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Abstract:  This paper studied a delayed diffusive predator-prey model with predator and prey
harvesting terms. The existence of constant steady-state solutions and Hopf bifurcation were analyzed.
Then by applying the central manifold theorem and the normal form method, the direction of the
Hopf bifurcation and stability of the bifurcating period solution were studied. Numerical simulations
were conducted to confirm the accuracy of the proposed theory. In addition, taking the predator-prey
relationship between sharks and tuna as an example, this study investigated the impact of predator
harvesting coefficients on the constant steady-state solutions of the system and the time required for
the system to reach stability.
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1. Introduction

The population dynamics of predator and prey within an ecosystem are shaped not just by their
relative densities, but also by various environmental factors including resource availability, interspecific
competition, and human harvesting activities. In the field of mathematical biology, predator-prey
systems are widely used as important tools for describing and analyzing species interactions and
population dynamics in ecosystems [1-4]. Researchers utilize this system to effectively depict the
complex interactions between predator and prey, and subsequently describe population changes under
different environmental conditions [5—7]. They study how these complex factors affect the stability
and evolutionary trends of species populations, thus helping us gain a deeper understanding of the
complexity of ecosystems [8—11].

In [1], the authors incorporated intraspecific cannibalism into the predator-prey model to account
for competition-alleviating mechanisms under resource limitation. In [2], the authors conducted a
systematic analysis of pattern formation dynamics in a harvested predator-prey system subject to
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no-flux boundary conditions, revealing that the prey’s diffusion rate determines the emergent spatial
patterns. In [3], the authors proposed a predator-prey model incorporating prey refuge effects that are
functionally dependent on predator size.

In [12], the authors proposed the following functional response:

Ceguv

) = T hCequy

The traditional Holling-type functional response [13] typically describes the change in the predation
rate based on prey size, while this functional response simultaneously considers the effects of both prey
size and predator size on the predation rate, reflecting the interactions between predators. K. Ryu et
al. [14] studied the following system.

du _ A Cepuv?

dar — ru(l K) 1+hCequv’ (1.1)
dv _ eCequv? —uv :
di = T+hCeqww MV

u is the prey size. v is the predator size. The biological meanings and units of other parameters are
presented in Table 1.

Table 1. Parameters descriptions and units in model (1.1).

Parameter Description Unit

u Prey population density ind. - m™>

v Predator population density ind. - m™?

r Prey intrinsic growth rate year™

C Capture rate (ind. - m*)~" - year™!
h Handling time year - m* - ind.™!

u Predator mortality rate year™!

K Prey carrying capacity ind. - m™?

€ Encounter rate /

€ Conversion efficiency /

We use the following parameter transformations:

u 1 € h

t=t, —=i, hCepyKy=V, ———— =), — =ap, — =Y. 1.2
4 g - Ry =Y ek T T e Y (1.2)
System (1.1) is turned to

du _ a uv?

dr :a2(1+uv_yv .

K. Ryu et al. [14] focused on the study of saddle points, Hopf bifurcation, and Bogdanov-Takens
bifurcation in the context of coexistence constant steady-state solution states.

Since the survival struggle between predator and prey is affected by diffusion phenomena and energy
conversion delays, the reactive diffusion term and time delay can more accurately reflect natural states.
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In [15, 16], the authors examined the effects of the diffusion term and time delay on predator-prey
models, studying the instability caused by time delay and the Hopf bifurcation at the positive constant
steady-state solution.

Meanwhile, the survival of species in the real world is also affected by human intervention. In light
of this, many researchers have carefully studied the impact of human influence on the predator-prey
system [17-19], making it more aligned with real-life situations.

Inspired by their work, we expanded the spatial domain on the basis of [12] and focused on the
effects of two harvesting terms on predator-prey models compared to [15, 17]. We further studied the
following system, which builds on system (1.1) by considering the time delay between the predator
consuming the prey and the birth of new individuals, as well as the diffusion and harvesting of both the
predator and prey.

2
WD) = (1 =) — W hoy+diAu, x€ Q1> 0,

ot 1+uv
wv(xn) _ aut-tW(t-T)

T = Traowy ~ Y v+ d Ay, xe Q1> 0, (1.4)
Q) - D — (), x € dQ, 1> 0,

)4 v ’
u(x,t) = u(x,0) > 0,v(x,0) =vi(x, 1) >0, x€Q,te[-1,0].

