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curvature (λ > 0).

Keywords: Semi-Riemannian metrics; Einstein manifolds, sequential warped-product of special
type; positive constant Ricci curvature
Mathematics Subject Classification: 53C25, 53C21

1. Introduction

The warped-product manifolds are type of manifolds introduced by Bishop and O’Neill [1]. These
manifolds have become very important in the context of differential geometry and are also extensively
studied in the arena of General Relativity, for instance with respect to generalized Friedmann-Robrtson-
Walker spacetimes. Many properties for warped product manifolds and submanifolds were presented
by B.-Y. Chen in [2].

A warped-product manifold can be constructed as follows. Let (B, gB) and (F, gF) be two semi-
Riemannian manifolds and τ, σ be the projection of B × F onto B and F, respectively.
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The warped-product M = B × f F is the manifold B × F equipped with the metric tensor g =

τ∗gB + f 2σ∗gF , where ∗ denotes the pullback and f is a positive smooth function on B, the so-called
warping function.

Explicitly, if X is tangent to B × F at (p, q) (where p is a point on B and q is a point on F), then:

〈X, X〉 = 〈dτ(X), dτ(X)〉 + f 2(p)(dσ(X), dσ(X)) .

B is called the base-manifold of M = B× f F and F is the fiber-manifold. If f = 1, then B× f F reduces
to a semi-Riemannian product manifold. The leaves B × q = σ−1(q) and the fibers p × F = τ−1(p)
are Riemannian submanifolds of M. Vectors tangent to leaves are called horizontal and those tangent
to fibers are called vertical. By H we denote the orthogonal projection of T(p,q)M onto its horizontal
subspace T(p,q)(B × q) andV denotes the projection onto the vertical subspace T(p,q)(p × F), see [3].

If M is an n-dimensional manifold, and gM is its metric tensor, the Einstein condition means that
RicM = λgM for some constant λ, where RicM denotes the Ricci tensor of gM. An Einstein manifold
with λ = 0 is called Ricci-flat manifolds.

Then keeping this in mind, we get that a warped-product manifold (M, gM) = (B, gB) × f (F, gF)
(where (B, gB) is the base-manifold, (F, gF) is the fiber-manifold), with gM = gB + f 2gF , is Einstein if
only if (see [2]):

RicM = λgM ⇐⇒


RicB −

d
f Hess( f ) = λgB

RicF = µgF

f ∆ f + (d − 1)|∇ f |2 + λ f 2 = µ

(1.1)

where λ and µ are constants, d is the dimension of F, Hess( f ), ∆ f and ∇ f are, respectively, the
Hessian, the Laplacian (given by tr Hess( f )) and the gradient of f for gB, with f : (B)→ R+ a smooth
positive function. Contracting first equation of (1.1) we get:

RB f 2 − f ∆ f d = n f 2λ (1.2)

where n and RB is the dimension and the scalar curvature of B respectively. From third equation,
considering d , 0 and d , 1, we have:

f ∆ f d + d(d − 1)|∇ f |2 + λ f 2d = µd (1.3)

Now from (1.2) and (1.3) we obtain:

|∇ f |2 + [
λ(d − n) + RB

d(d − 1)
] f 2 =

µ

(d − 1)
. (1.4)

In 2017 de Sousa and Pina [4], studied warped-product semi-Riemannian Einstein manifolds in
case that base-manifold is conformal to an n-dimensional pseudo-Euclidean space and invariant under
the action of an (n − 1)-dimensional group with Ricci-flat fiber F. In [5] the authors extend the work
done for multiply warped space. In [6], the author introduced a new type of warped-products called
sequential warped-products, i.e. (M, gM) where M = (B1 ×h B2) × f F and gM = (gB1 + h2gB2) + f 2gF ,
to cover a wider variety of exact solutions to Einstein’s field equation.

