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Abstract: We consider a relaxation of the viscous Cahn-Hilliard equation induced by the
second-order inertial term utt. The equation also contains a semilinear term f (u) of “singular”
type. Namely, the function f is defined only on a bounded interval of R corresponding to the
physically admissible values of the unknown u, and diverges as u approaches the extrema of
that interval. In view of its interaction with the inertial term utt, the term f (u) is difficult to
be treated mathematically. Based on an approach originally devised for the strongly damped
wave equation, we propose a suitable concept of weak solution based on duality methods
and prove an existence result.
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1. Introduction

The celebrated Cahn-Hilliard equation was proposed to describe phase separation
phenomena in binary systems [9]. Its “standard” version has the form of a semilinear
parabolic fourth order equation, namely

ut − ∆(−∆u + f (u)) = 0. (1.1)

Here the unknown u stands for the relative concentration of one phase, or component, in a
binary material, and f is the derivative of a non-convex potential F whose minima repre-
sent the energetically more favorable configurations usually attained in correspondance, or
in proximity, of pure phases or concentrations. In view of the fact that u is an order parame-
ter, often it is normalized in such a way that the pure states correspond to the values u = ±1,
whereas −1 < u < 1 denotes the (local) presence of a mixture. We will also adopt this
convention. In such setting the values u < [−1, 1] are generally interpreted as “nonphysical”
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and should be somehow excluded. In view of the fourth-order character of (1.1), no maxi-
mum principle is available for u. Hence, the constraint u ∈ [−1, 1] is generally enforced by
assuming F to be defined only for u ∈ (−1, 1) (or for u ∈ [−1, 1]; both choices are admissible
under proper structure conditions) and to be identically +∞ outside the interval [−1, 1]. A
relevant example is given by the so-called logarithmic potential

F(u) = (1 − u) log(1 − u) + (1 + u) log(1 + u) − λ
2

u2, λ ≥ 0, (1.2)

where the last term may induce nonconvexity. Such a kind of potential is generally termed
as a singular one and its occurrence may give rise to mathematical difficulties in the anal-
ysis of the system. For this reason, singular potentials are often replaced by “smooth” ap-
proximations like the so-called double-well potential taking, after normalization, the form
F(u) = (1 − u2)2. Of course, in the presence of a smooth double-well potential, solutions are
no longer expected to satisfy the physical constraint u ∈ [−1, 1].

The mathematical literature devoted to (1.1) is huge and the main properties of the so-
lutions in terms of regularity, qualitative behavior, and asymptotics are now well-understood,
also in presence of singular potentials like (1.2) (cf., e.g., [20,21] and the references therein).
Actually, in recent years, the attention has moved to more sophisticated versions of (1.1) re-
lated to specific physical situations. Among these, we are interested here in the so-called
hyperbolic relaxation of the equation. This can be written as

αutt + ut − ∆(−∆u + f (u)) = 0, (1.3)

where α > 0 is a (small) relaxation parameter and the new term accounts for the occur-
rence of “inertial” effects. Equation (1.3) may be used in order to describe strongly non-
equilibrium decomposition generated by deep supercooling into the spinodal region occur-
ring in certain materials (e.g., glasses), see [11, 12]. From the mathematical point of view,
equation (1.3) carries many similarities with the semilinear (damped) wave equation, but is,
however, much more delicate to deal with. For instance, in space dimension N = 3 the exis-
tence of global in time strong solutions is, up to our knowledge, an open issue also in the case
when f is a globally Lipschitz (nonlinear) function [17], whereas for N = 2 the occurrence
of a critical exponent is observed in case f has a polynomial growth [16, 18]. The situation
is somehow more satisfactory in space dimension N = 1 (cf., e.g., [26, 27]) due to better
Sobolev embeddings (in particular all solutions taking values in the “energy space” are also
uniformly bounded). It is however worth noting that, in the case when f is singular, even the
existence of (global) weak solutions is a mathematically very challenging problem. Indeed,
at least up to our knowledge, this seems to be an open issue even in one space dimension.