All parameters are positive. d; and d, are diffusion coefficients of the prey and predator, respectively.
7 is the gestation delay. i, and h, are harvesting coefficients of the prey and predator, respectively. This
type of model is widely observed in ecological systems. In marine ecosystems, many cartilaginous fish
species prey on other fish. These organisms engage in activities such as metabolism, reproduction,
and migration. They are captured by humans for various reasons. Therefore, their predator-prey
dynamics can be modeled using reaction-diffusion equations with time delays. Similarly, this model is
equally applicable to forest ecosystems where pests are controlled by their natural predators, as well as
grassland systems where herbivorous animals like rabbits are hunted by predators such as wolves.

The rest of this paper is organized as follows. In Section 2, the stability of the coexisting constant
steady-state solution and existence of Hopf bifurcation is studied. In Section 3, the property of Hopf
bifurcation is studied. In Section 4, some numerical simulations are given. In Section 5, a short
conclusion is given.

2. Stability analysis

Similar to the results in [14], it is straightforward to show that the existence of constant steady-state
solutions for model (1.4).

Lemma 2.1. The existence of constant steady-state solutions for model (1.4) can be broken down into
four scenarios.

1) (0,0) and (1 — hy,0) are two boundary equilibria of model (1.4).

Ch (@
2) Model (1.4) has no positive constant steady-state solution for a, > a = 4 h%{;ﬁ;] )

3) Model (1.4) has one positive constant steady-state solution (%(1 - ), %) for a; = ay

and ay >y + h.
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4) System (1.4) has two distinct constant steady-state solutions (uy, vi) and (uy, v»), where u; < %(1 -

2 + h2
a1 (y+hy) — 0, Vig = Y fOl" a1 < Apt
ax(az2—y=ha) ’ (0 =y —hyup

hy) < us, and u, 5 are two roots of u> + (hy — 1)u® +

and ay >y + hy.

We make the following assumption:
(Ho) o Sy, Yt+th <a.

If (Hy) holds, model (1.4) has one or two constant steady-state solutions. We represent E, (u., v.) as
coexisting constant steady-state solutions and linearize system (1.4) at E,(u., v.):

Ou [ u(x,t) \ _ Au(r) u(x, 1) u(x,t—7)
E( u(x, 1) ) = D( avy )T v TR vi-n ) @D
where
dl 0 aq ay 0 0
D = L = L, =
I B i B P
M*VE(Y UV UV ) VECY UV UV )
and @ = Gt — e, Gy = = (ﬁlv*ﬂ) 1 <0,b =g > 0.0, = <1(i;*v*)2) *> 0.
We obtain
P+ Al+ A+ (A —bD)e ™ =0, keN,, (2.2)
where
k2 4 2

A= + d2)1_2 +(y+h)—a, A= d1dzl—4 + [(y + ho)d, — 611612]1—2 —ai(y + hy),

2 (2.3)
Az = —bzdll—z +a1b, — arby, k e Np.
2.1. The situation of T = 0
When 7 =0, (2.2) is
A+ (A -b)A+A,+A5;=0, keN,. (2.4)

We make the following assumption:
(H]) A —-b,>0, A, +A3>0, fOrkEN().

Theorem 2.1. For model (1.4), if (Hy) and (Hy) hold, E.(u.,v.) is locally asymptotically stable when
T=0.

Proof. If (Hy) is set, it follows that the eigenvalues of (2.4) all have a negative real radical.

2.2. The situation of T > 0
When 7 > 0, let iw (w > 0) be a solution of (2.2). Then

—w’ +iwA| + Ay + (A3 — biiw)(coswt — isinwt) = 0.
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We can obtain

—w? + A, + AscoswT — whysinwt = 0,
Aw — Assinwt — whycoswt = 0.

W (brA1+A3)—ArA3 w(A1A3+Arby-brw?)

This leads to coswt =

VST sinwt = ATAb2R
In addition,
w* + w (A - 24, - ) + A3 - A = 0. (2.5)
Let m = w?, and then (2.5) becomes
m® +m (A} - 24, - B}) + A3 - A} =0, (2.6)

and the roots of (2.6) are m* = 1[-F; + [F? — 4G(R] , where Fy = A? —2A; - b}, G = A, + A3, and
R, = A, — As. If (Ho) and (Hl) hold, G,>0 (k S No) We have

K2\ d,d it K(—ady + dy(hy + 7))
Fk:(h2+y—a1+(d1+d2)l—2) +2( 1]42 —(ll(h2+’)/)+ 172 121 27y )—bg,

Kt k>
Rk = d1d21—4 + [b2d1 - a1d2 + dl()/ + h2)]l_2 + a2b1 - albz - al(y + I’lz) fork e No.

