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Abstract: The numerical solution of an ordinary differential equation can be interpreted as the exact
solution of a nearby modified equation. Investigating the behaviour of numerical solutions by analysing
the modified equation is known as backward error analysis. If the original and modified equation share
structural properties, then the exact and approximate solution share geometric features such as the
existence of conserved quantities. Conjugate symplectic methods preserve a modified symplectic form
and a modified Hamiltonian when applied to a Hamiltonian system. We show how a blended version of
variational and symplectic techniques can be used to compute modified symplectic and Hamiltonian
structures. In contrast to other approaches, our backward error analysis method does not rely on an
ansatz but computes the structures systematically, provided that a variational formulation of the method
is known. The technique is illustrated on the example of symmetric linear multistep methods with
matrix coefficients.
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1. Introduction

While the forward error of a numerical method compares the exact solution of an ODE with the
numerical solution after one time-step h, to obtain qualitative statements about the long-term behaviour
of numerical solutions to ODEs, it is helpful to consider a modified ODE whose exact solution closely
approximates the numerical flow map at grid points. A modified equation can be obtained as an
expansion of the numerical solution as a power series in the step-size h. Though the series does not
converge in general, optimal truncation techniques have been established such that the flow of the
modified system and the numerical method coincide at grid points up to exponentially small error terms.
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Computing and analysing the structural properties of modified equations is known as backward error
analysis (BEA) (see, for instance, [3, §IX] or [6, §5]). Next to the analysis of long-term behaviour of
numerical schemes, backward error analysis has been used to improve the initialisation of multi-step
methods [2] as well as to improve physics informed machine learning techniques [13, 12, 10].

If a Hamiltonian ODE is discretised by a symplectic integrator, then any truncation of the modified
equation is itself a Hamiltonian system with respect to the original symplectic structure and a modified
Hamiltonian. These are also called Shadow Hamiltonians. The existence of a modified Hamiltonian or
a modified Lagrangian is a key ingredient to obtain statements about long-term behaviour of symplectic
method, such as oscillatory energy errors over exponentially long time intervals. Moreover, just as in the
exact system, symplectic symmetries of the modified system yield conserved quantities for the modified
dynamics by Noether’s theorem. This explains why symplectic integrators behave well on completely
integrable systems. A detailed discussion can be found in [3]. Vermeeren observed that backward error
analysis for variational integrators can be done entirely on the Lagrangian side [15].

In contrast to symplectic methods, conjugate symplectic methods preserve a modified symplectic structure
rather than the original symplectic structure. Conjugate symplectic methods share the excellent long-term
behaviour of symplectic methods. Moreover, Noether’s theorem applies such that symmetries of the modified
system yield modified conserved quantities of the modified dynamics. When modified structures are explicitly
known, explicit expressions of modified conserved quantities can be derived. This motivates the development
of techniques to compute modified symplectic structures and Hamiltonians.

While traditional methods for the computation of modified Hamiltonians use an Ansatz (i.e. an
educated guess) of the Hamiltonian as a power series and match terms, working with an Ansatz is
challenging when a modified Hamiltonian and a modified symplectic structure need to be computed
simultaneously: the components of matrices representing symplectic structures are in this context not
constant but depend on the state space variables, fulfil a symmetry condition, and satisfy the Jacobi
identity, which is a partial differential equation [3, §VII.2]. This makes finding a suitable Ansatz difficult.

A typical strategy [3, 8] to obtain a structure preserving numerical method is to approximate the
variational principle

δS = 0, S (y) =

∫ tN

t0
L(y(t), ẏ(t))dt, y(t0) = y0, y(tN) = yN (1.1)

which governs the exact Euler–Lagrange equations

d
dt
∂L
∂ẏ
−
∂L
∂y

= 0

by a discrete variational principle

∇S ∆({yi}i) = 0, S ∆({yi}i) =

N−1∑
i=0

hL∆(yi, yi+1).

Since y0 and yN are fixed in the variations considered in (1.1), the gradient above is taken with respect
to all inner grid points y1, . . . , yN−1. We obtain the discrete Euler–Lagrange equations

D1L∆(yi, yi+1) + D2L∆(yi−1, yi) = 0, i = 0, . . . ,N − 1
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which yield approximations yi ≈ y(t0 + ih) to an exact solution y. The term recursion is called a
variational method. Indeed, the class of variational methods is equivalent to the class of symplectic
integrators [3, 8].

While backward error analysis for discrete Lagrangians L∆(yi, yi+1) are established, discrete La-
grangians depending on several grid-points L∆(yi, yi+1, . . . , yi+s) corresponding to multistep methods
require different approaches because they are not symplectic but only preserve a modified symplectic
structure. In other words, these methods are conjugate to symplectic methods. However, the modified
symplectic structures or conjugacies, respectively, are given by a formal power series that might not
be convergent. Although rigorous optimal truncation results are not available, we will demonstrate in
numerical examples that truncations can be useful objects in the analysis of the numerical methods.

In the following, we will introduce blended backward error analysis to systematically compute modified
Hamiltonian and modified symplectic structures. We will prove the following theorem which applies, for
instance, to series expansions L∆ of consistent discrete Lagrangians L∆(y(t), y(t + h), . . . , y(t + sh)).

Theorem 1.1. Consider a power series L∆(y[∞]) in a formal variable h. The series depends on the jet
y[∞] = (y, ẏ, ÿ, . . .) of a variable y such that any truncation only depends on a finite jet of y. Assume
further that the truncation to zeroth order constitutes a regular Lagrangian L(y, ẏ), i.e.

