f)$ is p-valent in E.
For $k=1$ we have the following corollary.
Corollary 3.8. [15]. Let $f \in 1-U R_{p}$, then for every $n \geq 1$, the nth partial sum of f satisfies

$$
\operatorname{ReS}_{n}^{\prime}(z, f)>\frac{p!}{2}, \quad z \in E
$$

and hence $s_{n}(z, f)$ is univalent in E.

Theorem 3.9. Let $f \in k-U R_{p}, g \in R_{p}$ and

$$
h^{(p-1)}(z)=f^{(p-1)}(z) * g^{(p-1)}(z) .
$$

Then h belong to the class $k-U R_{p}$.
Proof. Since

$$
\begin{equation*}
h^{(p-1)}(z)=f^{(p-1)}(z) * g^{(p-1)}(z) . \tag{3.15}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
z h^{(p)}(z)=f^{(p)}(z) * g^{(p-1)}(z) \tag{3.16}
\end{equation*}
$$

After simple computations, (3.16) can be written as

$$
\begin{equation*}
\operatorname{Re}\left(\frac{h^{(p)}(z)+z h^{(p+1)}(z)}{p!}\right)=\operatorname{Re}\left(\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right) *\left(\frac{g^{(p-1)}(z)}{z p!}\right)\right) . \tag{3.17}
\end{equation*}
$$

From (3.17), (3.1), Corollary 3.4 and Lemma 2.1 with $\alpha=\frac{k}{k+1}$ and $\beta=\frac{1}{2}$, we get the required proof.
Corollary 3.10. [15]. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ belong to R then so does their Hadamard product

$$
h(z)=f(z) * g(z) .
$$

Theorem 3.11. If $f, g \in R_{p}, h \in k-U R_{p}$ and

$$
\varphi^{(p-1)}(z)=h^{(p-1)}(z) * f^{(p-1)}(z) * g^{(p-1)}(z)
$$

Then $\varphi \in k-U R_{p}$.
Proof. Suppose that

$$
\begin{equation*}
m^{(p-1)}(z)=f^{(p-1)}(z) * g^{(p-1)}(z), \tag{3.18}
\end{equation*}
$$

and it is clear from Lemma 2.4 that, $m \in R_{p}$. From the hypothesis and (3.18), we have

$$
\begin{equation*}
\varphi^{(p-1)}(z)=h^{(p-1)}(z) * m^{(p-1)}(z) \tag{3.19}
\end{equation*}
$$

From (3.19) and Theorem 3.9, we get the required result.
Theorem 3.12. If $f_{1}, f_{2}, f_{3}, \ldots, f_{n}$ belong to $R_{p}, h \in k-U R_{p}$ and

$$
\begin{equation*}
g^{(p-1)}(z)=f_{1}^{(p-1)}(z) * f_{2}^{(p-1)}(z) * f_{3}^{(p-1)}(z) * \ldots * f_{n}^{(p-1)}(z) * h^{(p-1)}(z) . \tag{3.20}
\end{equation*}
$$

Then $g \in k-U R_{p}$.
Proof. For proving the above Theorem, we use the principle of mathematical induction. For $n=2$, we have proved Theorem 3.11, thus (3.20) hold true for $n=2$. Suppose that (3.20) hold true for $n=k$; that is,

$$
\begin{equation*}
g^{(p-1)}(z)=f_{1}^{(p-1)}(z) * f_{2}^{(p-1)}(z) * f_{3}^{(p-1)}(z) * \ldots * f_{k}^{(p-1)}(z) * h^{(p-1)}(z) . \tag{3.21}
\end{equation*}
$$

Then $g \in k-U R_{p}$.
We have to prove that (3.20) hold true for $n=k+1$, for this, consider

$$
\begin{equation*}
g^{(p-1)}(z)=f_{1}^{(p-1)}(z) * f_{2}^{(p-1)}(z) * f_{3}^{(p-1)}(z) * \ldots * f_{k+1}^{(p-1)}(z) * h^{(p-1)}(z) \tag{3.22}
\end{equation*}
$$

Let

$$
M^{(p-1)}=f_{1}^{(p-1)} * f_{2}^{(p-1)} * f_{3}^{(p-1)} * \ldots \ldots \ldots * f_{k}^{(p-1)} * h^{(p-1)}
$$

Then by hypothesis $M \in k-U R_{p}$. Now (3.22) becomes

$$
\begin{equation*}
g^{(p-1)}(z)=\left(M^{(p-1)} * f_{k+1}^{(p-1)}\right)(z) . \tag{3.23}
\end{equation*}
$$

Using Theorem 3.9, from (3.23), we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{g^{(p)}(z)+z g^{(p+1)}(z)}{p!}\right)>\frac{k}{k+1} . \tag{3.24}
\end{equation*}
$$

(3.24) now implies that $g \in k-U R_{p}$. Therefore, the result is true for $n=k+1$ and hence by using mathematical induction, (3.20) holds true for all $n \geq 2$. This completes the proof.