Define
S1 = (kIR < 0, k € Ny},
Sy = {klR; > 0, F; <0, Fi —4GR; > 0, k € Ny},
S3 = {klR; > 0, F; =4GR, < 0, k € Ny},
and
; Larccos(VER + 2, vy > 0,
+ — +  _ Wy sin
“h Mo T = [27r — arccos(Vé';’;"))] +2jn, Vg‘f) <0,
¢ (2.7)
s _ @DADAFAD — Aoy (A145 + Asby = by(w})?)
A2 + D2(wi)? o A2 + D2(wi)?

Lemma 2.2. When (Hy) and (Hy) hold, the roots of (2.2) can be classified into three cases.
1) k € Sy: a pair of purely imaginary roots +iw; at T£’+ for jeN.
2) k € Sy: two pairs of purely imaginary roots +iw at ‘ri’i for jeN.
3) k € S3: no purely imaginary root.

Proof. When k € S, m" is the positive real root, m~ is the negative real root. Then we can obtain

case 1). When k € S,, mj are two positive real roots. Then we can obtain case 2). When k € S3, m;; are
two negative real roots. Then we can obtain case 3).

Lemma 2.3. Assume (Hy) and (Hy) hold, and then Re(j—f)lT:Ti,+ > 0, Re(%”rﬂi‘ <OforkeS US,
and j € Ny.
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Proof. By (2.2), we have

(d_/l)_l _ 24 + A — bze_/h _ z
v’ (A3 —-byDle ™ A
Then
daA 21+ A — bze_/h T
R —— 1 hx = R —_ — it
Re(Gp) e = Rel o e~ e
_ 2 2 2
= [W(Zw + Al — 2A2 - bz)]T:Tji
T \/(A2 ~ 24y~ B3P — 4(A3 - AD)],_ .
A2+ bw? V! 2
Therefore Re(%)| _ o> 0, Re(%)| _.i- < 0.

Denote 7, = mzn{‘rk| k € S; US,}. We can obtain the following theorem.

Theorem 2.2. When (Hy) and (Hy) hold, model (1.4) has four situations.
1) If S US, =@, E.(u,,v.) is locally asymptotically stable for T > 0.
2) If S1 U S, # @, E.(u.,v.) is locally asymptotically stable for T € [0, T.).
3) If S{ U S, # @, E.(u.,v.) is unstable for T € (1., 7. + &) for some € > (.

4) Hopf bifurcation occurs at E(u.,v.) when T = T£’+ (t= T,,]:_), jeNy, andk € S{US,.

3. Properties of Hopf bifurcation

Here we define

] 5 lgml) 1
c1(0) = 820811 — 2lgul” — + =821,
w 2

3
_ Re(c1(0))
Re(X' (7))’

1 .
Ty = ———[Im(c1(0)) + &Im(A (7)1,
Wi T
B2 = 2Re(c1(0)),

where

820 = Y1Tx20 + ¥2TS20, &1 = Y1TX11 +Y2TS11, 802 = ViTX 20 + V217620,

3.1

and for k € Ny, we have g; = 7(y1k; + y2k2). The detailed computation is given in the Appendix of

the works [20,21].

Theorem 3.1. For the model (1.4), assume (Hy) and (H,) hold. For any critical value T£+ (or Ti_ ), the
bifurcating periodic solutions exist for T > T]J: (or T <7, ) when & > 0 (or & < 0) and are orbitally

asymptotically stable (or unstable) when 3, < 0 (or 3, > 0).
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4. Numerical simulations

We present numerical simulations of model (1.4) to examine the effects of delays and harvesting
terms. The parameters are selected as shown in Table 2.

Table 2. Parameter - Value Table.

Parameter Value Parameter Value
a 0.05 1%} 1.748
hy 0.1 hy 09

d, 0.3 d> 0.2

0% 0.4 l 2

At this time, we have two positive equilibria E; =~ (0.589608,4.92155) and E; = (0.610273,4.7549)
that satisfy Hj. Since E, is unstable, we mainly analyze the property of the model (1.4) at E,. Through
direct calculation, we obtain A; ~ 1.65877, b, ~ 1.63318, A, ~ 0.466398, and Az ~ —0.456011 for
k=0 . Then A; — b, > 0 and A, + A3 > 0, which satisfy H;. wy = 0.914943, 7, = 7'8 ~ 6.28172. From
Theorem 2.2, we know that a Hopf bifurcation occurs at 7 = 7,. From Theorem 3.1, u, ~ 1908.34 > 0,
B2~ —22.904 < 0, and T, ~ 36.0408 > 0.

