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Abstract: A high-order Symmetric Interior Penalty discontinuous Galerkin (SIPG) method has been
used for solving the incompressible Navier-Stokes equation. We apply the temporal splitting scheme
in time and the SIPG discretization in space with the local Lax-Friedrichs flux for the discretization
of nonlinear terms. A fully discrete semi-implicit splitting scheme has been presented and high-order
discontinuous Galerkin (DG) finite elements are available. Under a constraint of the CFL condition,
two benchmark problems in 2D are investigated: one is a lid-driven cavity flow to verify the high-order
discontinuous Galerkin method is accurate and robust; the other is a flow past a circular cylinder, for
which we mainly check the Strouhal numbers with the von Kármán vortex street, and also simulate the
boundary layers with walls and corresponding dynamical behavior with Neumann conditions on the
top and bottom boundaries, respectively. We predict the Strouhal number for the range of Reynolds
number 50 ≤ Re ≤ 400, making a comparison between the predicted values by our numerical method
and the referenced values from physical experiments.

Keywords: Navier-Stokes equations; von Kármán vortex street; discontinuous Galerkin method;
interior penalty

1. Introduction

As a fundamental equation of fluid dynamics, the Navier-Stokes equations have been investigated
by many scientists conducting research on numerical schemes for their numerical solutions [7, 8, 10,
17, 18, 19, 22, 23]. Analytical solutions of real flow problems including complex geometries are
not available, nor likely in the foreseeable future. There are two ways to provide reference data for
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such problems: One consists in the measurement of quantities of interest in physical experiments
and the other is to perform careful numerical studies with highly accurate discretizations. With the
prevalence and development of high-performance computers, advanced numerical algorithms are able
to be tested for the validation of approaches and codes and for high-order convergence behavior of
delicate discretizations. For example, Symmetric Interior Penalty Galerkin (SIPG) and Non-symmetric
Interior Penalty Galerkin (NIPG) methods were first introduced originally for elliptic problems by
Wheeler [24] and Rivière et al. [16]. Recently, some work based on the SIPG and NIPG methods
has been successfully applied to the steady-state and transient Navier-Stokes equations [8, 9, 15], for
which optimal error estimates for the velocity have been derived.

The Navier-Stokes equations are a concise physics model of low Knudsen number (i.e. non-rarefied)
fluid dynamics. Phenomena described with the Navier-Stokes equations include boundary layers,
shocks, flow separation, turbulence, and vortices, as well as integrated effects such as lift and drag.
The physics of Navier-Stokes flows are non-dimensionalized by Mach number M and Reynolds num-
ber Re,

M =
u∞
a
, (1)

Re =
ρu∞D
µ
, (2)

where ρ is the density of the fluid, and µ is the dynamic viscosity. The kinematic viscosity ν is the
ratio of µ to ρ. At low Knudsen numbers, Navier-Stokes surface boundary conditions are effectively
no-slip (i.e. zero velocity). Diffusion of momentum from freestream to surface no-slip velocities forms
boundary layers decreasing in thickness as Reynolds number increases. Thus, the range of characteris-
tic solution scale increases as the Reynolds number increases. Nonlinear convective terms couped with
the strong velocity gradients in the Navier Stokes equations drive fluid flow at even moderate Reynolds
numbers to inherently unsteady behavior. Rotational flow is measured in terms of the vorticity ω,
defined as the curl of a velocity vector v,

ω = ∇ × v (3)

The related concept of circulation Γ is defined as a contour integral of vorticity by

Γ =

∮
∂S

v · ds = −
"

S

ω · n̂ dS (4)

The concept of a vortex is that of vorticity concentrated along a path [3].
Lid driven cavity flows are geometrically simple boundary conditions testing the convective and