(
∂2L
∂ẏi∂ẏ j

)
i, j

is
invertible.

• There exists a 2nd order modified equation given as a formal power series in h such that for any
N ∈ N a solution of the modified equation truncated to order O(hN) solves the Euler–Lagrange
equations to L[N]

∆
up to an error of order O(hN+1), where L[N]

∆
is the truncation of L∆ to order

O(hN).

• If we denote z = (y, ẏ), there exists a symplectic structure matrix Jmod and a Hamiltonian Hmod

given as formal power series in h such that solutions to Hamilton’s equations

ż = J[N]
mod (z)−1∇H[N]

mod (z)

fulfil the modified equation. Here, J[N]
mod and H[N]

mod are truncations to order O(hN) of Jmod and

Hmod , respectively such that L[N]
∆

is regular, i.e.
(

∂2L
[N]
∆

∂y(M)i
∂y(M) j

)
i, j

is invertible, where y(M) is the highest

derivative of L[N]
∆

.

The technique will be illustrated for linear multistep methods with matrix valued coefficients
(Section 2). These occur, for instance, when in a system of coupled ODEs components of the differential
equation are discretised separately with traditional linear multistep method, when multistep methods are
stabilised [4, 5, 14], or when discretisation schemes of PDEs are analysed [9].

Moreover, we will analyse under which conditions modified Lagrangians exist: if the original
equation is the Euler–Lagrange equation to a variational principle of the form (1.1) for a Lagrangian
L(y, ẏ), it is natural to ask, whether there exists a modified Lagrangian Lmod (y, ẏ) such that the modified
equation is governed by the Euler–Lagrange equations to Lmod . In contrast to classical variational
integrators, for which Lmod (y, ẏ) is known to exist and can be computed [15], for conjugate symplectic
schemes Lmod may only exists in modified variables Lmod (ỹ, ˙̃y). We will prove that Lmod exists in the
original variables (y, ẏ) if Jmod has the form

Jmod =

(
∗ ∗

∗ 0

)
.
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In particular, this shows that for classical consistent, symmetric, linear multistep methods with matrix
coefficients with a central force evaluation applied to second order equations Lmod exists in the original
variables (y, ẏ) if all coefficients are multiples of the identity matrix, i.e. we have a multistep method
with scalar coefficients. However, in the general case of matrix coefficients Lmod only exists in modified
variables (ỹ, ˙̃y).

The article is structured as follows: Section 2 illustrates the ideas of blended backward error analysis
on linear multi-step methods. Section 3 shows how to compute the modified data Jmod and Hmod

introduced in Theorem 1.1. The technique is then applied to linear multi-step methods with matrix
valued coefficients in Section 4 and results are illustrated by numerical experiments. Additionally, for
comparison of blended backward error analysis with classical backward error analysis, ?? contains an
application of blended backward error analysis to a mechanical ordinary differential equation discretised
with the Störmer-Verlet scheme. A formal proof of Theorem 1.1 is provided in Section 5. Finally,
Section 6 discusses the existence of modified Lagrangians as formal power series and future research
directions are suggested in Section 7.

2. Application of blended backward error analysis to linear multistep methods with matrix
coefficients

To illustrate the idea of blended backward error analysis, we compute modified symplectic structures
and Hamiltonians of linear multistep methods.

Consistent, symmetric linear multistep methods with a single force evaluation applied to the second
order ODE

ÿ = ∇U(y(t)) (2.1)

take the form
s
2∑

j=1

A j(y(t − jh) − 2y(t) + y(t + jh)) = h2∇U(y(t)) (2.2)

with
s
2∑

j=1

j2A j = I. (2.3)

Relation (2.3) is coming from the consistency requirement [4]. These are s-step methods, where s
is even. Here we allow matrix valued coefficients A j [4, 5, 9, 14], h is the step-size and I denotes
the identity matrix. If the coefficients A j are scalars, then the schemes constitute classical consistent,
symmetric linear multistep methods. A series expansion of (2.2) in h is equivalent to a power series
expression of the form

ÿ = ∇U(y(t)) +

N∑
i=1

hig̃i(y(t), . . . , y(ai)) + O(hN+1) (2.4)

for some h-independent expressions g̃i in the ai-jet of y at t. Substituting 3rd and higher derivatives on
the right hand side of (2.4) with derivatives of (2.4) itself iteratively yields an equation of the form

ÿ = ∇U(y(t)) +

N∑
i=1

higi(y(t), ẏ(t)) + O(hN+1) (2.5)
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which is called the modified equation of method (2.2) applied to (2.1). We refer to [3] for optimal truncation
techniques and a discussion of spurious solutions not covered by the considered modified system for the case
of linear multistep methods with scalar coefficients. In the following, we will focus on the question which
structural properties the modified equation (2.5) shares with the original ODE (2.1).

Variational Structure

The ODE (2.1) has first order variational structure as it is the Euler–Lagrange equation

d
dt
∂L
∂ẏ
−
∂L
∂y

= 0

to the variational principle

δS = 0 for S (y) =

∫
L(y(t), ẏ(t))dt

with
L(y, ẏ) =

1
2
‖ẏ‖2 + U(y).