Regarding the sequential warped-product manifolds, some works have been published in recent
years ( [7–12]).
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The main aim of the present paper is largely to continue to extend the work done in [4] (as was
done for the multiply warped-product manifold in [5]), also for a special case of sequential warped-
product manifolds, (i.e. for h = 1, with B2 as an Einstein manifold, and flat fiber F, where the
base-manifold B = B1 × B2 is the product of two manifolds both equipped with a conformal metrics,
and the warping function is a smooth positive function f (x, y) = f1(x) + f2(y) where each is a function
on its individual manifold). The method will be as follows: first deriving the general formulas to
be Einstein and second, providing the existence of solutions that are invariant under the action of a
(n1 − 1)-dimensional group of transformations to the case of positive constant Ricci curvature. In fact,
since in both references, [4] and [5], the authors show solutions for the Ricci-flat case (λ = 0), we,
following their same construction, show the existence of a family solutions for constant positive Ricci
curvature (λ > 0). In particular, this proof of the existence of a family of solutions also holds for [4]
considering dimF = dimB.

Definition 1.1. We consider the special case of the Einstein sequential warped-product manifold, that
satisfies (1.1). The manifold (M, gM) comprises the base-manifold (B, gB) which is a Riemannian (or
pseudo-Riemannian) product-manifold B = B1×B2, with B2 as an Einstein manifold (i.e., RicB2 = λgB2 ,
where λ is the same for (1.1) and gB2 is the metric for B2), and dim(B2) = n2, dim(B1) = n1 the
dimension of B2 and B1, respectively, so that dim(B) = n = n1 + n2. The warping function f : B→ R+

is a smooth positive function f (x, y) = f1(x)+ f2(y) (where each is a function on its individual manifold,
i.e., f1 : B1 → R

+ and f2 : B2 → R
+). The fiber-manifold (F, gF) is the Rd, with orthogonal Cartesian

coordinates such that gab = −δab.

Proposition 1.2. If we write the B-product as B = B1 × B2, where:
i) RicBi is the Ricci tensor of Bi referred to gBi , where i = 1, 2,
ii) f (x, y) = f1(x) + f2(y), is the smooth warping function, where fi : Bi → R

+,
iii) Hess( f ) =

∑
i τ
∗
i Hessi( fi) is the Hessian referred on its individual metric, where τ∗i are the respec-

tive pullbacks, (and τ∗2Hess2( f2) = 0 since B2 is Einstein),
iv) ∇ f is the gradient (then |∇ f |2 =

∑
i |∇i fi|

2), and
v) ∆ f =

∑
i ∆i fi is the Laplacian, (from (iii) therefore also ∆2 f2 = 0).

Then the Ricci curvature tensor will be:



RicM(Xi, X j) = RicB1(Xi, X j) − d
f Hess1( f1)(Xi, X j)

RicM(Yi,Y j) = RicB2(Yi,Y j)
RicM(Ui,U j) = RicF(Ui,U j) − gF(Ui,U j) f ∗

RicM(Xi,Y j) = 0
RicM(Xi,U j) = 0,
RicM(Yi,U j) = 0,

(1.5)

where f ∗ =
∆1 f1

f + (d − 1) |∇ f |2

f 2 , and Xi, X j, Yi, Y j, Ui, U j are vector fields on B1, B2 and F, respectively.

Theorem 1.3. A warped-product manifold is a special case of an Einstein sequential warped-product
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manifold, as defined in Definition 1.1, if and only if:

RicM = λgM ⇐⇒



RicB1 −
d
f τ
∗
1Hess1( f1) = λgB1

τ∗2Hess2( f2) = 0
RicB2 = λgB2

RicF = 0
f ∆1 f1 + (d − 1)|∇ f |2 + λ f 2 = 0,

(1.6)

(since RicB is the Ricci curvature of B referred to gB, then RicB = RicB1 + RicB2 = λ(gB1 + gB2) +
d
f τ
∗
1Hess1( f1).
Therefore from (1.2) and (1.3):

RM = λ(n + d)⇐⇒



RB1 f − ∆1 f1d = n1 fλ

∆2 f2 = 0
RB2 = λn2

RF = 0
f ∆1 f1 + (d − 1)|∇ f |2 + λ f 2 = 0.

(1.7)

where n1 and R1 are the dimension and the scalar curvature of B1 referred to gB1 , respectively.

Proof. We applied the condition that the warped-product manifold of system (1.5) is Einstein.

This particular type of Einstein sequential warped-product manifold, as per Definition 1.1, allows
to cover a wider variety of exact solutions of Einstein’s field equation, without complicating the cal-
culations much, compared to the Einstein warped-product manifolds with Ricci-flat fiber (F, gF), also
considered by the authors of [4].