The picture is only partially more satisfactory when one considers a further relaxation
of the equation containing a “strong damping” (or “viscosity”) term, namely

αutt + ut − ∆(δut − ∆u + f (u)) = 0, (1.4)

with δ > 0 (a physical justification for this equation is given, e.g., in [22]). The new term
induces additional regularity and some parabolic smoothing effects, and, for this reason,
(1.4) is mathematically more tractable in comparison to (1.3). Indeed, existence, regularity
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and large time behavior of solutions have been analyzed in a number of papers (cf., e.g.,
[6, 7, 13, 15, 19] and references therein). In all these contributions, however, f is taken as a
smooth function of at most polynomial growth at infinity. Here, instead, we will consider
(1.4) with the choice of a singular function f .

To explain the related difficulties, the main point stands, of course, in the low number
of available a priori estimates. This is a general feature of equations of the second order
in time, and, as a consequence, approximating sequences satisfy very poor compactness
properties. In particular, the second order term utt can be only controlled in a space like
L1(0,T ; X), where X is a Sobolev space of negative order. In view of the bad topological
properties of L1, this implies that in the limit the term ut cannot be shown to be (and, in fact,
is not expected to be) continuous in time, but only of bounded variation. In particular, it may
present jumps with respect to the time variable. In turn, the occurrence of these jumps is
strictly connected to the fact that it is no longer possible to compute the singular term f (u)
in the “pointwise” sense.

Indeed, in the weak formulation f (u) is suitably reinterpreted in the distributional
sense, and, in particular, concentration phenomena may occur. This idea comes from the
theory of convex integrals in Sobolev spaces introduced in the celebrated paper by Brezis [8]
and later developed and adapted to cover a number of different situations (cf., e.g., [3, 4, 23]
and references therein). In our former paper in collaboration with E. Bonetti and E. Rocca [5]
we have shown that this method can be adapted to treat equations of the second order in
time. Actually, using duality methods in Sobolev spaces of parabolic type (i.e., depending
both on space and on time variables), we may provide the required relaxation of the term f (u)
accounting for the possible occurrence of concentration phenomena with respect to time. The
reader is referred to [5] for further considerations and extended comments and examples.

Equation (1.4) will be considered here in the simplest mathematical setting. Namely,
we will settle it in a smooth bounded domain Ω ⊂ RN , N ≤ 3 (we remark however that the
results could be easily extended to any spatial dimension), in a fixed reference interval (0,T )
of arbitrary length, and with homogeneous Dirichlet boundary conditions. Then, existence of
weak solutions will be proved by suitably adapting the approach of [5]. It is worth observing
that, as happens for the mentioned strongly damped wave equation and for other similar
models, an alternative weak formulation could be given by restating the problem in the form
of a variational inequality. However, as noted in [5], we believe the concept of solution
provided here to be somehow more flexible. In particular, with this method we may provide
an explicit characterization of the (relaxed) term f (u) (which may be thought of as a physical
quantity representing the vincular reaction provided by the constraint) in terms of regularity
(for instance, for equation (1.4) concentration phenomena are expected to occur only with
respect to the time variable t). Moreover, we can prove that at least some weak solutions
satisfy a suitable form of the energy inequality. This can be seen as a sort of selection
principle for “physical” solutions (note, indeed, that uniqueness is not expected to hold).

The plan of the paper is the following: in the next Section 2 we introduce our as-
sumptions on coefficients and data and state our main result regarding existence of at least
one solution to a suitable weak formulation of equation (1.4). The proof of this theorem is
then carried out in Section 3 by means of an approximation – a priori estimates – compact-
ness argument.
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2. Main result

2.1. Preliminaries

We consider the viscous Cahn-Hilliard equation with inertia:αutt + ut − ∆w = 0,
w = δut − ∆u + β(u) − λu.

(2.1)

Here the coefficients α and δ are strictly positive constants, whereas λ ≥ 0. Moreover, β is a
maximal monotone operator in R × R satisfying

D(β) = [−1, 1], 0 ∈ β(0). (2.2)

Actually, β represents the monotone part of f (u) (cf. (1.3)). The domain D(β) has been
normalized just for mathematical convenience. Following [2], there exists a convex and
lower semicontinuous function j : R → [0,+∞] such that β = ∂ j, D( j) = [−1, 1], and
j(0) = min j = 0. For all ϵ ∈ (0, 1) we denote by jϵ : R → [0,+∞) the Moreau-Yosida
regularization of j, and by βϵ := ∂ jϵ = ( jϵ)′ the corresponding Yosida approximation of
β = ∂ j.