Moreover, there exists a variational principle for (2.2):

Lemma 2.1. Let the matrices A j ∈ R
n×n be symmetric. For T > 0 let T either be the circle T = R/TZ

or the real line T = R. For y defined on T the variational principle

δS ∆ = 0 for S ∆(y) =

∫
T

L∆

(
y(t), y(t + h), . . . , y

(
t +

s
2

h
))

dt (2.6)

with

L∆

(
y(t), y(t + h), . . . , y(t +

s
2

h)
)

=
1

2h2


s
2∑

j=1

〈A j(y(t + jh) − y(t)), y(t + jh) − y(t)〉

 + U(y(t)).

implies the functional equation (2.2). Moreover, if T = [a, b] is an interval, then (2.6) implies (2.2) on
the interval

◦

T = [a + s
2h, b − s

2h]. Here we assume that the function space for y and the potential U are
such that U ◦ y and ∇U ◦ y constitute square integrable functions.

Proof. Let ∆τy denote the forward difference, i.e. (∆τy)(t) = y(t + τ) − y(t). Then 〈y,∆τz〉L2(T,Rn) =

〈∆∗τy, z〉L2(T,Rn) holds with ∆∗τ = ∆−τ on T if T ∈ {R,R/TZ} or on the interval [a + τ, b − τ] if T = [a, b].
The expression ∆∗τ∆τy corresponds to the central difference

(∆∗τ∆τy)(t) = −y(t + τ) + 2y(t) − y(t − τ).

Let δ denote the variational derivative in the direction of a variation δy, i.e. δS ∆(y) = limε→0
1
ε
(S ∆(y +

εδy) − S ∆(y)). Let δy ∈ C∞c (T,Rn), if T ∈ {R,R/TZ} and let δy ∈ C∞c (
◦

T,Rn), if T = [a, b]. We have

δS ∆(y) =
1

2h2

s
2∑

j=1

δ〈A j∆ jhy,∆ jhy〉L2(T,Rn) + δ

∫
T

U(y(t)) dt
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=
1
h2

s
2∑

j=1

〈A j∆ jhy,∆ jhδy〉L2(T,Rn) + 〈∇U(y), δy〉L2(T,Rn)

=
1
h2

s
2∑

j=1

〈A j∆
∗
jh∆ jhy + ∇U(y), δy〉L2(T,Rn).

Now (2.2) follows from the fundamental lemma of the calculus of variations on T or
◦

T, respectively.

To analyse structure preserving properties of the method (2.2), it might seem natural to seek a
modified Lagrangian Lmod (y, ẏ) given as a formal power series in the step-size h such that the modified
variational principle

δS mod = 0 for S mod (y) =

∫
Lmod (y(t), ẏ(t))dt

covers smooth solutions of (2.6) up to any order in the step-size h. However, we show that although
a 1st order Lagrangian Lmod covering the modified equations always exists as a power series, it only
exist in modified variables (ỹ, ˙̃y) in the most general case. Even for simple methods, the existence of an
expression in closed form for the change of coordinates from (y, ẏ) to (ỹ, ˙̃y) can not be expected. This
makes it difficult to compute Lmod using an ansatz.

Hamiltonian structure

Another approach is to work on the Hamiltonian side. The ODE (2.1) has the form of a Hamiltonian
system

ż(t) = J−1∇H(z(t)), H(z) =
1
2
‖ẏ‖2 − U(y), z =

(
y
ẏ

)
. (2.7)

Here

J =

(
0 −I
I 0

)
(2.8)

is the standard symplectic structure.
In this paper we use a blended approach of the variational and Hamiltonian viewpoint to systemati-

cally compute a modified Hamiltonian system

ż(t) = J−1
mod (z(t))∇Hmod (z(t)) (2.9)

consisting of a modified Hamiltonian Hmod and a modified symplectic structure Jmod given as formal
power series in h such that for a truncation to arbitrary order N the ODE (2.9) covers the modified
equation (2.5) up to higher order terms. Here Jmod is a skew symmetric matrix which satisfies a Jacobi
identity. The following theorem can be considered as an instance of Theorem 1.1 and will be proved in
Section 5.

Theorem 2.2. Let N ∈ N denote the considered order of the series expansion of the matrix multistep
method (2.2), where the coefficients are symmetric matrices. There exists a modified symplectic structure
J[N]

mod , which is O(h) close to J and a modified Hamiltonian H[N]
mod , which is O(h) close to H, such that

ż(t) = (J[N]
mod (z))−1∇H[N]

mod (z(t)) (2.10)

with coordinate z = (y, ẏ) is equivalent to the modified equation (2.5) up to terms of order O(hN+1).
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Here O(h)-closeness of J[N]
mod and J means that the zeroth coefficient of the polynomial J[N]

mod in the
formal variable h is given by J. O(h)-closeness of H[N]

mod and H has an analogous meaning.
We observe conditions under which a modified first order Lagrangian Lmod (y, ẏ) exists in the original

variable y by analysing the modified symplectic structure Jmod .

Theorem 2.3. If the matrices A j in (2.2) are scalar multiples of the identity matrix, then there exists
a modified Lagrangian L[N]

mod depending on (y, ẏ) that is O(h)-close to L(y, ẏ) such that the modified
variational principle

δS [N]
mod = 0 for S [N]

mod (y) =

∫
L[N]

mod (y(t), ẏ(t))dt

yields the modified equation (2.5) up to terms of order O(hN+1).

Again, O(h)-closeness is to be interpreted in a formal sense, analogously to its meaning in Theo-
rem 2.2.

Theorem 2.3 applies to traditional multistep methods with scalar coefficients. However, we will see
that for general linear multistep methods with matrix-valued coefficients the existence of a first order
modified Lagrangian in the original variable y cannot be expected. A proof of Theorem 2.3 is postponed
to Section 6.