2. Conformal B-metrics

In this section we will consider a special type of sequential warped-product manifold (M, gM), as
described in the previous section, but in which the base-manifold is the product of two manifolds both
equipped with a conformal metrics. First we will show the general formulas for which such a manifold
M is Einstein, then we will show the same in the case where the conformal metrics are both diagonal,
and finally for the case in which the base-manifold is the product of two conformal manifolds to a
n1-dimensional and n2-dimensional pseudo-Euclidean space, respectively.

Theorem 2.1. Let (B, gB), be the base-manifold B = (B1×B2), B1 = Rn1 , with coordinates (x1, x2, ..xn1),
B2 = Rn2 , with coordinates (y1, y2, ..yn2), where n1, n2 ≥ 3, and let gB = gB1 + gB2 be the metrics on B,
where gB1 = εiδi j and gB2 = εlδlr.

Let f1 : Rn1 → R, f2 : Rn2 → R, φ1 : Rn1 → R and φ2 : Rn2 → R, be smooth functions, where
f1 and f2 are positive functions, such that f = f1 + f2 as in Definition 1.1. Finally, let (M, gM) be
((B1 × B2) × f = f1+ f2 F, gM), with gM = ḡB + ( f1 + f2)2gF , with conformal metric ḡB = ḡB1 + ḡB2 , where
ḡB1 = 1

φ2
1
gB1 , ḡB2 = 1

φ2
2 gB2 , and F = Rd with gF = −δab.
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Then the warped-product metric gM = ḡB + ( f1 + f2)2gF is Einstein with constant Ricci curvature λ
if and only if, the functions f1, f2, φ1 and φ2 satisfy:

(I) (n1 − 2) fφ1,xi x j
− φ1 f1,xi x j

d − φ1,xi
f1,x j

d − φ1,x j
f1,xi

d = 0 for i , j,

(II) (n2 − 2)φ2,ylyr
= 0 for l , r,

(III) φ1[(n1 − 2) fφ1,xi xi
− φ1 f1,xi xi

d − 2φ1,xi
f1,xi

d]+

+εi[ fφ1
∑n1

k=1 εkφ1,xk xk
− (n1 − 1) f

∑n1
k=1 εkφ1

2
,xk

+ φ1d
∑n1

k=1 εkφ1,xk
f1,xk

] = εiλ f ,

(IV) φ2(n2 − 2)φ2,ylyl
+ εlφ2

∑n2

s=1 εsφ2,ysys − (n2 − 1)εl
∑n2

s=1 εsφ2
2
,ys

= λεl,

(V) − fφ1
2 ∑n1

k=1 εk f1,xk xk
+ (n1 − 2) fφ1

∑n1
k=1 εkφ1,xk

f1,xk
+

−(d − 1)(φ1
2 ∑n1

k=1 εk f1
2
,xk

+ φ2
2 ∑n2

s=1 εs f2
2
,ys

) = λ f 2.

Before proving Theorem 2.1, and showing the existence of a solution for λ > 0, we want to deduce
the formulas for generic diagonal conformal metrics gB1 and gB2 .

Based on this, we consider (B, gB), the base-manifold B = (B1 × B2), with dim(B1) = n1, dim(B2) =

n2, and gB = gB1 + gB2 . We also consider f1 : Rn1 → R, f2 : Rn2 → R, φ1 : Rn1 → R and φ2 : Rn2 → R,
are smooth functions, where f1 and f2 are positive functions, such that f = f1 + f2 as in Definition
1.1. And finally, we consider (M, gM) with ((B1 × B2) ×( f1+ f2) F, gM), with gM = ḡB + ( f1 + f2)2gF , with
conformal metric ḡB = ḡB1 + ḡB2 , where ḡB1 = 1

φ2
1
gB1 , ḡB2 = 1

φ2
2 gB2 , and F = Rd with gF = −δab.