By a direct check (cf. also [20, Appendix A]), one may prove, based on (2.2), that
there exist constants c1 > 0 and c2 ≥ 0 independent of ϵ, such that

βϵ(r)r ≥ c1|βϵ(r)| − c2. (2.3)

Let us also introduce some functional spaces: we set H := L2(Ω) and V := H1
0(Ω), so that

V ′ = H−1(Ω). Moreover, we put

V := H1(0,T ; H),

and, for all t ∈ (0,T ],
Vt := H1(0, t; H).

We denote by (·, ·) and ⟨·, ·⟩ the scalar product in H and the duality pairing between V ′ and
V , respectively. The scalar products on L2(0, T ; H) and on L2(0, t; H), for t ∈ (0,T ), are
indicated respectively by

((·, ·)) and by ((·, ·))t.

Correspondingly, the duality products betweenV andV′ and betweenVt andV′t are noted
as

⟨⟨·, ·⟩⟩ and ⟨⟨·, ·⟩⟩t,

respectively.
Next, we indicate by A : D(A) → H, with domain D(A) := H2(Ω) ∩ H1

0(Ω), the
Laplace operator with homogeneous Dirichlet boundary condition seen as an unbounded
linear operator on H. Hence, A is strictly positive and its powers As are well defined for all
s ∈ R. In particular, D(A1/2) = H1

0(Ω) = V . Moreover, A may be extended to the space V
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and it turns out that A : V → V ′ is an isomorphism. In particular, V ′ is a Hilbert space when
endowed with the scalar product

(u, v)∗ := ⟨v, A−1u⟩ = ⟨u, A−1v⟩ for u, v ∈ V ′.

The associated norm is then given by ∥u∥2V′ = (u, u)∗ for u ∈ V ′. Correspondingly, the scalar
products of the spaces L2(0,T ; V ′) and L2(0, t; V ′) are denoted by

((·, ·))∗ ((·, ·))∗,t

respectively. In particular, we have

((u, v))∗ =
∫ T

0
⟨v, A−1u⟩ dt for u, v ∈ L2(0,T ; V ′),

with a similar characterization holding for ((·, ·))∗,t.

2.2. Relaxation of the constraint

We now provide a brief sketch of the relaxation of β mentioned in the introduction,
referring to [5, Sec. 2] for additional details. First of all, we introduce the functional J : H →
[0,+∞], J(u) :=

∫
Ω

j(u) dx for all u ∈ H, whose value is intended to be +∞ if j(u) < L1(Ω).
Moreover it is convenient to define

J(u) :=
∫ T

0

∫
Ω

j(u) dx dt ∀ u ∈ L2((0,T ) ×Ω), (2.4)

and its counterpart on (0, t), namely

Jt(u) :=
∫ t

0

∫
Ω

j(u) dx ds ∀ u ∈ L2((0, t) ×Ω). (2.5)

Then, the relaxed version of βwill be intended as a maximal monotone operator in the duality
betweenV andV′. Indeed, we first introduce JV := JxV, the restriction of J toV. Then,
we consider its subdifferential ∂JV with respect to the duality pairing between V and V′.
Namely, for ξ ∈ V′ and u ∈ V, we say that

ξ ∈ ∂JV(u) ⇐⇒ JV(z) ≥ ⟨⟨ξ, z − u⟩⟩ +JV(u) ∀ z ∈ V. (2.6)

In order to emphasize that ∂JV consists in a relaxation of β, we will simply note ∂JV =: βw

(w standing for “weak”). Proceeding in a similar way for the functional Jt, we define the
subdifferential ∂Jt,Vt of the operator Jt,Vt := JtxVt . This will be indicated simply by βw,t.