Theorem 3.13. If $f, g \in k-U R_{p}$ and

$$
h^{(p-1)}(z)=f^{(p-1)}(z) * g^{(p-1)}(z) .
$$

Then h belong to the class $k-U R_{p}$.
Proof. Since

$$
\begin{equation*}
h^{(p-1)}(z)=f^{(p-1)}(z) * g^{(p-1)}(z) . \tag{3.25}
\end{equation*}
$$

Differentiation yields

$$
\begin{equation*}
z h^{(p)}(z)=f^{(p)}(z) * g^{(p-1)}(z) \tag{3.26}
\end{equation*}
$$

After simplification, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{h^{(p)}(z)+z h^{(p+1)}(z)}{p!}\right)=\operatorname{Re}\left(\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right) *\left(\frac{g^{(p-1)}(z)}{z p!}\right)\right) . \tag{3.27}
\end{equation*}
$$

From (3.27), (3.1), (3.11) and Lemma 2.1 with $\alpha=\frac{k}{k+1}$ and $\beta=\frac{2 k+1}{2 k+2}$, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{h^{(p)}(z)+z h^{(p+1)}(z)}{p!}\right)>\frac{k}{k+1} . \tag{3.28}
\end{equation*}
$$

(3.28) implies that h belong to $k-U R_{p}$.

Our next result give us a sufficient condition for the class $k-U R_{p}$.
Theorem 3.14. Let $f \in A(p)$ satisfies

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(k-1)(n+1)(p+n)!}{p!n!}\left|a_{n+p}\right|<1 \tag{3.29}
\end{equation*}
$$

Then $f \in k-U R_{p}$.

Proof. To prove the required result it is sufficient to show that

$$
\begin{equation*}
k\left|\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right|-\operatorname{Re}\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right)<1 \tag{3.30}
\end{equation*}
$$

Now

$$
\begin{aligned}
& k\left|\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right|-\operatorname{Re}\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right) \\
\leq & (k-1)\left|\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right| \\
= & (k-1)\left|\frac{f^{(p)}(z)+z f^{(p+1)}(z)-p!}{p!}\right| \\
= & (k-1)\left|\sum_{n=1}^{\infty} \frac{(n+1)(p+n)!}{p!n!} a_{n+p} z^{n}\right| .
\end{aligned}
$$

This can be written as

$$
\begin{align*}
& k\left|\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right|-\operatorname{Re}\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1\right) \\
\leq & (k-1)\left|\sum_{n=1}^{\infty} \frac{(n+1)(p+n)!}{p!n!} a_{n+p}\right|\left|z^{n}\right| \tag{3.31}
\end{align*}
$$

(3.31) is bounded above by 1 if (3.29) is satisfied. This completes the proof.

Conflicts of Interest

All authors declare no conflicts of interest in this paper.

References

1. L. Fejer, Uber die positivitat von summen, die nach trigonometrischen order Legendreschen funktionen fortschreiten, Acta Litt. Ac. Sci. Szeged., 2 (1925), 75-86.
2. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
3. A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364-370.
4. S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336.
5. S. Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647-657.
6. D. W. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Conf. Proc. Lecture Notes Anal., International Press, Massachusetts, 1994, 157-169.
7. K. I. Noor and N. Khan, Some convolution properties of a subclass of p-valent functions, Maejo Int. J. Sci. Technol., 9 (2015), 181-192.
8. K. I. Noor, Q. Z. Ahmad and M. A. Noor, On some subclasses of analytic functions defined by fractional derivative in the conic regions, Appl. Math. Inf. Sci., 9 (2015), 819-824.
9. K. I. Noor, J. Sokol and Q. Z. Ahmad, Applications of conic type regions to subclasses of meromorphic univalent functions with respect to symmetric points, RACSAM, 2016, 1-14.
10. M. Nunokawa, S. Hussain, N. Khan and Q. Z. Ahmad, A subclass of analytic functions related with conic domain, J. Clas. Anal., 9 (2016), 137-149.
11. S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A., 40 (1935), 167-188.
12. S. Ponnusamy and V. Singh, Convolution properties of some classes of analytic functions, J. Math. Sci., 89 (1998), 1008-1020.
13. W. Rogosinski and G. Szego, Uber die abschimlte von potenzreihen die in ernein kreise beschrankt bleiben. Math. Z., 28 (1928), 73-94.
14. F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae CurieSklodowska, Sect A., 45 (1991), 117-122.
15. R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc.Amer. Math. Soc., 106 (1989), 145-152.
© 2017, Qazi Zahoor Ahmad, et al., licensee AIMS

AIMS Press

 Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)