3. Computation of modified hamiltonian structure

In this section we introduce a method to compute the modified data J[N]
mod and H[N]

mod of Theorem 2.2
such that (2.10) governs (2.5). We will then verify the validity of the construction method and prove
Theorem 1.1 and 2.2 in Section 5.

Let L[N]
∆

denote the series expansion of

L∆

(
y(t), y(t + h), . . . , y

(
t +

s
2

h
))

to order N in the step-size h. The expression L[N]
∆

depends on the M-jet of y at t for some M ∈ N. Notice
that the order M variational principle

δS[N]
∆

(y) = 0 with S
[N]
∆

(y) =

∫
L

[N]
∆

(y(t), ẏ(t), . . . , y(M)(t)) dt (3.1)

recovers (2.4) up to higher order terms. We first compute a high-dimensional Hamiltonian system
defined on the 2M − 1-jet space of y corresponding to the order M variational principle (3.1). The
Hamiltonian principle is then reduced to a Hamiltonian system defined on the 1-jet space of y. It has the
form (2.9) and covers (2.5) up to higher order terms.

To construct the high-dimensional Hamiltonian system, we use Ostrogradsky’s Hamiltonian descrip-
tion of high-order Lagrangian systems [16]. For this we define variables

q = (y, ẏ, . . . , y(M−1))

and for i = 1, . . . ,M

p j
i =

M−i∑
k=0

(−1)k dk

dtk

∂L[N]
∆

∂(y j)(k+i) .
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Here the index j enumerates the components of y and d
dt denotes the total derivative operator on the

jet-space of y, which acts like

d
dt
ρ
(
y, ẏ, . . . , y(M)

)
=

M∑
i=0

〈
∇y(i)ρ, y(i+1)

〉
.

on a scalar valued function ρ defined on the M-jet space of y. The high dimensional Hamiltonian system
consists of the Hamiltonian

H [N] =

M∑
i=1

〈pi, q̇i〉 − L
[N]
∆
, (3.2)

where all expressions are expressed in y[2M−1] = (y, ẏ, . . . , y(2M−1)), and the symplectic structure matrix
J

[N]
mod (y[2M−1]). The skew-symmetric matrix J [N]

mod (y[2M−1]) is the representing matrix of the differential
2-form

Ω[N] =

M∑
i=1

n∑
j=1

dp j
i ∧ dqi

j, (3.3)

where p j
i and qi

j are interpreted as functions in the variable y[2M−1] of the 2M − 1-jet space, i.e. J [N]
mod is

the anti-symmetrised tensor product* ∧ of the gradients ∇y[2M−1] pi
j and ∇y[2M−1]qi

j summed over all indices.
To compute the modified Hamiltonian system on the 1-jet space with variable y[1] = (y, ẏ), the vari-

ables y(2), . . . , y(2M−1) in the expression (3.2) for the HamiltonianH [N](y[2M−1]) are repeatedly replaced
by (2.5) until higher derivatives only occur in O(hN+1) terms. This yields H[N]

mod (y, ẏ). Similarly, we can
consider p j

i and qi
j as functions of (y, ẏ) truncating O(hN+1) terms. The matrix J[N]

mod is then given as
the representing matrix of the 2-form Ω[N] pulled to the 1-jet space of the variable y, i.e. interpreting
y[1] = (y, ẏ) as the only independent variables. Equivalently, J[N]

mod is the anti-symmetrised tensor product
∧ of the gradients ∇y[1] pi

j and ∇y[1]qi
j summed over all indices. (As J[N]

mod is constructed from a closed
differential 2-form, it is automatically skew-symmetric and satisfies the Jacobi identity.) This completes
the construction of the modified data.

The system (2.9) recovers (2.5) up to higher order terms as we will prove after a computational example.

4. Computational example

As introduced in Section 2, consider the multistep method

A2y(t − 2h) + A1y(t − h) − 2(A1 + A2)y(t) + A1y(t + h) + A2y(t + 2h) = h2∇U(y(t)) (4.1)

with matrix coefficients in dimension n = 2. By the consistency requirement, A2 = 1/4(I − A1). We
obtain

Jmod
[4] = J + h2

(
J2

11 −J2
21

J2
21 0

)
+ h4

(
J4

11 −J4
21

J4
21 J4

22

)
with

J2
11 =

(
0 −b1

b1 0

)
*This corresponds to the command TensorWedge in Wolfram Mathematica.
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where

b1 =
1
4

(
ẏ2

(
a12(U (2,1) − U (0,3)) + (a22 − a11) U (1,2)

)
+ ẏ1

(
−a12(U (2,1) − U (0,3)) + (a22 − a11) U (2,1)

) )
.

Here and in the following U (k,l) =
∂k+lU(y)
∂ky1∂ly2

. As the expressions of higher order terms become quite
complicated, we refer the reader to the Mathematica Notebooks of our accompanying source code [11].
However, as this will be relevant in the discussion later, we are reporting J4

22 for the special case that A1

is a diagonal matrix: we have

J4
22 =

(
0 −b2

b2 0

)
with

b2 =
1
8

(a2
11 − a2

22 + 2(a22 − a11))(U (2,1)ẏ1 + U (1,2)ẏ2) if A1 =

(
a11 0
0 a22

)
.