From (1.6), considering the conformal metric on B1 and B2, it is easy to deduce that M is Einstein
if and only if:

RicB̄1 = λḡB1 +
d
f

Hess1̄( f1), (2.1)

or equivalently

RB̄1 = λn1 +
d
f
∆1̄( f1), (2.2)

RicB̄2 = λḡB2 , (2.3)

or equivalently
RB̄2 = λn2, (2.4)

0 = λ f 2 + f ∆1̄ f1 + (d − 1)[|∇1̄ f1|
2 + |∇2̄ f2|

2]. (2.5)

If we consider a generic diagonal metric, ḡBi j = ḡB1i j
+ ḡB2i j = ηi j, and ηi j = 0 for i , j, then M is

Einstein if and only if (2.1), (2.3) (or equivalently (2.2), (2.4)), (2.5) and the following, are satisfied:

RicB̄1 =
d
f

Hess1̄( f1), f ori , j, (2.6)

RicB̄2 = 0, f ori , j. (2.7)
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Proof. (of Theorem 2.1): At this point we can calculate:

RicB̄1 =
1
φ2

1

{(n1 − 2)φ1Hess1(φ1) + [φ1∆1φ1 − (n1 − 1)|∇1φ1|
2]gB1}, (2.8)

RicB̄2 =
1
φ2

2

{(n2 − 2)φ2Hess2(φ2) + [φ2∆2φ2 − (n2 − 1)|∇2φ
2
2]gB2}, (2.9)

so we can write:

RicB̄1(Xi, X j) =
1
φ2

1

{(n1 − 2)φ1Hess1(φ1)(Xi, X j) + [φ1∆1φ1 − (n1 − 1)|∇1φ1|
2]gB1(Xi, X j)}, (2.10)

RicB̄2(Yl,Yr) =
1
φ2

2

{(n2 − 2)φ2Hess2(φ2)(Yl,Yr) + [φ2∆2φ2 − (n2 − 1)|∇2φ2|
2]gB2(Yl,Yr)}, (2.11)

RicM(Xi, X j) = RicB̄1(Xi, X j) −
d
f

Hess1̄( f1)(Xi, X j), (2.12)

for what was stated in Proposition 1.2 we have:

RicM(Yl,Yr) = RicB̄2(Yl,Yr), (2.13)

and in the end
RicM(Xi,Y j) = 0. (2.14)

RicM(Xi,U j) = 0. (2.15)

RicM(Yi,U j) = 0. (2.16)

Since RicF = 0 we obtain:

RicM(Ui,U j) = −gM(Ui,U j)(
∆1̄ f1

f
+ (d − 1)

gM(∇ f ,∇ f )
f 2 ), (2.17)

where, analogous to Proposition 1.2, we consider gM(∇ f ,∇ f ) = ḡB1(∇ f1,∇ f1) + ḡB2(∇ f2,∇ f2).
Let φ1,xi x j

, φ1,xi
, f1,xi x j

, f1,xi
, φ2,ylyr

, φ2,yl
, f2,ylyr

and f2,yl
, be the second and the first order derivatives of

φ1, φ2, f1 and f2, respectively, with respect to xix j and ylyr. Now we have:

Hess1(φ1)(Xi, X j) = φ1,xi x j
, (2.18)

∆1(φ1) =

n1∑
k=1

εkφ1,xk xk
, (2.19)

|∇1(φ1)|2 =

n1∑
k=1

εkφ
2
1,xk
, (2.20)

Hess2(φ2)(Yl,Yr) = φ2,ylyr
, (2.21)

∆2(φ2) =

n2∑
s=1

εsφ2,ylyr
(2.22)
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|∇2(φ2)|2 =

n2∑
s=1

εsφ
2
2,ys
. (2.23)

Hess1̄( f1)(Xi, X j) = f1,xi x j
−

∑
k

Γ̄k
i j f1,xk

, (2.24)

where Γ̄k
i j = 0, Γ̄i

i j = −
φ1,x j

φ1
, Γ̄k

ii = εiεk
φ1,xk
φ1

and Γ̄i
ii = −

φ1,x j

φ1
, so (2.24) becomes:

Hess1̄( f1)(Xi, X j) = f1,xi x j
+
φ1,x j

φ1
f1,xi

+
φ1,xi

φ1
f1,x j

, (2.25)

for i , j, and

Hess1̄( f1)(Xi, Xi) = f1,xi xi
+ 2

φ1,xi

φ1
f1,xi
− εi

n1∑
k=1

εk

φ1,xk

φ1
f1,xk

. (2.26)