In this setting it is not true anymore that an element ξ of the set βw(u) (recall that β
is a multivalued operator and, as a consequence, βw may be multivalued as well) admits a
“pointwise” interpretation as “ξ(t, x) = β(u(t, x))”. Indeed, ξ belongs to the negative order
Sobolev space V′ and concentration phenomena are expected to occur. Nevertheless, the
maps βϵ still provide a suitable approximation of βw. Referring the reader to [5,24] for addi-
tional details and comments, we just mention here some basic facts. First of all, let us define
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Jϵ(u) :=
∫
Ω

jϵ(u) dx and J ϵ(u) :=
∫ T

0

∫
Ω

jϵ(u) dx dt. Then, one may prove that the func-
tionals J ϵ converge to J in the sense of Mosco-convergence with respect to the topology of
L2(0,T ; H). Moreover, their restrictions toV Mosco-converge to JV in the topology of V.
The analogue of these properties also holds for restrictions to time subintervals (0, t). Refer-
ring the reader to [1, Chap. 3] for the definition and basic properties of Mosco-convergence,
here we just recall that this convergence notion for functionals implies (and is in fact equiv-
alent to) a related notion of convergence for their subdifferentials, called graph-convergence
(or G-convergence). Namely, noting that the function βϵ represents the subdifferential of J ϵ
both with respect to the topology of L2(0,T ; H) and to that ofV, it turns out that the operators
βϵ , if identified with their graphs, G-converge to β in the topology of L2(0, T ; H)×L2(0, T ; H)
and G-converge to βw in the topology ofV×V′. As a consequence of the latter property, we
may apply the so-called Minty’s trick in the duality betweenV andV′. This argument will
be the main tool we will use in order to take the limit in the approximation of the problem
and can be simply stated in this way: once one deals with a sequence {vϵ} ⊂ V satisfying
vϵ ⇀ v weakly inV and βϵ(vϵ)⇀ ξ weakly inV′, then the inequality

lim sup
ϵ↘0

⟨⟨ξϵ , vϵ⟩⟩ ≤ ⟨⟨ξ, v⟩⟩ (2.7)

implies that ξ ∈ βw(v). In other words, ξ is identified as an element of the set βw(v) ⊂ V′.

2.3. Statement of the main result

We start with presenting our basic concept of weak solution, which can be seen as an
adaptation of [5, Def. 2.2].

Definition 2.1. A pair (u, η) is called a weak solution to the initial-boundary value problem
for the viscous Cahn-Hilliard equation with inertia whenever the following conditions hold:

(a) There hold the regularity properties

ut ∈ BV(0,T ; H−4(Ω)) ∩ L∞(0,T ; V ′) ∩ L2(0,T ; H), (2.8)
u ∈ L∞(0,T ; V) ∩ L2(0,T ; D(A)), (2.9)
η ∈ V′. (2.10)

(b) For any test function φ ∈ V, there holds the following weak version of (2.1):

α(ut(T ), φ(T ))∗ − α(u1, φ(0))∗ − α((ut, φt))∗ + ((ut, φ))∗
+ δ((ut, φ)) + ((A1/2u, A1/2φ)) + ⟨⟨η, φ⟩⟩ − λ((u, φ)) = 0. (2.11)

Moreover, for all t ∈ [0,T ] there exists η(t) ∈ V′ such that

α(ut(t), φ(t))∗ − α(u1, φ(0))∗ − α((ut, φt))∗,t + ((ut, φ))∗,t
+ δ((ut, φ))t + ((A1/2u, A1/2φ))t + ⟨⟨η(t), φ⟩⟩t − λ((u, φ))t = 0, (2.12)

for all φ ∈ Vt.

(c) The functionals η and η(t) satisfy

η ∈ βw(u), η(t) ∈ βw,t(ux(0,t)) for all t ∈ (0,T ), (2.13)
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and the following compatibility condition holds true:

⟨⟨η(t), φ⟩⟩t = ⟨⟨η, φ̄⟩⟩ for all φ ∈ Vt,0 and all t ∈ [0,T ), (2.14)

where Vt,0 := {φ ∈ Vt : φ(t) = 0} and φ̄ is the trivial extension of φ ∈ Vt,0 to V, i.e.,
φ̄(s) = φ(t) = 0 for all s ∈ (t, T ].

(d) There holds the Cauchy condition

u|t=0 = u0 a.e. in Ω. (2.15)

Correspondingly, we conclude this section with our main result, stating existence of at least
one weak solution.