The modified Hamiltonian H[4]
mod for the general case is given as

H[4]
mod (y, ẏ) = H(y, ẏ) + h2H2(y, ẏ) + h4H4(y, ẏ)

with

H2(y, ẏ) =
1

24

(
(ẏ1)2(2(4 − 3a11)U (2,0) − 6a12U (1,1))

− 2ẏ2ẏ1(3a12U (0,2) + (3a11 + 3a22 − 8)U (1,1) + 3a12U (2,0))
− 6a22U (0,2)(ẏ2)2 − 6a12U (1,1)(ẏ2)2

+ (3a22 − 4)(U (0,1))2 + 3a11(U (1,0))2

+ 6a12U (0,1)U (1,0) + 8U (0,2)(ẏ2)2 − 4(U (1,0))2
)
.

For further terms, we refer the reader to the Mathematica Notebooks of our accompanying source
code. Hamilton’s equations

ż = (J[4]
mod (z))−1∇H[4]

mod (z)

for the modified Hamiltonian system are equivalent to the modified equation (2.5) truncating terms of
order O(h6).

Figure 1 shows a numerical experiment with a rotational invariant potential. The start values for the
multistep formula were obtained using the fourth order modified equation. Trajectories computed with
the multistep scheme look very regular. The quantities H[0]

mod = H, H[2]
mod , and H[4]

mod evaluated along a
trajectory show oscillatory energy error behaviour. Experiments with different values for the step-size h
confirm the preservation of H[k]

mod , k = 0, 2, 4 up to truncation error. Initialising the multistep scheme
with the fourth order modified equation, the effects of spurious solutions was minimised. However, as h
is decreased, spurious solutions cause wriggles in the energy error H[k]

mod − H(zinit), k = 0, 2, 4 which
eventually prevent further energy error decay.
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Figure 1. Numerical experiment with the multistep scheme (4.1) with A2 = diag (0.85, 1.25),
A1 = I − 4A2, U(y) = exp

(
−1

2 (y2
1 + y2

2)
)

and time-step h = 0.1. The multistep formula was
initialised at times 0, h, 2h, 3h by integrating the order 4 modified equation using very fine
Euler-steps starting from the initial value (yinit, ẏinit) = ((1,−1), (0.1,−0.2)). The figure at the
top shows a trajectory up to time t = 500, which looks like an orbit in a completely integrable
system. The figures below show an evaluation along the trajectory of H − H((yinit, ẏinit)) (blue)
as well as H[2]

mod − H[2]
mod ((yinit, ẏinit)) (orange) and H[4]

mod − H[4]
mod ((yinit, ẏinit)) (green) up to time

t = 5000 and t = 10, respectively. We see oscillatory energy error behaviour.

If A2 = αI with α ≥ 1
4 and A1 = I − 4A2, then (4.1) corresponds to a classical stable† multistep

scheme: the generating polynomial ρ to (4.1) is given as

ρ(ξ) = α + (1 − 4α)ξ − 2(1 − 3α)ξ2 + (1 − 4α)ξ3 + αξ4.

The polynomial ρ has a double root at 1 as well as the roots

ξ3 = 1 −
1

2α
+

√
1 − 4α
2α

, ξ4 = 1 −
1

2α
−

√
1 − 4α
2α

.

Since α ≥ 1
4 , the roots ξ3 and ξ4 are complex conjugate to each other and lie on the unit circle such that

the scheme is stable.
†A multistep scheme for second order equations is stable if all roots of its generating polynomial lie in the closed unit disk and those

on the circle are at most double zeros [3, XV.1.2].
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Moreover, L∆ and L∆ are rotationally invariant because A1 and A2 commute with rotation matrices.
An application of Noether’s theorem to L[N]

∆
yields the following modified angular momentum:

I[N] =

M∑
m=1

m−1∑
k=0

(−1)k
〈
∇ykL

[N]
∆
, dRy(m−1−k)

〉
, dR =

(
0 −1
1 0

)

The integer M is the order of the highest derivative of y in L[N]
∆

. For the truncation order N = 4 we have
M = 5. Using (2.5) repeatedly, derivatives of y of order greater than two are replaced by terms in y, ẏ
and O(h6)-terms. After truncation at order 4 in h we obtain the modified angular momentum I[4]

mod (y, ẏ).
Figure 2 shows the conservation error of I = I[0]

mod , I[2]
mod , I[4]

mod along a trajectory. We see oscillatory error
behaviour. The oscillations shrink as the step-size h decreases until spurious solutions prevent further
decrease.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
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Figure 2. The plots in the second row show the error I − I(yinit, ẏinit) (blue) in the angular
momentum and I[2]

mod − I[2]
mod (yinit, ẏinit) (orange) and I[4]

mod − I[4]
mod (yinit, ẏinit) (green) along a

trajectory. The same data as in Figure 1 was used apart from A2 = diag (0.3, 0.3) and h = 0.15.
The plot at the top shows a trajectory initialised as in Figure 1.

For source code of our experiments refer to [11].

5. Validity of the construction method

Let us prepare the proof of Theorem 1.1. We will use the language of Differential Geometry.
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To motivate the following proposition and to fix notation recall the following fact: if (Z′, ω′,H′) is

a Hamiltonian system with Hamiltonian vector field X′H′ , Z
Ψ
↪−→ Z′ an embedding such that Ψ(Z) is a

symplectic submanifold that is invariant under motions, i.e. X′H′(Ψ(z)) ∈ TΨ(z)Ψ(Z) for all z ∈ Z, then
the pull-back system (Z, ω,H) with ω = Ψ∗ω′, H = H′ ◦Ψ is a Hamiltonian system with Hamiltonian
vector field XH. Here Ψ∗ω′ denotes the pull-back of ω′ along Ψ. The Hamiltonian vector fields XH and
X′H′ relate by

Ψ∗XH = X′H′ ◦ Ψ,

i.e. for a motion γ with γ̇ = XH ◦ γ the curve γ′ = Ψ ◦ γ is a motion of (Z′, ω′,H′), i.e. γ̇′ = X′H′ ◦ γ
′.

