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Abstract: Graph contrastive learning (GCL) has emerged as a powerful self-supervised paradigm for
graph representation. A critical challenge in GCL arises from the conflict between the contrastive loss
function and the message-passing mechanism of graph convolutional network encoders, as the message-
passing mechanism pulls neighboring nodes close, while the contrastive loss function pushes negative
nodes apart, especially neighboring nodes. Prevalent methods typically tackle the conflict by identifying
conflicting node pairs and subsequently ignoring them during training. However, the identification
of conflicting pairs in these methods may be one-sided and even incorrect, likely deleting valuable
pairs which are inherently non-conflicting. To overcome the limitation, we have proposed conflict
refined graph contrastive learning (CR-GCL), a novel framework that leverages pseudo-labels to prevent
ignoring non-conflicting negative pairs. Technically, CR-GCL incorporates three key components: 1)
a perturbation augmentation module that creates augmentation graphs and generates representations;
2) a conflict quantification module that estimates the gradient impact of negative pairs by tracking
representation similarity changes; 3) a conflict refinement module that utilizes pseudo-labels to enhance
the identification of conflicting negative pairs, which are then ignored during training. Extensive
experiments on six benchmark datasets revealed that CR-GCL significantly outperforms state-of-the-art
methods, delivering superior node classification accuracy with various label rates.

Keywords: graph contrastive learning; graph convolutional networks; node representation fusion;
pseudo-label; semi-supervised learning

1. Introduction

Graph structure is a crucial and ubiquitous data expression across various domains like electronic
recommendation [1], community detection [2], and protein molecule prediction [3]. Graph contrastive
learning (GCL) [4,5] has emerged as a powerful self-supervised paradigm for graph representation. It has
delivered impressive performances in link prediction [6], node classification [7], graph classification [8],
and recommendation systems [9].
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Figure 1. Conflict illustration. (a) Intra-view conflict occurs in a single view. For instance, v1

aggregates features from its neighbor v3, increasing their representation similarity. However,
(v1, v3) is a negative pair, and the contrastive loss function aims to reduce the similarity,
leading to a conflict. (b) Inter-view conflict arises across views. Here, (v1, v′1) is a positive pair,
with the goal of maximizing the similarity. However, since (v3, v′1) forms a negative pair, the
similarity of the positive pair (v1, v′1) may be unintentionally decreased when v3 is aggregated
into v1, resulting in a conflict.

The core spirit of GCL is to maximize the similarity of positive pairs and minimize the similarity of
negative pairs. It should be noticed that such a mechanism may cause conflict with graph convolutional
network (GCN)-based encoders including intra-view conflict and inter-view conflict as presented in
Figure 1. As reported in the existing literature [10, 11], the conflict lies between GCN encoders’
message-passing mechanism and GCL’s contrastive loss principle. Specifically, the message-passing
mechanism pulls neighboring nodes close by aggregating their features, whereas the contrastive loss
function pushes negative nodes apart, especially neighboring nodes. A detailed theoretical analysis of
inter-view conflict is in Appendix A. To alleviate the conflict, existing solutions [10, 11] mostly depend
on a simple threshold-based approach to detect and ignore the conflicting pairs whose conflict suspicions
are measured by gradient impact (GI) during model training, which is approximately characterized
with representation similarity change. Nevertheless, such a strategy is a one-stage approach so that
the identification of conflicting pairs may be one-sided and even incorrect. As illustrated in Figure 2,
existing methods usually identify pairs like (v1, v3) as conflicting since its GI exceeds the threshold;
however, v3 may suggest a significant homogeneous relationship, especially a positive pair relationship
to v1. Intuitively, in such a case, it is reasonable that GI between v1 and v3 is large, as the similarity
between v1 and v3 is high. Therefore, in this paper, we argue that special pairs like (v1, v3) should not be
ignored. If conflict identification can be refined to help perceive those pairs, then the final identification
results would be more reliable for model training.

In this paper, we propose a framework called conflict refined graph contrastive learning (CR-GCL),
which leverages pseudo-labels to enhance the identification of conflicting negative pairs, thereby enhanc-
ing training quality. Technically, CR-GCL consists of three key modules: the perturbation augmentation
module, conflict quantification module, and conflict refinement module. The perturbation augmentation
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Figure 2. Limitation illustration. (a) In original topology, v2, v3 and v4 are all adjacent to the
target node v1. (b) During training, (v1, v3) is identified as a conflicting pair.

module randomly masks features and drops edges simultaneously to generate augmentation graphs
from the input graph. Moreover, a local-to-global approach fuses node representations from both the
augmentation graphs and the input graph, enabling the model to learn high-quality representations.
The conflict quantification module estimates the gradient impact of each negative pair by tracking
the change in representation similarity across training epochs. In the conflict refinement module, by
utilizing pseudo-labels, we enhance the identification of conflicting negative pairs and then ignore them
during training. Additionally, to comprehensively process pairs throughout training, the ignored nodes
undergo iterative updates at each optimization step. The key contributions of this work are summarized
as follows.

1) We develop a high-quality pseudo-label generation strategy. We utilize a local-to-global fusion
mechanism in the perturbation augmentation module to capture node representations that integrate
local and global information. The representations guide the production of high-quality pseudo-labels,
establishing a strong foundation for subsequent processing.

2) We design a conflicting pair refining mechanism. We leverage pseudo-labels to refine the conflicting
pairs in the conflict refinement module. Pseudo-labels assist perceiving significant node pairs formed
by homogeneous nodes, especially positive pairs, thereby preventing them from being ignored during
training. This method improves the model’s performance, and its effectiveness is confirmed through
ablation studies.

3) We demonstrate the effectiveness of the proposed method with abundant comparative studies. Exper-
imental results on six publicly available datasets highlight its superior performance.

2. Related works

2.1. Graph convolutional networks

Graph convolutional networks (GCNs) have demonstrated remarkable performances on modeling
graph-structured data. Studies advancing GCNs can be broadly classified into four key categories [12]:
sampling-based models [13], multi-scale information fusion-based models [14, 15], attention-based
models [16, 17], and contrastive learning-based models [18].
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Sampling-based models accelerate GCN training through node sampling and graph segmentation.
For instance, the FastGCN [19] introduces importance sampling to select nodes with significant gradient
contributions, while GRL [13] uses neighboring sampling to aggregate information from a fixed number
of sampled neighbors for each node. The graph dropout self-learning hierarchical graph convolution
network (DHGCN) [20] uses a self-learning hierarchical sampling strategy with graph dropout, and the
progressive granular ball sampling fusion model (PGBSF) [21] proposes a granular-ball-based sampling
framework to optimize training efficiency.