Theorem 2.2. Let T > 0 and let the initial data satisfy

u0 ∈ V, j(u0) ∈ L1(Ω), u1 ∈ H. (2.16)

Then, there exists a solution (u, η) to the viscous Cahn-Hilliard equation with inertia in the
sense of Def. 2.1. Moreover, u satisfies the energy inequality

α

2
∥ut(t2)∥2V′ +

1
2
∥A1/2u(t2)∥2H + J(u(t2)) − λ

2
∥u(t2)∥2H +

∫ t2

t1

(
δ∥ut∥2H + ∥ut∥2V′

)
ds

≤ α
2
∥ut(t1)∥2V′ +

1
2
∥A1/2u(t1)∥2H + J(u(t1)) − λ

2
∥u(t1)∥2H, (2.17)

for almost every t1 ∈ [0,T ) (surely including t1 = 0) and every t2 ∈ (t1,T ].

3. Proof of Theorem 2.2

3.1. Approximation

We consider a regularization of system (2.1), namely for ϵ ∈ (0, 1) we denote by
(uϵ ,wϵ) the solution to

αuϵtt + uϵt + Awϵ = 0, (3.1)
wϵ = δuϵt + Auϵ + βϵ(uϵ) − λuϵ , (3.2)

coupled with the initial conditions

uϵ |t=0 = uϵ0 and uϵt |t=0 = uϵ1, a.e. in Ω. (3.3)

Recall that βϵ was defined in Subsec. 2.1. The following result provides existence of a unique
smooth solution to (3.1)-(3.3) once the initial data are suitably regularized:

Theorem 3.1. Let T > 0, uϵ0 ∈ D(A) = H2(Ω) ∩ V, uϵ1 ∈ D(A1/2) = V. Then there exists a
unique function uϵ with

uϵ ∈ W1,∞(0,T ; H) ∩ H1(0,T ; V) ∩ L∞(0,T ; D(A)), (3.4)
uϵt ∈ W1,∞(0,T ; D(A−1)), (3.5)
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satisfying (3.1)-(3.3). Moreover, for every t1, t2 ∈ [0,T ], there holds the approximate energy
balance

α

2
∥uϵt (t2)∥2V′ +

1
2
∥A1/2uϵ(t2)∥2H + Jϵ(uϵ(t2)) − λ

2
∥uϵ(t2)∥2H +

∫ t2

t1

(
δ∥uϵt ∥2H + ∥uϵt ∥2V′

)
ds

=
α

2
∥uϵt (t1)∥2V′ +

1
2
∥A1/2uϵ(t1)∥2H + Jϵ(uϵ(t1)) − λ

2
∥uϵ(t1)∥2H. (3.6)

The proof of the above result is standard (see, e.g., [14, Thm. 2.1]). Actually, one can repli-
cate the a priori estimates corresponding to the regularity properties (3.4)-(3.5) by multiply-
ing (3.1) by uϵt , (3.2) by Auϵt , and using the Lipschitz continuity of βϵ . The regularity of βϵ

is also essential for having uniqueness, as one can show via standard contractive methods.
Then, to prove the energy equality it is sufficient to test (3.1) by A−1uϵt , (3.2) by uϵt , and
integrate the results with respect to the time and space variables. It is worth observing that
these test functions are admissible thanks to the regularity properties (3.4)-(3.5). As a con-
sequence of this fact, we can apply standard chain-rule formulas to obtain that (3.6) holds
with the equal sign, which will no longer be the case in the limit.

As a first step in the proof of Theorem 2.2, we need to specify the required regular-
ization of the initial data:

Lemma 3.2. Let (2.16) hold. Then there exist two families {uϵ0} ⊂ D(A) ∩ V and {uϵ1} ⊂ V,
ϵ ∈ (0, 1), satisfying

Jϵ(uϵ0) ≤ J(u0) ∀ϵ > 0 and uϵ0 → u0 in V, (3.7)
uϵ1 → u1 in H. (3.8)

Also the above lemma is standard. Indeed, one can construct uϵ0, uϵ1 by simple singular
perturbation methods (see, e.g., [23, Sec. 3]). Let us then consider the solutions uϵ to the
regularized system (3.1)-(3.3) with the initial data provided by Lemma 3.2. Then, taking
a test function φ ∈ V, multiplying (3.1) by A−1φ, (3.2) by φ, and performing standard
manipulations, one can see that uϵ also satisfies the weak formulation (compare with (2.11))