0.5897 4.923

0.58965 4922

0.5896

u(x,t)
v(x,t)

0.58955 4.921
0.5895
4.92

3000 3000
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0
0

Time t

1

4
Py 1000

0o Distance x Time t
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t
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0

1000

500

0
2 3 4 5 6 7 0 1 2

Distance x

4
2

Distance x

v(x,t)

3 4 5 6 T
Distance x

Figure 1. When 7 = 6.2 < 7'8 and the other parameters are the same as shown in Table 2, we
show the simulated solutions for the size of the prey (left) and the size of the predator (right),
where the system is locally asymptotically stable.
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From Theorem 2.2, E; is locally asymptotically stable for 7 € [0, 7,), which can be shown in
Figure 1, where we choose 7 = 6.2. This indicates that when the gestation delay of the predator is lower
than the critical value, the system eventually stabilizes. Stably spatially inhomogeneous bifurcating
periodic solutions exist for 7 > 7., and there exist stable spatially inhomogeneous bifurcating periodic
solutions. This is shown in Figure 2, where we choose T = 6.3. This indicates that when the predator’s
gestation period exceeds the critical value, the system exhibits periodic behavior. This mechanistic
framework explains the periodic oscillations observed between cartilaginous fish species such as sharks
and their prey populations in marine ecosystems, while offering enhanced theoretical justification for
implementing ecosystem-based fishery management strategies, with particular relevance to fishing
cycle regulation.

Next, we keep the values of other parameters unchanged and vary the harvest term coefficients /;
and h;, to study their influence on model (1.4).

v(x,t)

2
Time t 0 o0 Distance x Time t 0 o

2
Distance x

u(x,t v(x,t
8000 ( () 8000 ( x
7000 7000
6000 6000

5000 5000

4000 4000

Time t
Time t

= 3000 3000

2000 a 2000

1000 1000

-1000 ; : : : : : . -1000
0

Distance x Distance x

Figure 2. When 7 = 6.3 > Tg and the other parameters are the same as shown in Table 2, we
show the simulated solutions for the size of the prey (left) and the size of the predator (right),
where the system is periodic.

Here, we fix h, = 0.9 and vary h; from O to 0.1. At this point we find that 7 is always less than 1'8
and therefore convergent. In this case, the third case of Lemma 2.1, meaning there are two constant
steady-state solutions, we use MATLAB to plot the changes in the constant steady-state solutions of
the predator and prey with respect to /&, which is shown in Figure 3. Under the assumption that
other factors are not considered, as the harvest amount of prey increases, the prey size at the larger
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constant steady-state solution (dashed line) decreases. Here, the predator size (dashed line) increases.
Meanwhile, the prey size at the smaller constant steady-state solution (solid line) increases while the
predator size (solid line) decreases. The density changes of the predator and prey at the other constant
steady-state solution follow an opposite trend. Eventually, the two constant steady-state solutions tend
to be equal.

Dependence of u on hy Dependence of v on hy
T T T T

0.9

0:85 P ’ 6.5

0.8 ~ -
0.75 -~

0.7 M | 55

= 0.65 | ® 5

b / 45 s

0.55 1 -
05 ] e
e
— - ool
e = =

0.45 35

0.4 3 : : ; ‘
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
hy hy

Figure 3. Changes in the two constant steady-state solutions of prey size (left) and predator
size (right) with prey harvest 4;. The other parameters are the same as shown in Table 2.

Next, we fix &y = 0.1 and vary h, from O to 0.9. At this point we find that 7 is always less
than T8 and therefore convergent. Under these conditions, system (1.4) also has two constant steady-
state solutions, as shown in Figure 4. Under the assumption that other factors are not considered, as
the predator harvest increases, the prey size at the larger constant steady-state solution (dashed line)
decreases, while the predator size (dashed line) increases. Meanwhile, the prey size at the smaller
constant steady-state solution (solid line) increases. It is worth noting that the predator size (solid line)
first increases and then decreases, with the inflection point referred to as the maximum capture point.
Eventually, the two constant steady-state solutions tend to become equal.