Multi-scale information fusion-based models aim to enrich node representations by integrating
information across different scales. The adaptive multi-channel graph convolutional network (AM-
GCN) [22] proposes an adaptive multi-channel fusion strategy, fusing the topology graph and a
feature-based k-nearest neighbors graph. The mixed-order graph convolutional network (MOGCN) [23]
fuses multi-order graph embeddings from different adjacency matrices using an ensemble strategy based
on negative correlation learning. The sequential attention layer-wise fusion network (SLFNet) [24] ap-
plies sequential attention across layer-wise node embeddings within each view and then aggregates fused
representations from all views. The cross-graph interaction network (GInterNet) [25] constructs learn-
able cross-graph topologies and performs inter-graph message-passing with attention-based interaction
to fuse multiple graphs.

Attention-based models integrate attention mechanisms to optimize feature aggregation in GCNs.
The graph attention network (GAT) [26] employs self-attention to weigh neighboring contributions,
and the multi-View graph convolutional network with attention mechanism (MAGCN) [16] extends
this with multi-head attention for broader relational modeling. The high-order graph attention network
(HGRN) [17] focuses on high-order attention for long-range dependencies, whereas The collaborative
graph neural network for augmented graphs (LoGo-GNN) [27] combines local and global information
to prevent noise.

Contrastive learning-based models utilize self-supervised learning to reduce the reliance on labels.
The graph contrastive representation learning with adaptive augmentation model (GCA) [18] introduces
an adaptive augmentation strategy for contrastive graph learning, which perturbs less informative edges
and feature dimensions while preserving important structural and semantic patterns, and the model
graph contrastive coding (GCC) [28] proposes a structural pre-training framework based on subgraph
instance discrimination, which enables the graph neural networks (GNNs) to capture universal structural
patterns across multiple graphs and transfer them to diverse downstream tasks.

2.2. Graph contrastive learning

Graph contrastive learning (GCL) has emerged as a pivotal methodology in graph neural networks,
significantly improving models’ generalization capabilities through self-supervised representation
learning. By generating augmentation graphs from original graphs, GCL enables the autonomous
extraction of latent supervised information, thereby reducing dependency on manually annotated labels.
A recent comprehensive survey systematically organizes the fundamental principles of GCL, including
data augmentation, contrastive modes, and optimization objectives, signifying the field’s maturation
into a structured discipline with established principles [29]. Existing GCL methods can be broadly
categorized into four major aspects [11]: augmentation strategy-based methods [8], negative sampling-
based techniques [30], contrastive loss-based methods [31], and conflict addressing methods [10].

Augmentation strategy-based methods aim to improve contrastive learning by generating diverse
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graph views that facilitate the learning of robust representations. GraphCL [8] employs a set of hand-
crafted augmentations including node dropping, edge perturbation, attribute masking, and subgraph
sampling to generate diverse graph views and enforce representation invariance. GCA [18] designs
an adaptive augmentation strategy that selectively perturbs less informative edges and features based
on node centrality, thereby preserving the most critical structural and semantic patterns during aug-
mentation. To move beyond handcrafted or adaptive strategies, recent work has focused on making
the augmentation process itself learnable; for instance, the graph pooling contrast (GPS) method [32]
proposes an innovative framework that utilizes learnable graph pooling to automatically generate
multi-scale augmented views, employing an adversarial training scheme to produce challenging yet
semantically consistent positive samples without relying on predefined heuristics.

Negative sampling-based methods focus on designing sampling techniques that effectively distinguish
positive and negative pairs. The deep graph information maximization (DGI) model [30] employs a
corruption-based negative sampling strategy, where node features are shuffled to construct negative
samples while preserving the original graph structure. ProGCL [33] introduces a probability-guided hard
negative sampling strategy by modeling similarity distributions with a beta mixture model, effectively
reducing the inclusion of false negatives.

Contrastive loss-based methods are primarily concerned with developing loss functions that encour-
age semantic consistency across augmentation views while increasing the models’ ability to distinguish
positive samples from negative samples. The deep graph contrastive representation learning (GRACE)
model [31] adopts a full-graph loss that encourages alignment of node embeddings across augmen-
tation views. The general graph augmentation (GAME) model [34] retains the information noise
contrastive estimation (InfoNCE) loss but reveals that it inherently captures low-frequency invariance,
and proposes a spectral augmentation strategy that maximizes high-frequency differences to enhance
contrastive effectiveness.

Conflict-addressing methods aim to identify and mitigate conflicting samples that may hinder model
performance. Both partial ignored graph contrastive learning (PiGCL) model [10] and ReGCL [11]
identify conflict samples by analyzing gradients. PiGCL approximates gradient confusion by moni-
toring the similarity dynamics of negative pairs during training, while ReGCL directly analyzes the
contribution of samples to conflicting gradient directions and mitigates them through structure learning
and loss reweighing.

Beyond these foundational pillars, the principles of GCL are increasingly being adapted to solve
more complex, data-efficient learning paradigms where label information is scarce or ambiguous. For
example, DualGraph [35] integrates GCL into a dual learning framework for semi-supervised graph
classification, where a contrastive loss is employed to enforce intra-module consistency between original
and augmented graph views. To tackle the challenge of partial label learning, the distribution divergence-
based graph contrast (DEER) [36] model introduces a novel method for identifying positive pairs by
measuring the distribution divergence between multiple sets of augmented views, thus adapting GCL to
handle ambiguous label sets. Extending GCL to the zero-shot setting, the graph contrastive mbedding
network (GraphCEN) [37] introduces a two-level contrastive mechanism that jointly learns both node
and class embeddings, enabling knowledge transfer from seen to unseen classes.

These methods fully expand the possibilities of GCL, offering diverse strategies for improving
training effectiveness and representation quality. In particular, the conflict mitigation strategies proposed
by PiGCL and ReGCL offer valuable perspectives for our work.
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3. CR-GCL

3.1. Preliminaries

Let G = (V,E) represent a graph, where V = {v1, v2, . . . , vN} denotes the set of N nodes and
E ⊆ V×V signifies the set of edges. xi is the feature vector of node vi, X = [x1, x2, . . . , xN] ∈ RN×d is the
feature matrix, and d is the dimension of the feature. We define the adjacency matrix as A ∈ {0, 1}N×N ,
where Aij = 1 if (vi, vj) ∈ E, and Aij = 0 otherwise. D represents the degree matrix. Ã = A + I is the
adjacency matrix for a graph with self-connection, and D̃ = D + I is the degree matrix of Ã, where I
is the unit matrix. Â = D̃−1/2 ÃD̃−1/2 denotes the symmetrically normalized adjacency matrix with a
self-connection. C is the number of classes,VU represents the set of unlabeled nodes, andVL denotes
the set of labeled nodes. Y ∈ R|VL |×C is the label indicator matrix. Our goal is to learn a GCN encoder
that generates node embeddings H in low dimensionality. In this paper, a two-layer perceptron (MLP)
serves as the projector f (·). Aug1(·) ∼ T and Aug2(·) ∼ T are two augmentation functions, where T is
the set of all perturbation augmentation functions.