α(uϵt (T ), φ(T ))∗ − α(uϵ1, φ(0))∗ − α((uϵt , φt))∗ + ((uϵt , φ))∗
+ δ((uϵt , φ)) + ((A1/2uϵ , A1/2φ)) + ((βϵ(uϵ), φ)) − λ((uϵ , φ)) = 0. (3.9)

Correspondingly, the analogue over subintervals (0, t) also holds. Namely, for φ ∈ Vt one
has (compare with (2.12))

α(uϵt (t), φ(t))∗ − α(uϵ1, φ(0))∗ − α((uϵt , φt))∗,t + ((uϵt , φ))∗,t
+ δ((uϵt , φ))t + ((A1/2uϵ , A1/2φ))t + ((βϵ(uϵ), φ))t − λ((uϵ , φ))t = 0. (3.10)

3.2. A priori estimates

We now establish some a priori estimates for uϵ . The estimates will be uniform in
ϵ and permit us to take ϵ ↘ 0 at the end. First of all, the energy balance (3.6) and the
uniform bounded properties (3.7)-(3.8) of approximating initial data provide the existence of
a constant M > 0, independent of ϵ, such that the following bounds hold true:

∥uϵ∥L∞(0,T ;V) ≤ M, (3.11a)
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∥uϵ∥H1(0,T ;V′) ≤ M, (3.11b)
δ1/2∥uϵ∥H1(0,T ;H) ≤ M, (3.11c)
α1/2∥uϵ∥W1,∞(0,T ;V′) ≤ M, (3.11d)
∥ jϵ(uϵ)∥L∞(0,T ;L1(Ω)) ≤ M, (3.11e)

for all ϵ ∈ (0, 1). More precisely, thanks to the fact that, for every (fixed) ϵ ∈ (0, 1), uϵt lies in
C0([0,T ]; V ′) by (3.4)-(3.5), we are allowed to evaluate uϵt pointwise in time. Hence, (3.11d)
may be complemented by

∥uϵt (t)∥V′ ≤ M for every t ∈ [0,T ], (3.12)

and in particular, for t = T . Analogously, thanks to uϵ ∈ C0([0, T ]; V), in addition to (3.11a)
we also have

∥uϵ(t)∥V ≤ M for every t ∈ [0,T ]. (3.13)

Next, taking φ = uϵ in (3.9) and rearranging terms, we infer∫ T

0

∫
Ω

βϵ(uϵ)uϵ dx dt ≤ α∥uϵt (T )∥V′∥uϵ(T )∥V′ + α∥uϵ1∥V′∥uϵ0∥V′

+ α∥uϵt ∥2L2(0,T ;V′) + ∥u
ϵ
t ∥L2(0,T ;V′)∥uϵ∥L2(0,T ;V′)

+ δ∥uϵt ∥L2(0,T ;H)∥uϵ∥L2(0,T ;H) + ∥A1/2uϵ∥2L2(0,T ;H) + λ∥u
ϵ∥2L2(0,T ;H). (3.14)

Then, thanks to estimates (3.11), (3.12) and (3.13), we may check that the right-hand side
of (3.14) is bounded uniformly with respect to ϵ. Consequently, using also (2.3), we infer

∥βϵ(uϵ)∥L1(0,T ;L1(Ω)) ≤ M. (3.15)

Now, since we assumed N ≤ 3, we know that L1(Ω) ⊂ D(A−1), the latter being a
closed subspace of H−2(Ω). Moreover, A can be extended to a bounded linear operator
A : D(A−1) → D(A−2) ⊂ H−4(Ω). Then, letting X := H−4(Ω) (note that for N > 3 the
argument still works up to suitably modifying the choice of X) and rewriting (3.1)-(3.2) as a
single equation, i.e.,

αuϵtt + uϵt + δAuϵt + A2uϵ + A(βϵ(uϵ)) − λAuϵ = 0, (3.16)

we may check by a comparison of terms that

α∥uϵt ∥W1,1(0,T ;X) ≤ M. (3.17)