Here Ψ∗ denotes the push-forward map, i.e. (Ψ∗XH)(z) = dΨ|z(XH(z)) for z ∈ Z.
In the following, we will adapt this statement to a setting, where the definition of ω′, H′, and Ψ′

contain a formal variable h and where Ψ(Z) is left invariant only up to higher order terms in h.

Definition 5.1 (Formal Hamiltonian system). Let N ∈ N be a truncation index, Z be a smooth manifold,
h a formal variable, and H =

∑N
k=0 hkHk a formal polynomial whose coefficients are smooth maps

Z → R. Further, let ω =
∑N

k=0 hkωk be a formal polynomial whose coefficients are 2-forms on Z. The
collection (Z, ω,H) is called a formal Hamiltonian system with truncation index N if the following
conditions are satisfied.

• The formal symplectic form ω is closed, i.e. dω =
∑N

k=0 hkdωk is a formal polynomial whose
coefficients are 3-forms that are zero.

• The 2-form ω0 is non-degenerate.

The relation −dH = ω(X, ·) defines a formal power series X =
∑∞

k=0 hkXk, where Xk are vector
fields on Z. The truncation XH :=

∑N
k=0 hkXk is called (formal) Hamiltonian vector field. The formal

differential equation γ̇ = XH ◦ γ is called Hamilton’s equation.

Proposition 5.2. Let N ∈ N be a truncation index, Z′ and Z be manifolds, and let (Z′, ω′,H′) be a
formal Hamiltonian system with truncation index N. Consider a formal polynomial Ψ =

∑N
k=0 Ψkhk such

that Ψk : Z → Z′ are smooth and Ψ0 : Z → Z′ is an embedding. To z ∈ Z define formal tangent spaces

TΨ(z)Ψ(Z) :=

 N∑
k=0

hkdΨk|z(v)

∣∣∣∣∣∣v ∈ TzZ

 ⊂ N⊕
k=0

hkTz′k
Z′,

where z′ :=
∑N

k=0 hkz′k := Ψ(z).

• Assume that the Hamiltonian vector field is tangential to Ψ(Z), i.e. trk(X′H′(Ψ(z))) ∈ TΨ(z)Ψ(Z) for
all z ∈ Z. Here trk denotes the truncation of O(hN+1)-terms.

• Assume that Ψ(Z) is a symplectic submanifold of Z′, i.e. for all z ∈ Z

TΨ(z)Ψ(Z) ∩ TΨ(z)Ψ(Z)⊥ω′ = 0.

Here Ψ(Z)⊥ω′ denotes the symplectic complement

Tz′Ψ(Z)⊥ω′ =

v ∈
N⊕

k=0

hkTz′k
Z′

∣∣∣∣∣∣trk(ω′(v,w)) = 0 ∀w ∈ Tz′Ψ(Z)

 ,
where z′ :=

∑N
k=0 hkz′k := Ψ(z).
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Then the pull-back system (Z, ω,H) with ω = Ψ∗ω′, H = H′ ◦Ψ constitutes a formal Hamiltonian
system with truncation index N and

trk(Ψ∗XH) = X′H′ ◦ Ψ.

Proof. Let ω =
∑N

k=0 hkωk Since Ψ0 is an embedding, it is an immersion and we conclude that ω0 is
non-degenerate as ω′0 is non-degenerate. Since pull-back and the differential d commute, ω is closed.

In the following calculations we identify two formal polynomials P1 and P2 with coefficients of the
same type (real numbers, n-forms, smooth functions, . . .) if and only if P1 − P2 ∈ O(hN+1). For all z ∈ Z
we have

−ω′Ψ(z)(dΨ|z(XH(z)), dΨ|z(·)) = −(Ψ∗ω′)z(XH(z), ·) = −ωz(XH(z), ·)

= dH|z = d(H′ ◦ Ψ)|z = dH′|Ψ(z) ◦ dΨ|z

= −ω′Ψ(z)(X
′
H′(Ψ(z)), dΨ|z(·))

=⇒ ω′Ψ(z)(dΨ|z(XH(z)) − X′H′(Ψ(z)), dΨ|z(·)) = 0

=⇒ dΨ|z(XH(z)) − X′H′(Ψ(z)) ∈ TΨ(z)Ψ(Z)⊥ω′ .

As the inclusion dΨ|z(XH(z)) − X′H′(Ψ(z)) ∈ TΨ(z)Ψ(Z) holds as well and Ψ(Z) is a symplectic
submanifold, it follows that

dΨ|z(XH(z)) = X′H′(Ψ(z)).

We can now proceed to the proof of Theorem 1.1.