3.2. Framework overview

The overall structure of CR-GCL is illustrated in Figure 3. Our framework consists of the following
key modules:

1) Perturbation augmentation: This module adopts random feature masking and edge dropping simulta-
neously to generate augmentation graphs which are subsequently fed into a GCN encoder to capture
node representations. Local and global perspectives are exploited jointly to fuse the representations.

2) Conflict quantification: This module estimates the influence of negative pairs by tracking representa-
tion similarity changes across training epochs, with both intra-view and inter-view conflicts taken
into account.

3) Conflict refinement: This module uses pseudo-labels to enhance the identification of conflicting
negative pairs and subsequently ignores them from training.

3.3. Perturbation augmentation

In this module, we randomly mask features and drop edges of the input graph simultaneously to
create two augmentation graphs, denoted as G1 and G2.

The typical design of GCN encoders is centered on a message-passing mechanism [38]. CR-GCL
uses a two-layer GCN encoder to generate node representations. The simple formula of the GCN
encoder can be expressed as:

H = σ(ÂReLU(ÂXW(0))W(1)) (3.1)

where W(0) and W(1) denote the trainable weight matrix of the first and second layer of the GCN,
respectively. σ and ReLU are nonlinear activation functions. The output of the two-layer GCN encoder
is represented by H.

The input graph and two augmentation graphs are fed into the encoder and then the encoder generates
embeddings Hraw, Haug1 , and Haug2 , where Hraw is the embedding of the input graph and Haug1 and Haug2

are embeddings of augmentation graphs.

Electronic Research Archive Volume 33, Issue 8, 5133–5157.



5139

Perturbation augmentation

Figure 3. Overview of the CR-GCL framework. The CR-GCL framework starts with
augmenting an input graph G into two views, G1 and G2, using random feature masking and
edge dropping simultaneously. A shared GCN encoder is applied to generate embeddings:
Hraw from the input graph, Haug1 and Haug2 from the augmentation views, which are then fused
into Hfused. The conflict quantification module computes similarity matrices for inter-view and
intra-view negative pairs, comparing them with the previous iteration to analyze their gradient
information. Subsequently, the conflict refinement module leverages Hfused to generate pseudo-
labels, which are then used to identify and refine the conflicting pairs. The pairs identified as
conflicting constitute the conflicting pair set CP, and are ignored from training in the current
iteration. The model is trained and optimized using a global loss function that integrates losses
from labeled nodes, unlabeled nodes, and a contrastive loss term.

Considering the presence of potential noise from unreliable data sources and limited graph augmen-
tation techniques, we adopt a local-to-global fusion strategy, shown in Figure 4. From a global
perspective, the embeddings Hraw, Haug1 , and Haug2 are fused by taking the average, denoted as
F1 =

1
3(Hraw + Haug1 + Haug2). From a local perspective, embeddings are fused pairwise, resulting in

three embeddings: F2 =
1
2 (Hraw + Haug1), F3 =

1
2 (Hraw + Haug2), and F4 =

1
2 (Haug1 + Haug2).

To improve the model’s ability to identify important features, we integrate an attention mechanism [22],
allowing for a richer and more detailed semantic understanding.

(α1,α2,α3,α4) = att(F1, F2, F3, F4) (3.2)

where α1,α2,α3,α4 indicate the attention values of N nodes with embeddings F1, F2, F3, F4, respec-
tively. The attention value for the j-th node in the i-th embedding is calculated as:

αij = softmax(ωij) (3.3)
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Figure 4. Illustration of the local-to-global fusion strategy.

where the unnormalized attention value ωij is computed as:

ωij = qT
i · tanh(θatt · ( fij)T + bi) (3.4)

where, qi is a shared attention vector for the i-th embedding, θatt is the weight matrix, and bi is the bias
vector. fij ∈ R

Fh represents the feature vector of the j-th node in the i-th embedding matrix Fi.
Finally, the fused embedding Hfused is aggregated as follows:

Hfused = α1 · F1 + α2 · F2 + α3 · F3 + α4 · F4

3.4. Conflict quantification

In order to address the conflict, the first step is to identify the involved negative pairs and adopt
an effective method to quantify their influence on model training. In this study, we develop a conflict
quantification module capable of indirectly assessing the impact of negative pairs and identifying
those responsible for the conflict. Specifically, the module aims to measure the effect of introducing a
particular negative sample on the gradient of the encoder, formulated as follows:

∇W =
∂L

∂W
(3.5)

where L represents the contrastive loss and W are the encoder parameters. Negative pairs are not
independent: their combined effect must be calculated alongside other negative pairs at the same time.
However, directly calculating ∇W for specific negative pairs using the above formula poses significant
mathematical challenges. To this end, we use an iterative solution that approximates the impact of
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negative pairs upon the gradient by quantifying the change of representation similarities they produce
while training. It is depicted by:

GINP(i, j) = Siter
i j − Siter−1

i j , iter ≥ 1, (3.6)

where NP(i, j) represents the negative pair formed by vi and v j, and GINP(i, j) is the gradient impact
of NP(i, j). Siter

i j denotes the cosine similarity between the representations of vi and v j at the current
iteration. We track the similarity Siter

i j every few epochs. When a negative pair is not involved in the
conflict, its similarity tends to drop quickly, resulting in a smaller GINP(i, j). On the other hand, if the
similarity does not decrease as expected or even increases, GINP(i, j) grows larger, suggesting a higher
chance of contributing to the conflict.

We apply this strategy to both negative pairs involved in the intra-view conflict and those contributing
to the inter-view conflict. For the intra-view conflict, we compute GIintra

NP(i, j) as follows:

GIintra
NP(i, j) = Siter

i j − Siter−1
i j , iter ≥ 1, (3.7)

where representations of node vi and node v j are both from Hraw.
For the inter-view conflict, we compute GIinter

NP(i, j), which is depicted by:

GIinter
NP(i, j) = Siter

i j − Siter−1
i j , iter ≥ 1, (3.8)

where the representation of node vi is from Haug1 while the representation of node v j is from Haug2 .