Since Hess2̄( f2)(Yl,Yr) = 0, we get:

Hess2̄( f2)(Yl,Yr) = f2,ylyr
+
φ2,yr

φ2
f2,yl

+
φ2,yl

φ2
f2,yr

= 0, (2.27)

for l , r, and

Hess2̄( f2)(Yl,Yl) = f2,ylyl
+ 2

φ2,yl

φ2
f2,yl
− εl

n2∑
s=1

εs
φ2,ys

φ2
f2,ys

= 0. (2.28)

Then the Ricci tensors are:

RicB̄1(Xi, X j) =
(n1 − 2)φ1,xi x j

φ1
, (2.29)

for i , j,

RicB̄1(Xi, Xi) =
(n1 − 2)φ1,xi xi

+ εi
∑n1

k=1 εkφ1,xk xk

φ1
− (n1 − 1)εi

n1∑
k=1

εkφ
2
1,xk

φ2
1

, (2.30)

RicB̄2(Yl,Yr) =
(n2 − 2)φ2,ylyr

φ2
, (2.31)

for l , r,

RicB̄2(Yl,Yl) =
(n2 − 2)φ2,ylyl

+ εl
∑n2

s=1 εsφ2,ysys

φ2
− (n2 − 1)εl

n2∑
s=1

εsφ
2
2,ys

φ2
2

. (2.32)

Using (2.29) and (2.25) in the (2.12) and then using (2.30) and (2.26) in the (2.12) we obtain
respectively:

RicM(Xi, X j) =
(n1 − 2)φ1,xi x j

φ1
−

d
f

[ f1,xi x j
+
φ1,x j

φ1
f1,xi

+
φ1,xi

φ1
f1,x j

], (2.33)

for i , j,

RicM(Xi, Xi) =
(n1−2)φ1,xi xi

+εi
∑n1

k=1 εkφ1,xk xk
φ1

− (n1 − 1)εi
∑n1

k=1

εkφ
2
1,xk
φ2

1
+

− d
f [ f1,xi xi

+ 2
φ1,xi
φ1

f1,xi
− εi

∑n1
k=1 εk

φ1,xk
φ1

f1,xk
], (2.34)
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while, using (2.31) and (2.27) in the (2.13) and then using (2.32) and (2.28) in the (2.13) we obtain
respectively:

RicM(Yl,Yr) =
(n2 − 2)φ2,ylyr

φ2
, (2.35)

for l , r,

RicM(Yl,Yl) =
(n2 − 2)φ2,ylyl

+ εl
∑n2

s=1 εsφ2,ysys

φ2
− (n2 − 1)εl

n2∑
s=1

εsφ2,ys

φ2
2

. (2.36)

Now considering:
RicF = 0, (2.37)

gM(Ui,U j) = f 2gF(Ui,U j), (2.38)

with f = f1 + f2,
∆2̄( f2) = 0 (2.39)

∆1̄( f1) = φ2
1

n1∑
k=1

εk f1,xk xk
− (n1 − 2)φ1

n1∑
k=1

εkφ1,xk
f1,xk

, (2.40)

gM(∇ f ,∇ f ) = φ2
1

n1∑
k=1

εk f 2
1,xk

+ φ2
2

n2∑
s=1

εs f 2
2,ys
, (2.41)

and by replacing them in (2.17):

RicM(Ui,U j) = {− fφ2
1
∑n1

k=1 εk f1,xk xk
+ (n1 − 2) fφ1

∑n1
k=1 εkφ1,xk

f1,xk
+

−(d − 1)(φ2
1
∑n1

k=1 εk f 2
1,xk

+ φ2
2
∑n2

s=1 εs f 2
2,ys

)}gF(Ui,U j). (2.42)

Using the equations (2.33), (2.34), (2.35), (2.36) and (2.42), it follows that (M, gM) is an Einstein
manifold if and only if, the equations (I), (II), (III), (IV), (V) are satisfied.

3. The positive constant Ricci curvature case (λ> 0)

In this section we look for the existence of a solution to the positive constant Ricci curvature case
(λ > 0) when the base-manifold is the product of two conformal manifolds to a n1-dimensional and n2-
dimensional pseudo-Euclidean space, respectively, invariant under the action of a (n1 − 1)-dimensional
group of transformations and that the fiber F is flat.