viscous portions of the Navier Stokes equation in a enclosed unsteady environment. The cavity flow
is characterized by a quiescent flow with the driven upper lid providing energy transfer into the cavity
through viscous stresses. Boundary layers along the side and lower surfaces develop as the Reynolds
number increases, which tends to shift the vorticity center of rotation towards the center. A presence of
the sharp corner at the downstream upper corner increasingly generates small scale flow features as the
Reynolds number increases. Full cavity flows remain a strong research topic for acoustics and sensor
deployment technologies.
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For non-streamlined blunt bodies with a cross-flow, an adverse pressure gradient in the aft body
tends to promote flow separation and an unsteady flow field. The velocity field develops into an os-
cillating separation line on the upper and lower surfaces. This manifests as a series of shed vortices
forming and then convecting downstream with the mean flow. The von Kármán vortex street is named
after the engineer and fluid dynamicist Theodore Kármán (1963; 1994). Vortex streets are ubiquitous in
nature and are visibly seen in river currents downstream of obstacles, atmospheric phenomena, and the
clouds of Jupiter (e.g. The Great Red Spot). Shed vortices are also the primary driver for the the zig-
zag motion of bubbles in carbonated drinks. The bubble rising through the drink creates a wake of shed
vorticity which impacts the integrated pressures causing side forces and thus side accelerations. The
physics of sound generation with an Aeolean’s harp operates by alternating vortices creating harmonic
surfaces pressure variations leading to radiated acoustic tones. Tones generated by vortex shedding are
the so-called Strouhal friction tones. If the diameter of the string, or cylinder immersed in the flow is
D and the free stream velocity of the flow is u∞ then the shedding frequency f of the sound is given by
the Strouhal formula

S t =
f D
u∞
, (5)

where f = T−1, and S t is the Strouhal number named after Vincent Strouhal, a Czech physicist who
experimented in 1878 with wires experiencing vortex shedding and singing in the wind (Strouhal,
1878; White, 1999). The Strouhal formula provides a experimentally derived shedding frequency for
fluid flow. Therefore, we are interested in an investigation of Stouhal numbers of incompressible flow
at different Reynolds number.

LetΩ be a bounded polygonal domain in R2. The dynamics of an incompressible fluid flow in 2D is
described by the Navier-Stokes equations, which include the equations of continuity and momentum,
written in dimensionless form [23] as follows:

∂u
∂t
− ν∆u + (u · ∇)u + ∇p = f, in Ω × (0,T ) (6)

∇ · u = 0, in Ω × (0,T ) (7)
u|t=0 = u0, (8)

subject to the boundary conditions on ∂Ω :

αu + (1 − α)
∂u
∂n
= u∞.

Here the parameter α has the limit values of 0 for the free-slip (no stress) condition (Neumann) and 1
for the no-slip condition (Dirichlet); u = (u, v) is the velocity; t is the time; and p is the pressure. In
general, the external force f is not taken into account in Eq. (6).

Using the divergence free constraint, problem (6)-(8) can be rewritten in the following conservative
flux form:

∂u
∂t
− ν∆u + ∇ · F + ∇p = f, in Ω × (0,T ) (9)

∇ · u = 0, in Ω × (0,T ) (10)
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u|t=0 = u0, (11)

with the flux F being defined as

F(u) = u ⊗ u =
[

u2 uv
uv v2

]
. (12)

and u ⊗ v = uiv j, i, j = 1, 2. Indeed, it holds

N(u) =

 ∂(u2)
∂x +

∂(uv)
∂y

∂(uv)
∂x +

∂(v2)
∂y

 = ∇ · F(u).

A locally conservative DG discretization will be employed for the Navier-Stokes equation (9)-(11).
We denote by Eh a shape-regular triangulation of the domain Ω̄ into triangles, where h is the maximum
diameter of elements. Let ΓI

h be the set of all interior edges of Eh and ΓB
h be the set of all boundary

edges. Set Γh = Γ
I
h ∪ ΓB

h . For any nonnegative integer r and s ≥ 1, the classical Sobolev space on a
domain E ⊂ R2 is

Wr,s(E) = {v ∈ Ls(E)| ∀ |m| ≤ r, ∂mv ∈ Ls(E)}.

We define the spaces of discontinuous functions

V = {v ∈ L2(Ω)2 : ∀E ∈ Eh, v|E ∈ (W2,4/3(E))2},
M = {q ∈ L2(Ω) : ∀E ∈ Eh, q|E ∈ W1,4/3(E)}.

The jump and average of a function ϕ on an edge e are defined by:

[ϕ] = (ϕ|Ek)|e − (ϕ|El)|e,

{ϕ} = 1
2

(
(ϕ|Ek)|e + (ϕ|El)|e)

)
.