3.5. Conflict refinement

Previous work [10] suggested that if the similarity of two nodes did not decrease significantly during
training, they should be identified as a conflicting pair. However, it is worth noting that among the
identified conflicting negative samples, some nodes may exhibit high similarity with the target node.
In such cases, a significant decrease in similarity is not expected, as these nodes are likely to have
important homogeneous relationships with the target node. This suggests that they may not be true
negatives, and in some cases, could even represent potential positive samples. Therefore, such nodes
should not be ignored during training.

To address this issue, we introduce pseudo-labels. If two nodes’ representation similarities are high,
their pseudo-labels tend to be consistent, thus they should not be regarded as a conflicting pair. Inspired
by [39], the element mi j in cosine similarity matrix M ∈ RN×N can be calculated by fused embedding
Hfused, which can be formulated as follows:

mi j =
Hfused

i · Hfused
j

∥Hfused
i ∥ · ∥Hfused

j ∥
(3.9)

For an unlabeled data sample vi, its pseudo-label assignment is determined by comparing the
similarity between all labeled samples. Specifically, the cosine similarity mi j is computed between vi

and each labeled sample vl. A higher mil indicates closer directional alignment in the vector space,
suggesting a greater likelihood that vi and vl belong to the same class. After iterating through all labeled
samples, the model identifies the highest mil value, and the class label of the corresponding labeled
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sample vl is assigned as the pseudo-label for vl. To ensure the reliability of pseudo-labels, a threshold λ
is applied to select the node setVPL for pseudo-label assignment:

VPL = {vi ∈ VU | max
l:vl∈VL

mil ≥ λ} (3.10)

For each unlabeled node vi ∈ VPL, its pseudo-label ŷi is assigned based on the most similar
labeled node:

ŷi = yl∗ , l∗ = arg max
l:vl∈VL

mil (3.11)

Thus, we construct the conflicting pair set CP based on the ignore ratio r, formulated as:

CPinter = {NP(i, j) | GIinter
NP(i, j) > GIinter

r },

CPintra = {NP(i, j) | GIintra
NP(i, j) > GIintra

r },

PL = {NP(i, j) | ŷi , ŷ j},

CP = (CPinter ∪CPintra) ∩ PL (3.12)

where, GIinter
r refers to the minimum gradient impact among the top r inter-view negative pairs when

sorted in descending order. Similarly, GIintra
r is defined as the minimum gradient impact among the

top r intra-view negative pairs when sorted in descending order. The negative pairs in CP are ignored
during training.

The conflicting pair set CP is also updated dynamically throughout training. In the early stages,
the node pairs within CP exhibit strong conflict and are therefore temporarily ignored to avoid neg-
ative effects on representation learning. As training proceeds, some negative pairs that have already
contributed sufficient information may no longer exhibit significant similarity changes, and are then
added into CP. Meanwhile, previously ignored pairs can be reintroduced into the training process. This
dynamic scheduling ensures that all negative samples are eventually processed during training. The
time complexity analysis is shown in Appendix B.

3.6. Loss function

CR-GCL defines a global loss function denoted as L to facilitate the end-to-end training. It is made
up of labeled data loss Llabel, unlabeled data loss Lunlabel, and contrastive loss Lcontrastive.

3.6.1. Labeled data loss

For semi-supervised classification tasks, we adopt the cross-entropy error as the labeled data
loss function:

Llabel = −
∑

vi∈VL

C∑
j=1

Yi j log(Ỹi j) (3.13)

where,VL represents the labeled nodes and Ỹ is the predicted label matrix.

3.6.2. Unlabeled data loss

Similar to labeled data loss, unlabeled data loss also employs the cross-entropy error, formulated as:

Lunlabel = −
∑

vi∈VPL

C∑
j=1

Ŷi j log(Ỹi j) (3.14)
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Ŷ is the assigned pseudo-label matrix.

3.6.3. Contrastive loss

We choose InfoNCE as our contrastive loss, formulated as:

LIn f oNCE = −
1
N

N∑
i=1

log

 eψ(Haug1
i ,Haug2

i )/τ∑N
j=1 eψ(Haug1

i ,Haug2
j )/τ

 (3.15)

where τ is a hyper-parameter, ψ(Haug1
i ,Haug2

i ) = S im( f (Haug1
i ), f (Haug2

i )), where S im(·, ·) is the cosine
similarity calculation, and f (·) is a non-linear projector.

Notice that when partial nodes are ignored, the corresponding gradient will also decrease. Moreover,
this numerical attenuation effect becomes significantly amplified through the compounding nature of
exponential computations and logarithmic operations involved in the process. To systematically quantify
this effect, we introduced the dilation coefficient γ as a critical parameter:

γ =

∑N
i=1

∑N
j=1

(
eψ(Hraw

i ,Hraw
j )
+ eψ(Haug1

i ,H jaug2)
)

∑N
i=1

∑N
j=1,NP(i, j)<CP

(
eψ(Hraw

i ,Hraw
j )
+ eψ(Haug1

i ,Haug2
j )

) (3.16)

To simplify the formula, we define posi and negi as follows:

posi = eψ(Haug1
i ,Haug2

i )/τ (3.17)

negi =

N∑
j=1,NP(i, j)<CP

(
eψ(Haug1

i ,Haug1
j )/τ

+ eψ(Haug1
i ,Haug2

j )/τ
)

(3.18)

To handle the negative samples, we multiply the signs of their gradients by γ. For positive pairs,
we introduce a compensatory parameter ϕ to balance the learning dynamics, implemented through the
following adjustment:

ϕ =

(
1 −

1
γ

)
·

1
N

N∑
i=1

ψ(Haug1
i ,Haug2

i ) (3.19)

By introducing gradient compensation mechanisms, the proposed algorithm maintains steady in-
tensities under significant negative sample sparsity. This adaptive compensation reduces the risks of
premature convergence resulting from gradient vanishing when using large r, ultimately leading to our
optimal contrastive loss formulation:

Lcontrastive = −
1
N

N∑
i=1

log
(

posi

posi + γ · negi

)
− ϕ (3.20)

To control the correlation between the label loss and the contrastive loss, we employ a hyper-
parameter η. Therefore, the final loss function of CR-GCL is:

L = η · Llabel +Lunlabel + (1 − η) · Lcontrastive (3.21)
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4. Experiments

This section evaluates our proposed model against several state-of-the-art graph-based semi-
supervised node classification approaches, followed by ablation studies to examine the contributions of
key components in CR-GCL.

4.1. Configuration

4.1.1. Datasets

We conduct comprehensive tests on six benchmark datasets: three citation networks (Cora, Cite-
Seer, PubMed) [40], the ACM academic network [41], and two Wikipedia-derived graphs (Squirrel,
Chameleon) [42]. Among them, Cora, CiteSeer, PubMed, and ACM are homogeneous graph datasets,
and Chameleon, and Squirrel are heterogeneous graph datasets. Their statistical details are provided in
Table 1.