Theorem 3.1. Let (B, gB), be the base-manifold B = (B1×B2), B1 = Rn1 , with coordinates (x1, x2, ..xn1),
B2 = Rn2 , with coordinates (y1, y2, ..yn2), where n1, n2 ≥ 3, and let gB = gB1 + gB2 be the metrics on B,
where gB1 = εiδi j and gB2 = εlδlr.
Let f1 : Rn1 → R, f2 : Rn2 → R, φ1 : Rn1 → R and φ2 : Rn2 → R, be smooth functions f1(ξ1), f2(ξ2),
φ1(ξ2) and φ2(ξ2), such that f (ξ1, ξ2) = f1(ξ1) + f2(ξ2) be as in Definition 1.1, where ξ1 =

∑n1
i=1 αixi,

αi ∈ R, and
∑

i εiα
2
i = εi0 or

∑
i εiα

2
i = 0, and by the same token ξ2 =

∑n2
l=1 αlyl, αl ∈ R, and

∑
l εlα

2
l = εl0

or
∑

l εlα
2
l = 0.

Finally, let (M, gM) be ((B1 × B2) × f = f1+ f2 F, gM), with gM = ḡB + ( f1 + f2)2gF , with conformal metric
ḡB = ḡB1 + ḡB2 , where ḡB1 = 1

φ2
1
gB1 , ḡB2 = 1

φ2
2 gB2 , and F = Rd with gF = −δab.
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Then, whenever
∑

i εiα
2
i = εi0 (and

∑
l εlα

2
l = εl0), the warped-product metric

gM = ḡB + ( f1 + f2)2gF is Einstein with constant Ricci curvature λ if and only if the functions f1, f2, φ1

and φ2 satisfy the following conditions:

(Ia) (n1 − 2) fφ′′1 − φ1 f ′′1 d − 2φ′1 f ′1d = 0, for i , j,

(IIa) φ′′2 = 0, for l , r,

(IIIa)
∑

k εkα
2
k[ fφ1φ

′′
1 − (n1 − 1) fφ′21 + φ1φ

′
1 f ′1d] = λ f ,

(IVa)
∑

s εsα
2
s[−(n2 − 1)φ′22 ] = λ

(Va)
∑

k εkα
2
k[− fφ2

1 f ′′1 + (n1 − 2) fφ1φ
′
1 f ′1 − (d − 1)φ2

1 f ′21 ]+
−

∑
s εsα

2
s[(d − 1)φ2

2 f ′22 ] = λ f 2.

Proof. We have:
φ1,xi x j

= φ′′1αiα j, φ1,xi
= φ′1αi, f1,xi x j

= f ′′1 αiα j, f1,xi
= f ′1αi,

and

φ2,ylyr
= φ′′2αlαr, φ2,yl

= φ′2αl, f2,ylyr
= f ′′2 αlαr, f2,yl

= f ′2αl.

Substituting these in (I) and (II) and if i , j and l , r such that αiα j , 0 and αlαr , 0, we
obtain (Ia) and (IIa).
In the same manner for (III) and (IV), by considering the relation between φ′′1 and f ′′1 from (Ia) and
φ′′2 = 0 from (IIa), we get (IIIa) and (IVa) respectively. Analogously, the equation (V) reduces to
(Va).

Now we are going to look for the existence of a solution to the positive constant Ricci curvature
case (λ > 0), considering f2(ξ2) = 1, and dim(B1) = dim(F), i.e., n1 = d . So, whenever

∑n1
i=1 α

2
i εi , 0,

without loss of generality, we may consider
∑n1

i=1 α
2
i εi = −1 (the same for

∑n2
l=1 α

2
l εl , 0, in which we

consider
∑n2

l=1 α
2
l εl = −1).