Further, let v be a piecewise smooth vector-, or matrix-valued function at x ∈ e and denote its jump by

[v] := v+ · nE+ + v− · nE− ,

where e is shared by two elements E+ and E−, and an outward unit normal vector nE+ (or nE−) is
associated with the edge e of an element E+ (or E−). The tensor product of two tensors T and S is
defined as T : S =

∑
i, j Ti jS i j.

Let PN(E) be the set of polynomials on an element E with degree no more than N. Based on the
triangulation, we introduce two approximate subspaces Vh(⊂ V) and Mh(⊂ M) for integer N ≥ 1:

Vh = {v ∈ L2(Ω)2 : ∀E ∈ Eh, vh ∈ (PN(E))2},
Mh = {q ∈ L2(Ω) : ∀E ∈ Eh, q ∈ PN−1(E)},

The work was motivated by the work of Girault, Rivière and Wheeler on discontinuous finite elements
for incompressible flows presented in a series of papers [8, 15]. Some projection methods [2, 19]
have been developed to overcome the incompressibility constraints ∇ · u = 0. An implementation of
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the operator-splitting idea for discontinuous Galerkin elements was developed in [8]. We appreciate
the advantages of the discontinuous Galerkin methods, such as local mass conservation, high order of
approximation, robustness and stability. In this work, we will make use of the underlying physical
nature of incompressible flows in the literature and extend the interior penalty discontinuous Galerkin
methods to investigate dynamical behavior of vortex dominated lid-driven and cylinder flows.

The paper is organized as follows. In Section 2, a temporal discretization for the Navier-Stokes
equation is presented by operator-splitting techniques, and subsequently, the nonlinearity is linearized.
Both pressure and velocity can be solved successively from linear elliptic and Helmholtz-type prob-
lems, respectively. In Section 3, a local numerical flux will be given for the nonlinear convection term
and an interior penalty discontinuous Galerkin scheme will be used in spacial discretization for those
linear equations, and in Section 4, simulations of a lid-driven cavity flow up to Re = 7500, and a
transient flow past a circular cylinder are presented, while a numerical investigation on the Strouhal-
Reynolds-number has been done, comparable to the experimental results. Finally, Section 5 concludes
with a brief summary.

2. Temporal splitting scheme

We consider here a third-order time-accurate discretization method at each time step by using the
previous known velocity vectors. Let △t be the time step, M = T

△t , and tn = n△t. The semi-discrete
forms of problem (6)-(8) at time tn+1 is

γ0un+1 − α0un − α1un−1 − α2un−2

△t
− ν∆un+1 + ∇pn+1

= −β0N(un) − β1N(un−1) − β2N(un−2) + f(tn+1),
(13)

∇ · un+1 = 0, (14)

which has a timestep constraint based on the CFL condition (see [14]):

△t ≈ O
( L
UN2

)
,

where L is an integral length scale (e.g. the mesh size) andU is a characteristic velocity. Because the
semi-discrete system (13)-(14) is linearized, thus, a time-splitting scheme can be applied naturally, i.e.,
the semi-discretization in time (13)-(14) can be decomposed into three stages as follows.

• The first stage
When un and un−1 (n ≥ 1) are known, the following linearized third-order formula can be used

γ0ũ − α0un − α1un−1 − α2un−2

△t
= −β0N(un) − β1N(un−1) + f(tn+1) (15)

with the following coefficients for the subsequent time levels (n ≥ 2)

γ0 =
11
6
, α0 = 3, α1 = −

3
2
, α2 =

1
3
, β0 = 2, β1 = −1.
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Especially, by using the Euler forward discretization at the first time step (n = 0), we can get a
medium velocity field u1 by

u1 − u0

△t
= −N(u0) + f(t1),

and u2 by

γ0u2 − α0u1 − α1u0

△t
= −β0N(u1) − β1N(u0) + f(t2),

which adopts the following coefficients to construct a second-order difference scheme for the time
level (n = 2) in (15)

γ0 =
3
2
, α0 = 2, α1 = −

1
2
, α2 = 0, β0 = 2, β1 = −1.