Table 1. Dataset description.

Datasets Nodes Edges Features Classes Training
Cora 2708 5429 1433 7 14/21/28/140
CiteSeer 3327 4732 3703 6 12/18/36/120
PubMed 19,717 44,338 500 3 9/15/30/60
ACM 3025 13,128 1870 3 9/15/30/60
Chameleon 2277 36,101 2325 5 10/20/35/100
Squirrel 5201 217,073 2089 5 10/15/50/100

4.1.2. Baselines

Our comparative analysis spans five categories of graph neural networks: (i) foundational architec-
tures including GCN [40] and GFNN [43]; (ii) attention-enhanced models like GAT [26], DGCN [44],
and MHMOGAT [45]; (iii) multi-scale/view information fusion frameworks such as MixHop [15],
N-GCN [14], MOGCN [23], and LA-GCN [46]; (iv) contrastive learning approaches represented
by PA-GCN [12] and LoGo-GNN [27]; (v) conflict-addressing-based methods such as PiGCL [10]
and ReGCL [11]. To ensure comparability with established evaluation protocols [40, 47], we ran the
proposed model 20 times and recorded the average accuracy. For baseline methods, we reproduced
results using their official implementations under identical experimental conditions.

4.1.3. Experiment setting

We evaluate the effectiveness of CR-GCL in the semi-supervised node classification task. The
compared baselines, as detailed above, include a mixture of architectures ranging from conventional
GNNs to recent conflict-aware methods. Among them, ReGCL and PiGCL are self-supervised methods,
while the remaining baselines and CR-GCL itself operate under semi-supervised conditions. Key
hyperparameters specific to each dataset are detailed in Table 2. The architecture employs a two-
layer multilayer perceptron (MLP) as the projection function. Full-batch gradient descent is utilized
throughout the training epochs, with implementation carried out in PyTorch and optimization managed
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through the Adam optimizer. For dataset splitting, varying quantities of labeled nodes per class are
selectively retained for training, while the remaining nodes constitute the test set.

Table 2. Hyperparameter specifications.

Datasets Learning rate Weight decay Training epochs Hidden sizes Dropout
Cora 0.0005 1.00E-05 500 128 0.5
CiteSeer 0.0005 1.00E-05 150 128 0.5
PubMed 0.001 1.00E-04 1500 128 0.5
ACM 0.0005 1.00E-05 500 128 0.5
Chameleon 0.0005 1.00E-05 500 128 0.5
Squirrel 0.0005 1.00E-05 500 128 0.5

In addition, λ is set at the range of [0.9, 1) in order to ensure the quality of generated pseudo-labels.
In our experiment, we perform an analysis on the balance parameter η and ignore ratio r.

4.2. Experiment results

Table 3 presents the node classification accuracy (ACC) of CR-GCL and various baseline methods
across six benchmark datasets, where OURS indicates the performance of CR-GCL. ReGCL and PiGCL
are evaluated under a self-supervised setting, while all other methods are under a semi-supervised setting.
The ‘Input’ refers to data we can obtain for training, where X, A, and Y denote the feature matrix,
adjacency matrix, and label matrix, respectively. CR-GCL achieves superior performance, obtaining the
best results on three datasets and the second-best on the remaining ones. This validates the effectiveness
of CR-GCL’s conflict refinement strategy in improving training quality.

To further evaluate CR-GCL’s performance, we conduct experiments under varying label rates, as
shown in Table 4. The ‘Average’ metric denotes the average classification accuracy across varying
numbers of training samples for each dataset.

We observe the following results:
(1) Compared to the baseline described above, CR-GCL achieves the best ’Average’ results on all

six datasets. Notably, CR-GCL shows a significant advantage on the Cora, PubMed, Chameleon, and
Squirrel datasets.

(2) The proposed method exhibits remarkable advantages in low-label-rate learning scenarios.
For example, when trained with only 15 labeled nodes per class on the ACM dataset, our approach
achieves 82.8% classification accuracy—a significant 4.2% improvement over MHMOGAT’s second-
best performance of 78.6%, establishing new state-of-the-art results in low-labeled learning settings.
This superiority can be attributed to CR-GCL’s contrastive learning foundation, which inherently
requires fewer labels due to its self-supervised nature. In addition, the pseudo-label-based conflict
refinement strategy helps prevent non-conflicting negative pairs from being ignored during training,
thereby improving learning quality. Furthermore, the local-to-global fusion strategy enhances node
representations under limited labels, contributing to overall performance gains.

(3) In some cases CR-GCL does not outperform other models, as shown in Table 4. Taking the
LoGo-GNN and PA-GCN as examples, our results are weaker than theirs in several datasets when the
label rate is low. This can be attributed to the fact that the LoGo-GNN and PA-GCN both have designed
unique augmentation strategies to enhance node representations while CR-GCL only randomly masks
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Table 3. ACC (%) of node classification tasks. (Bold denotes the best result; underline
indicates the second-best.)

Method Input Cora CiteSeer PubMed ACM Chameleon Squirrel
ReGCL X, A 84.8 71.2 84.5 91.4 44.2 29.3
PiGCL X, A 84.6 71.7 83.2 90.9 53.6 36.5
GCN X, A,Y 81.7 70.4 79.0 87.8 47.6 25.2
GFNN X, A,Y 81.9 69.6 80.7 86.8 47.4 30.5
GAT X, A,Y 83.2 72.6 79.0 87.4 27.9 31.6
PA-GCN X, A,Y 83.6 70.4 79.3 90.0 49.0 29.1
MOGCN X, A,Y 82.4 72.4 79.2 90.1 46.9 31.4
N-GCN X, A,Y 83.0 72.2 79.2 88.0 48.9 30.6
MixHop X, A,Y 81.9 71.4 80.8 87.4 40.6 30.6
DGCN X, A,Y 84.1 73.3 80.6 90.2 49.6 27.9
LA-GCN X, A,Y 84.6 74.7 81.7 89.9 48.3 31.2
MHMOGAT X, A,Y 80.3 68.0 77.2 82.4 45.7 23.4
LoGo-GNN X, A,Y 84.6 73.4 81.6 91.8 52.7 29.4
OURS X, A,Y 85.1 73.7 83.7 92.0 54.1 32.5

features and edges. What is more, with a standard label rate, CR-GCL cannot outperform the LA-GCN.
The LA-GCN uses learnable local feature augmentation based on the raw graph relationships and
focuses more on enhancing information from feature perspectives. Overall, CR-GCL’s performances
are still superior to other methods because CR-GCL not only utilized supervised and self-supervised
information, but also tackled the inherent conflict in GCL.