Actually, we used here the estimates (3.11) together with (3.15).
Next, thanks to the last of (3.4), we are allowed to multiply (3.1) by uϵ and (3.2) by

Auϵ . Using the monotonicity of βϵ and the bounds (3.11), standard arguments lead us to the
additional estimate

∥uϵ∥L2(0,T ;D(A)) ≤ M, (3.18)

still holding for M > 0 independent of ϵ.
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Finally, for all φ ∈ Vt we can compute from (3.10)∣∣∣∣∣∣
∫ t

0
⟨βϵ(uϵ), φ⟩ ds

∣∣∣∣∣∣ ≤ α∥uϵt (t)∥V′∥φ(t)∥V′ + α∥uϵ1∥V′∥φ(0)∥V′ + α∥uϵt ∥L2(0,t;V′)∥φt∥L2(0,t;V′)

+ ∥uϵt ∥L2(0,t;V′)∥φ∥L2(0,t;V′) + δ∥uϵt ∥L2(0,t;H)∥φ∥L2(0,t;H)

+ ∥uϵ∥L2(0,t;D(A))∥φ∥L2(0,t;H) + λ∥uϵ∥L2(0,t;H)∥φ∥L2(0,t;H) (3.19)

and the right-hand side, by (3.11), (3.12) and (3.18), is less or equal to C∥φ∥Vt , with C
depending only on the (controlled) norms of uϵ . Hence it follows that there exists a constant
M > 0 independent of ϵ such that

∥βϵ(uϵ)∥V′t ≤ M, (3.20)

for every t ∈ (0,T ]. In particular, ∥βϵ(uϵ)∥V′ ≤ M.

3.3. Passage to the limit

Using the estimates obtained above, we now aim to pass to the limit as ϵ ↘ 0 in
the weak formulation (3.9). Firstly, (3.11), (3.18) and (3.20) imply that there exist u ∈
W1,∞(0,T ; V ′) ∩ H1(0,T ; H) ∩ L∞(0, T ; V) ∩ L2(0,T ; D(A)) and η ∈ V′ such that

uϵ ⇀ u weakly star in W1,∞(0,T ; V ′) and weakly in L2(0, T ; D(A)), (3.21a)
uϵ ⇀ u weakly star in L∞(0,T ; V) and weakly in H1(0,T ; H), (3.21b)
uϵt ⇀ ut weakly star in BV(0,T ; X), (3.21c)
βϵ(uϵ)⇀ η weakly inV′. (3.21d)

Here and below all convergence relations are implicitly intended to hold up to extraction of
a (non relabeled) subsequence of ϵ ↘ 0.

Thanks to (3.21a)-(3.21b) and (3.13) we also infer

uϵ(t)⇀ u(t) weakly in V for all t ∈ [0,T ]. (3.21e)

Next, condition (3.21a) implies, thanks to the Aubin-Lions lemma, that

uϵ → u strongly in L2(0,T ; V). (3.21f)

A generalized version of the same lemma [25, Cor. 4, Sec. 8] implies, thanks to (3.21b) and
(3.21c),

uϵt → ut strongly in L2(0,T ; V ′). (3.21g)

From (3.21c) and a proper version of the Helly selection principle [10, Lemma 7.2], we infer

uϵt (t)⇀ ut(t) weakly in X for all t ∈ [0,T ]. (3.21h)

Combining this with (3.12), we obtain more precisely

uϵt (t)→ ut(t) weakly in V ′ and strongly in D(A−1) for all t ∈ [0,T ]. (3.21i)
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Hence, using (3.21), we can take ϵ ↘ 0 in (3.9) and get back (2.11). Indeed, it is not difficult
to check that all terms pass to the limit. Notice however that, in view of (3.21d), the L2-scalar
product ((βϵ(uϵ), φ)) is replaced by theV′-V duality ⟨⟨η, φ⟩⟩ in the limit.