• The second stage
The pressure projection is as follows

γ0

˜̃u − ũ
△t
= −∇pn+1. (16)

To seek pn+1 such that ∇ · ˜̃u = 0, we solve the system

−∆pn+1 = −γ0

△t
∇ · ũ, (17)

with a Neumann boundary condition being implemented on the boundaries as

∂pn+1

∂n
=fn+1 − β0n ·

(∂un

∂t
+ ∇ · F(un) − ν∆un

)
− β1n ·

(∂un−1

∂t
+ ∇ · F(un−1) − ν∆un−1

)
− β2n ·

(∂un−2

∂t
+ ∇ · F(un−2) − ν∆un−2

)
:= Gn.

One can compute the vorticity ωn = ∇ × un at time tn = n · △t. Then we use pn+1 to update the
intermediate velocity ˜̃u by (16).
• The third stage is completed by solving

γ0
un+1 − ˜̃u
△t

= ν∆un+1,

which can be written as a Helmholtz equation for the velocity

−∆un+1 +
γ0

ν△t
un+1 =

γ0

ν△t
˜̃u. (18)

From the three stages given above, we notice that (15) in the semi-discrete systems is presented in a
linearized and explicit process, moreover, (17) and (18) are obviously a type of elliptic and Helmholtz
problems at each time step as n ≥ 2. We decouple the incompressibility condition and the nonlinearity,
then the pressure and velocity semi-discretizations (17)-(18) will be formulated by the interior penalty
discontinuous Galerkin methods in spacial discretizations in the next section.
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3. The spatial discretizations

For spacial approximations, assume that piecewise polynomials of order N are employed, then
the approximation space can be rewritten as Vh =

⊕K
k=1 PN(Ek)2. In the approximating polynomial

space for the velocity or pressure restricted to each element, a high-order nodal basis can be chosen,
consisting of Lagrange interpolating polynomials defined on a reference simplex introduced in [11, 12].
We let u be approximated by uh ∈ Vh and adopt a suitable approximation for the term F, i.e., F(u) ≈
F(uh), where F(uh) also can be represented as the L2-projection of F(uh) on each element of Th.
Multiplying the nonlinear term by a test function vh ∈ Vh, integrating over the computational domain,
and applying integration by parts, we have∫

Ω

(∇ · F) · vhdx = −
∑
Ek

∫
Ek

(F · ∇) · vhdx +
∑
e∈Γh

∫
e

ne · [F · vh]ds, (19)

where the term (F · ∇) · vh equals to Fi j
∂vhi
∂x j

, for i, j = 1, 2 and the indexes i, j correspond to the
components of the related vectors. On each edge e ∈ ∂E1 ∩ ∂E2 shared by two elements, to ensure
the flux Jacobian of purely real eigenvalues, we may define λ+E1,e, λ

−
E2,e the largest eigenvalue of the

Jacobians ∂
∂u (F · ne)

∣∣∣
ūE1

and ∂
∂u (F · ne)

∣∣∣
ūE2

, respectively, where ūE1 and ūE2 are the mean values of uh on
the elements E1 and E2, respectively. The global Lax-Friedrichs flux is generally more dissipative than
the local Lax-Friedrichs flux, therefore, we primarily consider the local flux on each edge. Although
the Lax-Friedrichs flux is perhaps the simplest numerical flux and often the most efficient flux, it is
not the most accurate scheme. A remedy of the problem is to employ high-order finite elements. By
replacing the integrand in the surface integral as

ne · [F · vh] = ne · {F} · [vh] +
λe

2
[uh] · [vh],

with λe = max(λ+E1,e, λ
−
E2,e), one can get a DG discretization for the nonlinear term in (19) by the local

Lax-Friedrichs flux.
For the pressure correction step (17) and the viscous correction step (18), we use the SIPG method to

approximate the correction steps. Choosing the orthonormal Legendre basis and the Legendre-Gauss-
Lobatto quadrature points gives a well-conditioned Vandermonde matrix and the resulting interpolation
well behaved, which greatly simplifies the formulas. The C0 continuity condition of the basis in the
discontinuous Galerkin formulation is not required. Enforcing a weak continuity on the interior edges
by a penalty term, we have for (17)

a(pn+1
h , ϕh) = Lp(ϕh), ϕ ∈ Mh,

where

a(pn+1
h , ϕh) =

∑
Ek∈Eh

∫
Ek

∇pn+1
h · ∇ϕhdx −

∑
ek∈Γh

∫
ek

{∂pn+1
h

∂n
}
[ϕh]ds

−
∑
ek∈Γh

∫
ek

{∂ϕh

∂n
}
[pn+1

h ]ds +
∑
ek∈Γh

σe

|ek|β
∫

ek

[pn+1
h ][ϕh]ds,
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and Lp(ϕh) =
∑

Ek∈Eh

∫
Ek

γ0

△t
∇ · ũϕhdx +

∑
ek∈∂Ω

∫
ek

ϕhGn.