4.3. Ablation study

We conducted an ablation study to figure out whether each component of our CR-GCL framework
really works. Basically, we made three variants of the model, each excluding one key component,
and tested them against the full thing. We tested on six datasets and tracked the average classification
accuracy (ACC%) results in Table 5.

1) CR-GCL-L2G: No Local-to-Global Fusion. This variant skips the local-to-global fusion strategy
and just uses the attention mechanism to mix the original and augmentation graphs. Accuracy took a hit
everywhere. On Cora, it only drops a bit, from 72.4% to 71.2%, but on Chameleon, it decreases from 40.9%
to 38.7%. That sharp decline on Chameleon tells us this fusion step is a big deal, especially for complex
graph structures.

2) CR-GCL-InterVC: Dropping Inter-View Conflict Handling. In this variant, we exclude the
identification of inter-view conflicting negative pairs, limiting the conflict quantification module to only
identify intra-view negative pairs within a single view. As shown in Table 5, performance decreases
across all datasets. For instance, PubMed’s ACC drops from 73.3% to 69.7%, and Cora declines from
72.4% to 69.7%. This degradation validates the presence of inter-view conflict, where negative pairs
across augmentation views can interfere with the optimization of positive pairs. By capturing inter-view
conflict, CR-GCL expands the scope of conflict detection, effectively mitigating a broader range of
conflicting negative pairs that would otherwise degrade model performance.
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Table 4. Node classification accuracy (%) under different label rates. (Bold denotes the best
result; underline indicates the second-best.)

Datasets Training GCN GFNN GAT PA-GCN MOGCN N-GCN MixHop DGCN LA-GCN MHMOGAT LoGo-GNN OURS

Cora

14 43.8 37.8 44.5 47.6 41.9 40.8 31.9 50.6 53.3 61.4 60.3 62.7
21 50.9 48.9 55.6 56.7 62.8 52.4 51.2 54.8 62.5 62.8 58.8 65.3
28 62.3 60.3 66.8 72.1 71.5 61.8 62.9 68.2 73.4 68.5 62.6 76.1
140 81.7 81.9 83.2 83.6 82.4 83.0 81.9 84.1 84.6 80.3 84.6 85.1
Average 59.7 57.2 62.5 65.0 64.7 59.5 57.0 64.4 68.5 68.3 66.6 72.3

CiteSeer

12 24.7 36.3 33.0 28.9 28.1 20.5 20.2 35.4 30.0 49.1 43.5 48.6
18 43.6 40.8 58.4 60.4 58.9 47.2 44.2 54.9 53.4 53.2 57.9 58.7
36 55.3 54.1 61.1 64.7 62.8 58.4 56.7 57.4 62.6 59.7 65.6 68.7
120 70.4 69.6 72.6 70.4 72.4 72.2 71.4 73.3 74.7 68.0 73.4 73.7
Average 48.5 50.2 56.3 56.1 55.6 49.6 48.1 55.3 55.2 57.5 60.1 62.4

PubMed

9 43.9 35.5 42.0 51.0 40.2 39.9 39.9 51.7 53.6 68.2 63.5 64.1
15 60.5 62.5 56.6 63.5 63.2 62.4 61.6 68.6 65.0 68.0 73.5 73.3
30 57.5 54.3 70.7 73.5 68.5 58.5 59.1 73.8 67.6 74.6 69.9 77.5
60 79.0 80.7 79.0 79.3 79.2 79.2 80.8 80.6 81.7 77.2 81.6 83.7
Average 60.2 58.3 62.1 66.8 62.8 62.8 60.4 68.7 67.0 72.0 72.1 74.7

ACM

9 51.8 50.2 56.3 56.7 56.6 54.4 34.5 62.3 65.3 72.1 68.0 65.1
15 65.6 62.3 64.6 69.7 68.1 64.3 41.0 73.3 68.9 78.6 72.0 82.8
30 79.6 74.3 80.0 87.2 87.5 76.5 61.9 85.8 86.6 81.1 87.9 89.7
60 87.8 86.8 87.4 90.0 90.1 88.0 87.4 90.2 89.9 82.4 91.8 92.0
Average 71.2 68.4 72.1 76.1 75.6 70.8 56.2 77.9 77.7 78.6 79.9 82.4

Chameleon

10 23.9 25.0 27.7 29.0 28.1 21.5 21.9 27.5 25.2 25.3 24.8 31.7
20 23.6 23.8 27.1 27.7 25.5 25.3 26.6 29.3 26.2 29.1 35.1 34.3
35 31.4 28.6 28.2 31.9 30.2 29.2 30.8 35.1 38.4 28.0 41.4 43.3
100 47.6 47.4 27.9 49.0 46.9 48.9 40.6 49.6 48.3 45.7 52.7 54.1
Average 31.6 31.2 27.7 34.4 32.7 31.2 30.0 35.4 34.5 32.0 38.5 40.9

Squirrel

10 19.8 20.6 20.2 23.2 24.0 19.8 20.9 21.1 20.3 20.4 22.7 25.7
15 20.6 21.3 19.4 26.3 24.2 21.3 25.5 21.9 22.2 21.0 23.4 25.8
50 23.9 27.3 25.5 23.9 26.9 23.7 27.5 24.1 25.3 21.0 26.0 27.5
100 25.2 30.5 31.6 29.1 31.4 30.6 30.6 27.9 31.2 23.4 29.4 32.5
Average 22.4 24.9 24.2 25.6 26.6 23.9 26.1 23.8 24.8 22.0 25.4 27.9

3) CR-GCL-PL: Without Pseudo-Label. This variant omits the pseudo-label-based refinement
strategy, which enhances the identification of conflicting pairs. Accuracy slips in all cases like Cora
going from 72.4% to 70.6%, or PubMed dropping from 73.3% to 68.3%. The results indicate that the
previous identification strategy may capture negative pairs that do not actually lead to the conflict. This
observation validates both the rationality and necessity of our conflict refinement strategy.

4) CR-GCL-Feature & CR-GCL-Edge: Only Feature Masking or Edge Dropping. CR-GCL-Feature
exclusively applies feature masking, perturbing the node features while leaving the graph topology intact.
The variant CR-GCL-Edge only utilizes edge dropping, perturbing the original graph’s topological
structure while keeping the original node features. Our experimental results show that both of these
variants underperform compared to the complete model that employs both perturbation strategies
simultaneously. This finding confirms that jointly perturbing both the node features and the graph
topology is crucial. The combination of these two augmentation types creates more challenging
and comprehensive views for contrastive learning, compelling the model to learn more robust and
generalizable representations, thus achieving superior performance.