Proof. Step 1. Construction and validity of the modified equation. The truncated power series L[N]
∆

is a
formal polynomial of the form

L
[N]
∆

(y[M]) = L(y, ẏ) +

N∑
k=1

hkLk
∆(y[M]),

where h is the formal variable. Since the Lagrangian L is regular, the Euler–Lagrange equations to L[N]
∆

M∑
j=0

(−1) j d
dt

(
∇y( j)L

[N]
∆

(y[M])
)

= 0

are equivalent to an ordinary differential equation of the form

ÿ = g0(y, ẏ) +

N∑
k=1

hkg̃k(y[2M]) (5.1)

when truncating terms of order O(h[N+1]). The ordinary differential equation is of order 2M because
L

[N]
∆

(y[M]) is regular as well. Iterative replacements of derivatives of order j ≥ 2 by derivatives of (5.1)
yield the modified equation
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ÿ = g0(y, ẏ) +

N∑
k=1

hkgk(y, ẏ) + O(h[N+1]). (5.2)

Solutions to

ÿ = g0(y, ẏ) +

N∑
k=1

hkgk(y[M]) (5.3)

fulfil (5.1) up to O(h[N+1]) terms by construction. This proves the first part of Theorem 1.1.
Step 2. Existence of Hamiltonian structure on a higher jet-space. Let Y denote the domain of y

(smooth manifold), Z = Jet1(Y) the 1-jet space, and Z′ = Jet2M−1(Y). The iterative substitution procedure
gives rise to a formal polynomial Ψ of maps Z → Z′ defined by y[1] 7→ y[2M−1], where y( j) for j ≥ 2
is expressed as a formal polynomial of functions depending on y[1] = (y, ẏ). The expression for y( j)

is obtained by deriving (5.1) j − 2 times, iteratively replacing derivatives of order greater than 2 by
derivatives of (5.1) followed by a truncation of O(h[N+1]) terms.

In the remainder of this part of the proof we suppress the fact that we operate on formal polynomials
as the following steps can also be done when h is substituted with a sufficiently small real number h > 0.

In the following, we will show that there exists a Hamiltonian structure (Z′, ω′,H′) on Z′ whose
motions correspond to the motions induced by the order M-Lagrangian L[N]

∆
(y[M]). To compute the

Hamiltonian structure (Z′, ω′,H′), we first construct a Hamiltonian system on T ∗JetM−1(Y) which we
will then pull back to Z′.

As the Lagrangian L[N]
∆

(y[M]) is regular, by Ostrogradsky’s principle for high order Lagrangians [16],
there exists a transformation χ : Z′ → T ∗JetM−1(Y) between the jet variable y[2M−1] ∈ Z′ and variables
(q, p) ∈ T ∗JetM−1(Y) with

q = (y, ẏ, . . . , y(M−1))

and

pi =

M−i∑
k=0

(−1)k dk

dtk∇y(k+i)L
[N]
∆

(y[M]), i = 1, . . . ,M

such that with

Ω =

M∑
i=1

n∑
j=1

dp j
i ∧ dqi

j, and H [N](q, p) =

M∑
k=1

〈pk, qk〉 − L
[N]
∆

the motions of (5.1) are exactly mapped to the motions of the Hamiltonian vector field XH [N] on
T ∗JetM−1(Y) with

− dH [N] = Ω(XH [N] , ·) (5.4)

by the transformation χ−1. Let ω′ = χ∗Ω and H′ = H [N] ◦ χ. Now (Z′, ω′,H′) is a Hamiltonian system
on Z′ whose motions are exactly the motions induced by the Lagrangian structure. This completes step
2 of the proof.

Remark 5.3. In the setting of formal polynomials, Ω is a two form whose coefficients are formal
polynomials or, alternatively, Ω is a formal polynomial whose coefficients are 2-forms. In this case,
(5.4) defines a formal series XH [N] in h from which we truncate O(hN+1) terms. This is also done when
defining X′H′ through −dH′ = ω′(X′H′ , ·). The differential equation defined by X′H′ is then equivalent to
the differential equation induced by the Lagrangian structure up to O(hN+1) terms.
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Step 3. Pull-back of (Z′, ω′,H′) to Z. As the Lagrangian L is regular, the 2-form ω′0 =
∑n

j=1 dy j ∧ dp j,
where p is obtained by the Legendre transform for L, is a symplectic form. The pull-back form ω = Ψ∗ω′

is a formal polynomial in h, whose coefficients are 2-forms. The zeroth coefficient ω0 coincides with ω′0.
ω is, therefore, non-degenerate and Ψ(Z) is a symplectic submanifold of Z′ in the sense of Proposition 5.2.
Moreover, by construction of H′ and Ψ the condition trk(X′H′(Ψ(z))) ∈ TΨ(z)Ψ(Z) for all z ∈ Z is fulfilled.
Therefore, Proposition 5.2 completes the theorem’s proof.

Proof of Theorem 2.2. The construction method of the modified data J[N]
mod and H[N]

mod coincides with the
construction method verified in the proof of Theorem 1.1.

6. On the existence of modified lagrangians

Proposition 6.1. All Hamiltonian systems

ż(t) = J̄−1(z(t))∇H̄(z(t)), z =

(
y
ẏ

)
with a fixed symplectic structure represented by J̄ can be formulated as variational problems of the form

δS̄ = 0 for S̄ (y) =

∫
L̄(y(t), ẏ(t))dt (6.1)

if and only if J̄ is of the form

J̄ =

(
∗ ∗

∗ 0n

)
, (6.2)

where 0n denotes an n × n-dimensional zero matrix with n the dimension of y, (i.e. if the distribution
spanned by the vector fields ∂

∂ẏ1
, . . . , ∂

∂ẏn
is Lagrangian).

Proof. Denote the domain of the variable y by Y , the 1-jet space over Y by Jet1(Y), and the symplectic
form represented by the matrix J̄ by ω̄. Consider a Hamiltonian H̄ : Jet1(Y) → R. If the distribution
D spanned by ∂

∂ẏ1
, . . . , ∂

∂ẏn
is Lagrangian w.r.t. ω̄, then there exists a primitive λ̄ of ω̄ with kernelD [7,

Cor.15.7]. The 1-form λ̄ is of the form

λ̄ =

n∑
j=1

`(y, ẏ) dy j.