In general, σe shall be chosen sufficiently large to guarantee coercivity, more accurately, the threshold
values of σe in [4] are given for β = 1 in the above formula, which is referred to an SIPG scheme.
Especially, as β > 1, the scheme is referred to an over-penalized scheme and the threshold values of σe

are presented in [20, 21]. Analogously, the SIPG discretization for (18) is given by

a(un+1
h , vh) +

γ0

ν△t
(un+1

h , vh)Ω = Lu(vh), ∀ vh ∈ Vh,

where

a(un+1
h , vh) =

∑
Ek∈Eh

∫
Ek

∇un+1
h : ∇vhdx −

∑
ek∈Γh

∫
ek

{∇un+1
h }n · [vh]ds

−
∑
ek∈Γh

∫
ek

{∇vh}n · [un+1
h ]ds +

∑
ek∈Γh

σe

|ek|β
∫

ek

[un+1
h ] · [vh]ds,

and

Lu(vh) =
( γ0

ν△t
˜̃uh, vh

)
Ω
−

∑
ek∈∂Ω

∫
ek

(
∇vh · ne −

σe

|ek|β
vh

)
u0.

where β = 1. As a DG method, these SIPG schemes have some attractive advantages of DG methods
including high order hp-approximation, local mass conservation, robustness and accuracy of DG meth-
ods for models with discontinuous coefficients and easy implementation on unstructured grids, while
the flexibility of p-adaptivity (different orders of polynomialsmight be used for different elements) in
DG methods has become competitive for modeling a wide range of engineering problems.

4. Numerical results

We present a lid-driven flow problem to verify the efficiency and robustness of the interior penalty
discontinuous Galerkin method, and then investigate a flow past a cylinder with walls or without a
wall, as well as the relationship between the Strouhal number and the Reynold number. Throughout
the section, time steps △t ≤ 1E − 03 are taken.
Example 1. The lid-driven boundary conditions are given by: u(x, 1) = 1; u(1, y) = 0; u(0, y) = 0; u(x, 0) = 0;

v(x, 1) = 1; v(1, y) = 0; v(0, y) = 0; v(x, 0) = 0.

Here the mesh size of the initial coarse grid is 0.2 and then it is uniformly refined three times with
piecewise discontinuous elements being applied into the fully discrete SIPG approach.

Employing the uniform mesh (see the left profile in Figure 1) and approximation polynomials of
order 3, we illustrate the velocity vector, pressure and vorticity profiles in Figure 2, observing that
the main characterization of solutions can be captured by fine meshes well, except a few very small
oscillations occurred close to the upper boundary along the lid for computing velocity in y−direction
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Figure 1. #1: A uniform mesh (left); #2: An initial locally refined mesh (right).

Figure 2. The profiles of velocity components (u, v), pressure and vorticity for Re=2000
by using mesh #1 and N = 4.
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Figure 3. Velocity profiles (u, v) through geometric center of the cavity for Re =
100, 400, 1000, 5000, 7500.

Figure 4. Re=100 and N = 3, mesh #2. Left: pressure contour; Right: vorticity contour.
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Figure 5. Re=400 and N = 3, mesh #2. Left: pressure contour; Right: vorticity contour.

Figure 6. Re=1000, N=4, mesh #2. Left: pressure contour; Right: vorticity contour.