4.4. Analysis of the fusion mechanism

To figure out the effectiveness of the fusion mechanism, we conducted two sets of experiments.
These experiments were designed to isolate the contribution of the fusion mechanism and quantify its
impact on both pseudo-label quality and final node classification accuracy.
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Table 5. Average ACC (%) of the ablation study (bold denotes the best result).

Datasets OURS CR-GCL-L2G CR-GCL-InterVC CR-GCL-PL CR-GCL-Feature CR-GCL-Edge

Cora 72.3 71.2 69.7 70.6 71.8 66.2
CiteSeer 62.4 61.4 61.1 62.3 58.2 58.1
PubMed 74.7 70.1 69.7 68.3 72.6 63.1
ACM 82.4 79.5 80.9 80.9 75.5 75.8
Chameleon 40.9 38.7 39.0 37.6 40.1 40.5
Squirrel 27.9 24.6 25.0 24.8 26.4 26.2

We designed two variants of our model to serve as direct comparisons against our full CR-GCL
framework:

1) CR-GCL (Hraw-only): In this variant, we bypass the fusion module entirely. The generation of
pseudo-labels and the calculation of similarity for conflict quantification are performed using only the
embeddings from the original, un-augmented graph (Hraw).

2) CR-GCL (Haug1-only): Similarly, this variant relies only on the embeddings from the first
augmented view (Haug1) for all pseudo-label and conflict quantification tasks.

3) CR-GCL (Full): This is our full CR-GCL model which fuses Hraw, Haug1 and Haug2 with the
local-to-global fusion mechanism.

Table 6. Average ACC (%) of pseudo-labels and classification (bold denotes the best result).

Datasets Variants Pseudo-label accuracy Node classification accuracy

Cora
CR-GCL (Full) 68.7 72.3
CR-GCL (Hraw-only) 66.9 69.6
CR-GCL (Haug1-only) 67.5 69.8

CiteSeer
CR-GCL (Full) 60.4 62.4
CR-GCL (Hraw-only) 58.2 58.0
CR-GCL (Haug1-only) 58.3 59.0

PubMed
CR-GCL (Full) 73.2 74.7
CR-GCL (Hraw-only) 71.6 73.9
CR-GCL (Haug1-only) 69.1 71.7

ACM
CR-GCL (Full) 84.1 82.4
CR-GCL (Hraw-only) 80.8 77.7
CR-GCL (Haug1-only) 83.1 80.8

Chameleon
CR-GCL (Full) 42.9 40.9
CR-GCL (Hraw-only) 41.3 38.0
CR-GCL (Haug1-only) 41.8 38.1

Squirrel
CR-GCL (Full) 27.1 27.9
CR-GCL (Hraw-only) 27.0 27.3
CR-GCL (Haug1-only) 27.1 27.6

From Table 6, we can observe that the full CR-GCL model, which utilizes the fusion strategy,
consistently and significantly outperforms both the CR-GCL (Hraw-only) and CR-GCL (Haug1-only)
variants across all six benchmark datasets. This holds true for both the final node classification accuracy
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and the pseudo-label accuracy. This experiment also verifies the effectiveness of the local-to-global
fusion mechanism.

4.5. Framework study

As previously described, CR-GCL can easily incorporate different GCN encoders without imposing
restrictions. Two various base encoders SGC and GFNN are integrated in the CR-GCL architecture to
result in the CR-GCL(SGC) and CR-GCL(GFNN) models, respectively. We compare their classification
ability using an evaluation on various label rates, and extensive results are shown in Figure 5.

(a) GCN encoder (b) SGC encoder (c) GFNN encoder

Figure 5. Average ACC(%) of base encoders and CR-GCL on six datasets.

The results indicate notable performance gains on all benchmark datasets. Figure 5 shows how
CR-GCL-boosted models have significant improvement in accuracy compared with their base encoder
in various label rates. Two key advantages are evident from these findings: 1) CR-GCL effectively
enhances the generalizability of standard GCN architectures; 2) its design is both scalable and adaptable
to different types of encoders while maintaining strong performance. These results underscore the
efficacy of CR-GCL as a generalizable framework for graph convolutional networks.

4.6. Pseudo-label accuracy analysis

We conducted a set of experiments to empirically analyze the accuracy of the pseudo-labels through-
out the training process and to explore their impact on the final classification performance. We divided
the training process into 10 stages, and at the end of each stage, we measured two key metrics:

Pseudo-label accuracy (ACC): The percentage of pseudo-labels assigned to unlabeled nodes that
match their ground-truth labels.

Node classification accuracy (ACC): The model’s classification accuracy on the test set.

As is shown in Figure 6, at the beginning of the training, the quality of the pseudo-labels is relatively
low, and correspondingly, the classification performance is modest. As the training continues, the model
learns more discriminative representations, which enables it to generate progressively higher-quality
pseudo-labels, which in turn brings higher classification accuracy.
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(a) Cora (b) CiteSeer (c) PubMed

(d) ACM (e) Chameleon (f) Squirrel

Figure 6. Average ACC (%) of the pseudo-label and classification at different stages.

4.7. Visualization

To further evaluate the effectiveness of CR-GCL, we conducted a node classification visualization
study on the Cora dataset under varying quantities of labeled training nodes. Figure 7 presents t-SNE
visualizations [22] of learned test set embeddings, with color-coding reflecting ground-truth class labels.

(a) OURS (Training 14) (b) OURS (Training 21) (c) OURS (Training 28) (d) OURS (Training 140)

(e) GCN (Training 14) (f) GCN (Training 21) (g) GCN (Training 28) (h) GCN (Training 140)

Figure 7. Visualization of the learned node embeddings on the Cora dataset.
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The visualization results reveal distinct performance differences. Graph convolutional networks
(GCNs) exhibit inadequate class separation, as evidenced by substantial overlapping of differently
colored clusters in the embedding space. In comparison, CR-GCL produces notably superior visual
patterns, generating well-defined clusters with three key characteristics: 1) tighter intra-class cohesion,
2) enhanced similarity among same-class instances, and 3) markedly improved inter-class separation
boundaries. Furthermore, CR-GCL demonstrates robust performance consistency across different training
set sizes, maintaining clear cluster distinctions even when the number of labeled nodes varies significantly.

4.8. Parameter sensitivity

In this part, we conduct sensitivity analysis on three hyper-parameters: balance parameter η, ignore
ratio r, and pseudo-label threshold λ over six datasets. We train CR-GCL with η, r ranging from 0.0
to 1.0 in increments of 0.1, respectively. As for λ, we choose to train the model from 0 to 0.9 with an
interval of 0.1. Then, we evaluate the average classification accuracy over different label rates, with
results shown in Figure 8.