By Hamilton’s principle, a curve γ : [tstart, tend]→ Y is a Hamiltonian motion if the action functional

S̄ (γ) =

∫
γ

(λ̄ − H̄dt)

is stationary w.r.t. variations of γ through smooth curves fixing the endpoints. Thanks to the special
structure of λ̄ (absence of dẏ j-terms), the pullback of λ̄ − H̄dt along a curve γ has the form

L̄(y(t), ẏ(t))dt
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with y(t) describing γ(t) in the coordinate y. Therefore, in coordinates, the variational principle has the
form (6.1).

On the other hand, a variational principle of the form (6.1) with regular Lagrangian L̄ (i.e. invertible(
∂2 L̄
∂ẏi∂ẏ j

)
i, j

) can be formulated as a Hamiltonian system with Hamiltonian

H̄(y, ẏ) = 〈ẏ, p(y, ẏ)〉 − L(y, ẏ), and with p(y, ẏ) =
∂L̄
∂ẏ

(y, ẏ).

The symplectic structure is given as

ω̄ = dλ̄, with λ̄ =

n∑
j=1

p j(y, ẏ)dy j.

As the distribution D spanned by ∂
∂ẏ1
, . . . , ∂

∂ẏn
is in the kernel of a primitive of ω̄, the distribution is

Lagrangian.

Remark 6.2. The strength of Proposition 6.1 lies in the assertion that L̄ is a first-order Lagrangian in
the original variable y, i.e. it depends on (y, ẏ) only. If J̄ is not of the required form, then, by Darboux’s
theorem, we can perform a change of variables on Jet1(Y) such that ω̄ is the standard symplectic form∑

d p̄i ∧ dq̄i and L̄ is a 1st-order Lagrangian in q, i.e. depends on (q, q̇) but not on higher derivatives in
q. However, as q and p each depend on (y, ẏ), the variables have lost their dynamical meaning. This
is because the required change of variables on Jet1(Y) is not fibred, i.e. the jet-space structure is not
preserved. Expressed in the original variable y, the Lagrangian L̄ then depends on (y, ẏ, ÿ), i.e. describes
a higher order variational structure.

Remark 6.3. The computational example presented in Section 4 provides an example for which the
modified symplectic structure is not of the form that is required in Proposition 6.1, unless A1 is of the
form A1 = αI, i.e. the method coincides with a multistep method with scalar coefficients. Indeed, if the
considered method is a classical multistep method, i.e. all coefficients are scalar, then Lmod (y, ẏ) exists
by Theorem 2.3.

We now proceed to the proof of Theorem 2.3. We exploit that linear multistep methods can be
interpreted as 1-step methods on the original phase space [3, §XV.2]. Here and below we refer to the
theory of linear multistep methods for 2nd order ODEs.

Proof of Theorem 2.3. As proved in [1, §5], for the underlying 1-step method φ of a symmetric linear
multistep method there exists a local diffeomorphism ψ such that φ̃ = ψ ◦ φ ◦ ψ−1 is symplectic with
respect to the original symplectic structure ω =

∑
j dp j ∧ dq j. The conjugacy ψ is given as a P-series

applied to the original Hamiltonian vector field X0 given by the right hand side of

q̇ = p

ṗ = ∇U(q).

The P-series ψ is a formal power series that is in general not convergent. Conjugacy, pull-back and push-
forward operations are to be interpreted in a formal sense. The map φ is symplectic with respect to the
modified symplectic structure ωmod = ψ∗ω and is the time-h-flow of a vector field X, for which the flow
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equations correspond to a first order formulation of the modified equation (2.5). The ω-symplectic map
φ̃ is the time-h-flow of the ψ-related vector field X̃ = ψ∗X ◦ ψ−1. By standard results on backward error
analysis for symplectic integrators [3, §IX], X̃ is a Hamiltonian vector field w.r.t. the standard symplectic
structure ω for a Hamiltonian H up to any order in the step-size h. Pulling back the Hamiltonian
structure (ω,H) using ψ, we obtain a modified Hamiltonian system (ωmod ,Hmod ) = (ψ∗ω,H ◦ ψ) such
that Hamilton’s equations are equivalent to the modified equation (2.5).

Since ψ is a P-series in X0, the distribution D spanned by the vertical vector fields ∂
∂p1
, . . . , ∂

∂pn
is

Lagrangian w.r.t. ωmod = ψ∗ω. By Proposition 6.1, for any order N in the step-size h there exists a first
order Lagrangian Lmod (y, ẏ) in the original variable such that the variational principle

δ

(∫
Lmod (y(t), ẏ(t))dt

)
= 0

recovers the modified equation up to higher order terms in h.

Remark 6.4. The proof of Theorem 2.3 also shows that Lmod in Theorem 2.3 has the structure of an
S -series applied to a P-series (see [1]). The modified Lagrangian Lmod can, thus, be computed with
an ansatz as well. The modified data Hmod and Jmod can then be computed from Lmod by a Legendre
transformation.

7. Future work

Motivated by optimal truncation results for modified equations, it would be interesting to analyse
the convergence properties of modified symplectic structures, modified Hamiltonians, and modified
Lagrangians. Moreover, in view of Remark 6.4, a systematic description of the combinatorial structure
of the modified quantities appears feasible.
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