Figure 7. Re=5000, N=3, mesh #2 with a refinement once. Left: pressure contour;
Right: vorticity contour.
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Figure 8. Re=7500, N=3, a refined mesh of #2. Left: pressure contour; Right: vorticity
contour.

and pressure. Oscillations on the upper lid propagates from a velocity singularity that exists at the
corners. The boundary condition at the vertex is a jump from zero velocity on the edge to a unit
velocity on the upper edge. Nature prevents this singularity with a boundary layer forming along all
walls, making the vertex velocity zero. It is adaptable to adopt an adaptive meshes for solving those
singularity problems. Here, we apply the semi-implicit SIPG method in a locally refined mesh (see the
right profile in Figure 1) to solve the incompressible flow. In Figure 3, the velocity profiles of (u, v)
through the geometric center of the cavity are plotted with Re = 100, 400, 1000, 5000, 7500 taken.
From Figures 4-8, with different Reynolds numbers taken up to 7500, the vorticity field exhibits the
expected characteristics of a driven cavity flow consisting of a region of vortical flow centrally located.
Energy enters the cavity through the viscous boundary later formed by velocity gradients on the upper
driven edge. Convection distributes flow properties throughout the domain. Moreover, a video on
the dynamical evolution of vorticity isolines (Re = 1000, N = 4) can be browsed through a website
(Available from: https://youtu.be/UfGWvnoiW58). These numerical simulations are performed
for the Navier-Stokes equations which illustrate the effectiveness of the DG method.

Example 2. We simulate a channel flow past a circular cylinder with a radius 0.05 at the origin (0, 0)
for Re = 100 by the discontinuous Galerkin method in the domain (−1, 3) × (−0.5, 0.5). The inflow
boundary condition is (u, v) = (1, 0), while the outflow boundary is ∂u

∂n = 0. To the boundary conditions
on the upper and lower sides, we present two different conditions for comparison (see Figure 9), which
are wall (u = 0, v = 0) and homogeneous Neumann boundary conditions (u = 1, ∂v

∂n = 0), respectively.
The homogeneous Neumann boundary condition is a special non-reflecting case, where the boundary
flux is zero. For reference, the density of the fluid is given by ρ = 1 kg ·m−3 and a locally refined mesh
(max h = 0.088) will be used for the simulations.

Cylinder flow contains the fundamentals of unsteady fluid dynamics in a simplified geometry. The
flow properties and unsteadiness are well defined through years of experimental measurements across
a wide range of Reynolds numbers [13], making the cylinder an ideal validation testcase for unsteady
numerical fluid dynamics simulations.

Verification in a numerical domain requires insights from physics for a proper comparison to ex-
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Figure 9. Flow past a cylinder and N = 3. Top: A channel with walls; Bottom: A
channel without a wall. The free stream velocity on the inflow boundary is u∞ = (1, 0).
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Vorticity contour (Re=100)
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Figure 10. Flow past a cylinder in a channel with walls, Re=100. Top: Vorticity contour;
Bottom: Pressure contour.
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perimental and theoretical data. In Fig. 10, we observe that the boundary layers forms along the upper
and lower walls. From continuity of mass, the presence of a boundary layer decreasing the flow ve-
locity near the wall requires an increase in the centerline average flow velocity. The cylinder’s wake
provides a similar increase in centerline velocities. This implies a non-intuitive reality that drag can
increase velocities within constrained domains. This effect is compensated for in wind tunnel test [1]
environments topologically similar to Fig.10 with a constant mass flow rate and no-slip walls. Drela[3]
develops an analysis for 2D wind tunnels resulting in an effective coefficient of drag of

Cd =

(
1 − 1

2
c
H

Cd −
π

2
A

H2

)
Cdun ,

and an effective Reynolds number of

Re =
(
1 +

1
4

c
H

Cd +
π

6
A

H2

)
Reun,

where the un subscript represents the uncorrected value, H represents the domain height, A represents
the cylinder area and c represents the cylinder radius. Drela’s analysis does not specifically include the
boundary layer forming on the upper and lower walls. The flow physics associated with wall bound-
ary layer drag differs from cylinder drag in that the wall drag is a distributed effect of monotonically
increasing drag with downstream distance rather than a conceptual point source of drag. The wall
boundary layer tends to provide a steady acceleration of flow within the interior flow domain (i.e.
non-boundary layer portion) leading to an effective buoyancy drag. A secondary feature of the wall
boundary layer is that downstream flow features such as vortices are convected at a higher perturbation
velocity compared to the initial upstream velocity. For numerical validation of raw experimental data,
either the wind tunnel geometry should exactly match the numerical geometry, or the numerical geom-
etry should be corrected using the concepts introduced above to match the actual wind tunnel geometry.
Alternatively, the open-air corrected values should be used for validation. The above analysis provides
insight into the domain height necessary to reduce volume blockage (c/H) and wake buoyancy (A/H2)
effects.