(a) Parameter η (b) Parameter r (c) Parameter λ

Figure 8. The performance of CR-GCL with parameters η, r, and λ in terms of average ACC (%).

It can be observed that when η grows, the result gets better. Generally, CR-GCL reaches the best
result when η ranges from 0.5 to 0.8. As for parameter r, the performance of the model is relatively
stable; when r > 0.9, the performance of the model decreases significantly. When λ is 0.9, CR-GCL
reaches the best classification result.

5. Conclusions

In this paper, we tackle the conflict between the message-passing mechanism of a GCN encoder and
the goal of contrastive learning in GCL. Our proposed framework, conflict refined graph contrastive
learning (CR-GCL), offers a practical solution by integrating a perturbation augmentation module, a
conflict quantification module, and a conflict refinement module, enhanced by pseudo-labels. This
approach effectively identifies and refines conflicting negative pairs and thus yields improved node
classification performance. Experiments on six benchmark datasets validate that CR-GCL outperforms
state-of-the-art techniques and suggests its effectiveness in enhancing GCL frameworks. This research
not only deepens the understanding of conflict in GCL but also introduces a principled approach to
advancing graph-based learning.
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Appendix

A. Theoretical analysis of inter-view conflict

To provide a rigorous theoretical foundation for the concept of ”inter-view conflict,” we present a
formal proof that demonstrates how the GCN message-passing mechanism inherently interferes with
the optimization objectives of the InfoNCE loss.

A.1. Step 1: Formalizing the conflict scenario

As illustrated in Figure 1(b) of our paper, the inter-view conflict arises from a specific set of
relationships. We formalize this scenario with the following elements:

Anchor node (ui): The representation of node vi in the first augmented view G1.
Positive sample (u′i): The representation of the same node vi in the second augmented view G2.
Conflicting neighbor (vk): A node that is a neighbor of vi in the first view G1. Its representation in

this view is uk.
The InfoNCE loss function imposes two simultaneous and, as we will show, conflicting optimization

objectives on the representation of the anchor node ui:
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1). Positive pair alignment: Maximize the similarity with its corresponding positive sample,
sim(ui, u′i).

2). Negative pair separation: Minimize the similarity with all negative samples, including its neighbor,
sim(ui, uk).

A.2. Step 2: The role of GCN message-passing

The conflict is rooted in the GCN’s message-passing mechanism. For simplicity, let us consider
a single-layer GCN encoder. The representation of the anchor node, Hi, is an aggregation of its own
features and its neighbors’ features. We can explicitly write out the contribution of the conflicting
neighbor vk:

Hi = σ

 1√
d̃id̃k

XkW +
∑

j∈(N(i)∪{i})\{k}

1√
d̃id̃ j

Ãi jX jW

 (A.1)

Here, Xk is the input feature vector of node vk and W is the GCN’s weight matrix. Let hk = XkW be
the transformed feature of the neighbor. The final representation ui is obtained after passing Hi through
a projector ui = f (Hi). Crucially, this means ui is a function of hk. By the chain rule, we establish the
fundamental link:

∂ui

∂hk
, 0 (A.2)

This non-zero partial derivative confirms that any change to the neighbor’s features hk will directly
affect the anchor’s representation ui.

A.3. Step 3: Decomposing the gradient forces on the anchor

The total InfoNCE loss L exerts a gradient force on the anchor representation ui. This force, ∇uiL,
can be decomposed into two distinct components:

1) Attract force (Fpos): This component arises from the positive pair term in the loss function. It
pushes ui in the direction that maximizes its similarity with the positive sample u′i , effectively pulling ui

toward u′i .
2) Push force (Fneg): This component arises from the negative pair term. It pushes ui in the direction

that minimizes its similarity with the negative sample uk, effectively pushing ui away from uk.
The total gradient applied to the anchor is the vector sum of these forces: ∇uiL = Fpos + Fneg. These

two forces generally point in different directions in the embedding space.

A.4. Step 4: Propagating conflicting forces to the neighbor via the chain rule

Using the chain rule, we can calculate the gradient of the total loss with respect to the neighbor’s
feature hk:

∇hkL =
∂L

∂ui

∂ui

∂hk
= (∇uiL)T ∂ui

∂hk
(A.3)

By substituting the decomposed force from Step 3, we reveal the conflict:
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∇hkL = (Fpos + Fneg)T ∂ui

∂hk
= (Fpos)T ∂ui

∂hk︸       ︷︷       ︸
Term A: Cooperative Update

+ (Fneg)T ∂ui

∂hk︸       ︷︷       ︸
Term B: Antagonistic Update

(A.4)

A.5. Step 5: Conclusion of the analysis

The equation above provides the formal proof of the inter-view conflict. It shows that the feature
vector hk of the conflicting neighbor receives two simultaneous and contradictory update signals during
backpropagation:

1) Term A (Cooperative update): This term represents the gradient update required of hk to help move
the anchor ui closer to the positive sample u′i . It is a ”cooperative” signal, as the neighbor’s features are
adjusted to aid in positive pair alignment.

2) Term B (Antagonistic update): This term represents the gradient update required of hk to help
move the anchor ui away from the negative sample uk. It is an ”antagonistic” signal, as the neighbor’s
features are adjusted to aid in negative pair separation.

Since the attractive force Fpos and repulsive force Fneg are not aligned, Term A and Term B pull the
feature vector hk in different directions. The final gradient applied to hk is a compromised vector sum of
these two conflicting objectives. This directly demonstrates that the process of separating the anchor
from its neighbor (a negative sample) mathematically interferes with the primary goal of aligning the
anchor with its positive sample. This interference is the essence of the inter-view conflict.

B. Time complexity

Let N be the number of nodes, E the number of edges, F the dimension of the input node features,
and d the embedding dimension of the GCN encoder output.

The overall time complexity of the CR-GCL framework per training epoch is O(E · F + N2 · d + N2 ·

log N). This complexity is primarily composed of the computational costs of the following three core
modules:

1) Perturbation augmentation module: The computational cost of this module is dominated by the
two-layer GCN encoder, which runs on the original graph and two augmented views. Its complexity is
O(E · F + N · d2).

2) Conflict quantification module: This module tracks representation changes by calculating the
cosine similarity between all pairs of nodes to estimate the gradient impact (GI). This step requires
constructing an N × N similarity matrix, leading to a dominant complexity of O(N2 · d).

3) Conflict refinement module: The computational bottleneck of this module lies in the all-pairs
similarity calculation for pseudo-label generation (O(N2 ·d)) and the sorting of N2 GI values to determine
the conflict threshold (O(N2 · log N)).
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