In this way the equations (Ia), (IIa), (IIIa), (IVa) (Va) become:

(Ib) (n1 − 2)( f1 + 1)φ′′1 − n1φ1 f ′′1 − 2n1φ
′
1 f ′1 = 0, for i , j,

(IIb) φ′′2 = 0, for l , r,

(IIIb) −( f1 + 1)φ1φ
′′
1 + (n1 − 1)( f1 + 1)φ′21 − n1φ1φ

′
1 f ′1 = λ( f1 + 1),

(IVb) (n2 − 1)φ′22 = λ,

(Vb) ( f1 + 1)φ2
1 f ′′1 − (n1 − 2)( f1 + 1)φ1φ

′
1 f ′1 + (n1 − 1)φ2

1 f ′21 = λ( f1 + 1)2.

Note that since f2(ξ2) = constant, then the equations (2.27) and (2.28), concerning the condi-
tion Hess2̄( f2) = 0, are obviously satisfied.
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It is worth noticing that there is no reason to believe that any nontrivial solutions exist, since the
system is overdetermined. One must first check out the compatibility conditions and fortunately this
is easy to figure out. Changing the notation: from

(
ξ1, φ1(ξ1), f1(ξ1)

)
, to

(
t, β(t), γ(t)−1

)
(in order to

simplify the writing and avoid confusion with the indexes), and also writing λ = qm2/2 > 0, where
q = n1, i.e. dim(B1), our system of equations then becomes:

(q − 2)γβ′′ − qβγ′′ − 2qβ′γ′ = 0
−βγβ′′ − (q − 1)γβ′2 − qβ′γ′ − 1

2qm2γ = 0
γβ2γ′′ − (q − 2)βγβ′γ′ + (q − 1)β2γ′2 − 1

2qm2γ2 = 0

(3.1)

So, if we solve the second and third equations for β′′ and γ′′ and substituting them into the first
equation, we note that the first equation can be replaced by a first order equation, that is:

(q−2)γ2β′2 − 2qβγβ′γ′ + qβ2γ′2 − qm2γ2 =: Z(β, γ, β′, γ′) = 0. (3.2)

Now, differentiating Z with respect to t and then eliminating β′′ and γ′′ using the second and third
equations of (3.1), the resulting expression in (β, γ, β′, γ′) is a multiple of Z(β, γ, β′, γ′). This shows us
that the combined system of equations (3.1) and (3.2) satisfies the compatibility conditions, so that the
system has solutions, specifically, a 3-parameter family of them.
If we want to describe these solutions more explicitly, we must note that the equations are t-autonomous
and have a 2-parameter family of scaling symmetries. In particular, the equations are invariant under
the 3-parameter group of transformations of the form:

Φa,b,c(t, β, γ) = (at+c, aβ, bγ) (3.3)

where a and b are nonzero constants and c is any constant. In fact, the equation (3.2) implies that there
is a function ω(t) such that 

β′ =
2mqω(ω−1)(

(q−2)ω2−2qω+q
)

γ′ =
mγ

(
(q−2)ω2−q

)
β
(

(q−2)ω2−2qω+q
) (3.4)

and then the second and third equations of (3.1) imply that ω must satisfy

ω′ =
m
(
q + 2qω − (3q − 2)ω2)

β
. (3.5)

Conversely, the combined system of (3.4) and (3.5) gives the general solution of the original system.
This latter system is easily integrated by the usual separation of variables method, i.e., by eliminating
t yields a system of the form:

dβ
β

= R(ω)dω (3.6)

and
dγ
γ

= S (ω)dω (3.7)

where R(ω) and S (ω) are rational functions of ω. Writing β and γ as elementary functions of ω, then
we can also write:

dt = βT (ω)dω, (3.8)
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where T is a rational function of ω, so that t can be written as a function of ω by quadrature. Thus,
we have the integral curves in (t, β, γ, ω)-space in terms of explicit functions.

In conclusion (because of the 3-parameter family of equivalences of solutions), we can say that in
certain sense, these solutions are all equivalent to a finite number of possibilities.

Remark 3.2. As is well known, an Einstein warped product manifold with Riemannian-metric and
Ricci-flat fiber-manifold can only admit zero or negative Ricci tensor, Ric ≤ 0. Here we have shown,
that a simple pseudo-Riemannian metric construction allows, an Einstein warped product manifold
with Ricci-flat fiber-manifold, to obtain Ric > 0, and this may find interest, for example, in how to
build warped-product spacetime models, with positive curvature, whose fiber is Ricci-flat.
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