Alternatively, the flow without walls in Figure 11 has no interference of the boundary layers along
the channel on the up and bottom boundaries, thus the pressure contours expend after flow passing
through the cylinder. We also compared the components of the velocity profiles along the x direction
in Figure 12, and observed that the boundary layers are produced in the top picture rather than in the
bottom one. If the effect of the boundary layers disappeared, the velocity in the x−direction would
reduce dispersively, in other words, the vortex lifespan is less than those produced in the channel with
walls. The velocity profiles in the y−direction have been given in Figure 13.

We localize the domain around the cylinder and refine the mesh, then show the vorticity startup
behavior in Figure 14 as well as the pressure Figure 15. Upon startup, two vortices of opposite direction
are formed on the upper and lower aft portion of the cylinder. Given a low total simulation time, the
flow field resembles the symmetrical low Reynolds number steady flow. As time progresses however,
instabilities are magnified and the upper-lower symmetry increases. Given a total time of beyond
t = 10, an autonomous and phased locked set of street vortices are generated. Surface pressures
(Figure 16 at Re = 80, 140) generated reflect the process, including a steady startup portion and
the eventual vortex shedding frequency. Validation at Re > 41 requires sufficient time to obtain the
unsteady behavior.
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Figure 11. Flow past a cylinder in a channel without a wall, Re=100. Top: Vorticity
contour; Bottom: Pressure contour.

Figure 12. Flow past a cylinder in a channel, Re=100. Top: Velocity in x-direction with
walls; Bottom: Velocity in x-direction without a wall.
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Figure 13. Flow past a cylinder in a channel, Re=100. Top: Velocity in y-direction with
walls; Bottom: Velocity in y-direction without a wall.

Figure 14. Vorticity contours of flow past a cylinder without a wall at different time.
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Figure 15. Pressure contours of flow past a cylinder without a wall at different time.
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Figure 16. Drag coefficients, Lift coefficients and the variation of pressure with time,
Re = 80 (left), Re = 140 (right).
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To reduce the effect of the boundary layers along the walls, the coefficients of drag and lift as
well as the difference of pressure between the leading edge and the trailing edge on the cylinder shall
be computed in a larger domain. Then in a domain Ω := [−1, 5] × [−1, 1], higher order DG finite
elements have been investigated. Based on the velocity u∞ and the diameter of the cylinder D = 0.1,
we will chose different viscosity coefficients ν = 1e − 3, 5e − 4, 2.5e − 4 etc. to simulate flow with
different Reynolds numbers, that is, the cases Re = 100, 200, 400, respectively. Our interest is the
drag coefficient Cd, the lift coefficient Cl on the cylinder and the difference of the pressure between the
front and the back of the cylinder

dp = p(t;−0.05, 0) − p(t; 0.05, 0).

We use the definition of Cd and Cl given in [17] as follows:

Cd =
2

ρDu2
max

∫
S

(
ρν
∂utS(t)
∂n

ny − p(t)nx

)
ds,

and Cl = −
2

ρDu2
max

∫
S

(
ρν
∂utS(t)
∂n

nx + p(t)ny

)
ds,

where n = (nx, ny)T is the normal vector on the cylinder boundary S directing into Ω, tS = (ny,−nx)T

the tangential vector and utS the tangential velocity along S . In the literature, Fey et al. in [6] propose
the Strouhal number represented by piecewise linear relationships of the form

S t = S T ∗ +
m
√

Re

with different values S t∗ and m in different shedding regimes of the 3D circular cylinder wake. We
apply the periodic Tli f t of the lift coefficients (see Figure 16) to express the periodic T := 1

f appearing
in the definition of Strouhal number, i.e.,

S t(Re) =
D

Tli f tu∞
, (20)

which comes from the classical definition (5). From the evolution of Cd, Cl and dp as in Figure 16, we
may find a period Tli f t of the lift coefficients for different values of Re to calculate Strouhal number
by (20). In Figure 17, a comparison of Strouhal numbers between the experimental estimates in Fey
etc. [6] and our estimates from (20) indicates a behavioral match between the unsteady onset at ap-
proximately Re = 50 and the beginning of the transition to turbulence at Re = 180. Beyond Re = 180,
the onset of turbulence changes the flow physics by drastically increasing the energy spectrum of the
shed vorticity. The transition appears as a marked decrease in the Strouhal number prior to Re = 200.
As the present SIPG solver does not include a 3D turbulence model, our estimates follow the laminar
results into the actual turbulent region.