Let us now consider the weak formulation on subintervals. Taking φ ∈ Vt, t ∈ [0,T ],
we may rearrange terms in (3.10) to get

((βϵ(uϵ), φ))t = −α(uϵt (t), φ(t))∗ + α(uϵ1, φ(0))∗ + α((uϵt , φt))∗,t
− ((uϵt , φ))∗,t − δ((uϵt , φ))t − ((A1/2uϵ , A1/2φ))t + λ((uϵ , φ))t = 0. (3.22)

Now, without extracting further subsequences, it can be checked that, as a consequence of
(3.21), the right-hand side tends to

− α(ut(t), φ(t))∗ + α(u1, φ(0))∗ + α((ut, φt))∗,t − ((ut, φ))∗,t
− δ((ut, φ))t − ((A1/2u, A1/2φ))t + λ((u, φ))t =: ⟨⟨η(t), φ⟩⟩t. (3.23)

Hence we have proved (2.11) and (2.12). The compatibility property (2.14) is also a straigh-
forward consequence of this argument.

Next, to prove (2.13), according to (2.7), we need to show

lim sup
ϵ↘0

⟨⟨βϵ(uϵ), uϵ⟩⟩ ≤ ⟨⟨η, u⟩⟩. (3.24)

Thanks to (3.9) with φ = uϵ , we have

⟨⟨βϵ(uϵ), uϵ⟩⟩ = −α(uϵt (T ), uϵ(T ))∗ + α(uϵ1, u
ϵ
0)∗ + α((uϵt , u

ϵ
t ))∗

− ((uϵt , u
ϵ))∗ − δ((uϵt , uϵ)) − ∥A1/2uϵ∥2L2(0,T ;H) + λ∥u

ϵ∥2L2(0,T ;H). (3.25)

Then, we take the lim sup of the above expression as ϵ ↘ 0. Then, using relations (3.21) and
standard lower semicontinuity arguments we infer that the lim sup of the above expression is
less or equal to

− α(ut(T ), u(T ))∗ + α(u1, u0)∗ + α((ut, ut))∗ − ((ut, u))∗
− δ((ut, u)) − ∥A1/2u∥2L2(0,T ;H) + λ∥u∥

2
L2(0,T ;H) = ⟨⟨η, u⟩⟩, (3.26)

the last equality following from (2.11) with the choice φ = u. Combining (3.25) with (3.26)
we obtain (3.24), whence the first of (2.13). The same argument applied to the subinterval
(0, t) entails η(t) ∈ βw(ux(0,t)), for all t ∈ (0,T ], as desired.

Finally, we need to prove the energy inequality (2.17). To this aim, we consider the
approximate energy balance (3.6) and take its lim inf as ϵ ↘ 0.

Then, by standard lower semicontinuity arguments, it is clear that the left-hand side
of (2.17) is less or equal to the lim inf of the left-hand side of (3.6). The more delicate point
stands, of course, in dealing with the right-hand sides. Indeed, we claim that there exists the
limit

lim
ϵ↘0

(α
2
∥uϵt (t1)∥2V′ +

1
2
∥A1/2uϵ(t1)∥2H + Jϵ(uϵ(t1)) − λ

2
∥uϵ(t1)∥2H

)
=
(α

2
∥ut(t1)∥2V′ +

1
2
∥A1/2u(t1)∥2H + J(u(t1)) − λ

2
∥u(t1)∥2H

)
, (3.27)
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at least for almost every t1 ∈ [0, t), surely including t1 = 0. We just sketch the proof of this
fact, which follows closely the lines of the argument given in [5, Section 3] to which we refer
the reader for more details.

First, we observe that the last summand passes to the limit in view of (3.21e) and the
compact embedding V ⊂ H. Next, the convergence(α

2
∥uϵt (t1)∥2V′ +

1
2
∥A1/2uϵ(t1)∥2H

)
→
(α

2
∥ut(t1)∥2V′ +

1
2
∥A1/2u(t1)∥2H

)
holds for almost every choice of t1 and up to extraction of a further subsequence of ϵ ↘ 0 in
view of (3.21f) and (3.21g) (indeed, because these are just L2-bounds with respect to time,
we cannot hope to get convergence for every t1 ∈ [0,T )). Finally, we need to show

Jϵ(uϵ(t1))→ J(u(t1)).

This is the most delicate part, which proceeds exactly as in [5, Section 3], to which the reader
is referred. Note, finally, that (3.27) for t1 = 0 can be easily proved as a direct consequence
of Lemma 3.2 (again, we refer the reader to [5] for details). The proof is concluded.
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