5. Conclusion

This paper developed a Symmetric Interior Penalty discontinuous Galerkin numerical solver for the
incompressible Navier Stokes equations of fluid flow, with the temporal splitting technique applied in

AIMS Mathematics Volume 1, Issue 1, 43-63



61

50 100 150 200 250 300 350 400
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Reynolds number

S
tr

ou
ha

l n
um

be
r

 

 

Strouhal number by Fey
Strouhal number in our tests

Figure 17. A comparison of Strouhal-Reynolds-number between our estimate and the
linear fit in [6] for 50 ≤ Re ≤ 400.

decoupling the diffusion and pressure terms and the local Lax-Friedrichs flux for the DG discretization
of the nonlinear convection term. Two testcases are presented: a lid-driven cavity and a cylinder flow.
The SIPG method produces stable discretizations of the convective operator for high order discretiza-
tions on unstructured meshes of simplices, as a requirement for real-world complex geometries.

Acknowledgments

The authors would like to thank the anonymous referee and editor very much for their valuable
comments and suggestions, which greatly help us improve the presentation of this article. The work of
the first author was partially supported by the Natural Science Foundation of Gansu Province, China
(Grant 145RJZA046), and Special Program for Applied Research on Super Computation of the NSFC-
Guangdong Joint Fund (the second phase).

Conflict of Interest

We declare no conflicts of interest in this paper.

References

1. J. B. Barlow, W. H. Rae, and A. Pope, Low-Speed Wind Tunnel Testing, John Wiley, 1999.

2. A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations,
Math. Comp., 23 (1969), 341-353.

3. M. Drela, Flight Vehicle Aerodynamics, MIT Press, Boston, 2014.

AIMS Mathematics Volume 1, Issue 1, 43-63



62

4. Y. Epshteyn, B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin
methods, J. Comput. Appl. Math., 206 (2007), 843-872.

5. C. Foias, O. Manley, R. Rosa and R. Temam, Turbulence and Navier-Stokes equations, Cambridge
University Press, 2001.

6. U. Fey, M. König, and H. Eckelmann, A new Strouhal-Reynolds-number relationship for the cir-
cular cylinder in the range 47 ≤ Re ≤ 2 × 105, Physics of Fluids, 10(7) (1998), 1547-1549.

7. U.Ghia, K. N. Ghia, C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes
equations and a multigrid method. J. Comput. Phys., 48 (1982), 387-411.

8. V. Girault, B. Rivière, and M. F. Wheeler, A splitting method using discontinuous Galerkin for the
transient incompressible Navier-Stokes equations, ESAIM: Mathematical Modelling and Numer-
ical Analysis, 39(6) (2005), 1115-1147.

9. V. Girault, B. Rivière, and M. F. Wheeler, A discontinuous Galerkin method with non-overlapping
domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp.74 (2005), 53-84.

10. O. Goyon, High-Reynolds number solutions of Navier-Stokes equations using incremental un-
knowns, Comput. Method. Appl. M.130 (1996), 319-335.

11. J. S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in
a simplex, SIAM J. Numer. Anal., 35(2) (1998), 655-676.

12. J. S. Hesthaven, C. H. Teng, Stable spectral methods on tetrahedral elements, SIAM J. Sci.
Comput., 21 (2000), 2352-2380.

13. S. F. Hoerner, Fluid-Dynamic Drag, Hoerner Fluid Dynamics, Bakersfield, 1965.

14. G. Karniadakis, S. J. Sherwin, Spectral/hp element methods for CFD, Oxford University Press,
New York, 2005.

15. S. Kaya, B. Rivière, A discontinuous subgrid eddy viscosity method for the time-dependent
Navier-Stokes equations, SIAM J. Numer. Anal., 43(4) (2005), 1572-1595.

16. B. Rivière, M. F. Wheeler, and V. Girault, Improved energy estimates for interior penalty, con-
strained and discontinuous Galerkin methods for elliptic problems. Part I, Comput. Geosci., 3
(1999), 337-360.
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