Dependence of u on hy Dependence of v on hy

0.9 _——====r 6 : : :
e P
-
0.8 ~ o —
~ 5

0.7 N

A [

3 2 '

’
’
3 53 ’
,
P4
-,
2 -
td
-
-
-
-
1 _—r
-
—————
0 | | | | | | | | 0 | | | | | | | |
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09

Figure 4. Changes in the two constant steady-state solutions of prey size (left) and predator
size (right) with predator harvest /,. The other parameters are the same as shown in Table 2.
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We also investigated the effect of harvesting terms on the critical 7.

Here we keep other parameters constant and setting s, = 0.9, then:

If h; < 0.099, H; is not satisfied, implying no critical T exists.

If h; > 0.1, Hj is not satisfied, indicating no positive constant steady-state solution exists.
When A, is in [0.099, 0.1], the critical 7 increases with the increase of prey harvesting 4.
Here we keep other parameters constant and setting #; = 0.1, then:

If h, < 0.899, H; is not satisfied, meaning no critical T exists.

If h, > 0.9, Hy 1s not satisfied, indicating no positive constant steady-state solution exists.
When 4, is in [0.899, 0.9], the critical T increases with the increase of predator harvesting h;.

Additionally, we study the impact of the harvesting term on the time it takes for the system to reach
stability. Here we specify that the fluctuation range of the prey population u is considered to be in
a stable state when the range of u dose not exceed 107°. Taking h, = 0.9, we use MATLAB to plot
the time for system (1.4) to reach stability when A; takes 0.099, 0.0995, and 0.1, which is shown in
Figure 5. From the figure, the time for the prey to reach stability increases with the increase in prey
harvesting h;.

When h, =0.099, the time to balance of predator size u When h1 =0.0995, the time to balance of predator size u When h1 =0.1, the time to balance of predator size u

0.579

0.5785

0.578

u(x,t)

0.5775

0.577

Stable Time: 556.52

u(xt)

== Stable Time

u(x,t)

0.584

0.5835

0.583

0.5825

0.582

0.5815

Stable Time: 701.44

u(x,t)
= Stable Time

0.591

0.5905

0.59

u(x,t)

0.5895

0.589

0.5885

F

u(x,t)
= Stable Time

Stable Time: 807.26

0.5765 : : !
0 1000 1500 2000 2500

Time t

500 1000 1500 2500 0 500

Time t

2000 2500 0 500 1000 1500

Time t

2000

Figure 5. The time chart of the system reaching stability when taking different values of 4;.

In Figure 4, it is observed that when other parameters remain unchanged and 4, = 0.1, the predator
size at the constant steady-state solution will have an inflection point as s, changes. Further research
shows that values of &, smaller than the inflection point part will make the system not satisfy (Hy).
Therefore, we keep h; = 0.1 unchanged and plot the time for system (1.4) to reach stability when 4,
takes 0.899, 0.8995, and 0.9, which is shown in Figure 6. Here we specify that the fluctuation range
of the predator size is considered to be in a stable state when the range of v dose not exceed 107°. It
is clear from the figure that the time for the system to reach stability increases with the increase in
predator harvesting 4,.

Increased human fishing directly reduces the tuna population, leading to a shortage of food resources
for predatory sharks. Due to reproductive time lags, sharks cannot rapidly compensate for prey decline
through population growth, delaying the recovery of their prey-regulation capacity. Consequently,
rebuilding predator-prey dynamic equilibrium requires more time, ultimately prolonging the system’s
recovery period. This demonstrates how biological reproductive delays and fishing activities jointly
affect ecosystem stability.
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When h_=0.899, the time to balance of predator size v When h_=0.8995, the time to balance of predator size v When h_=0.9, the time to balance of predator size v
5.0035 . Stabfe Time: 556.76 4.9835 2 4923 2

) Stable Time: 619.14 ) Stable Time: 807.26 )
= Stable Time = Stable Time = Stable Time

5.023 4.983 4.9225

5.0225 4.9825 4.922

1952

vix,t)

5.022

vix,t)
vix,t)

4.9215

5.0215 4.9815 4.921

5.021 4.981 4.9205

5.0205
0

4.9805 4.92
500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Time t Time t Time t

Figure 6. The time chart of the system reaching stability when taking different values of ;.

5. Conclusions

In this paper, we analyze a diffusion predator-prey system with predator and prey harvesting terms
and gestation delay, and study the impact of time delay and harvesting terms on the system’s dynamic
behavior. We study the stability of the coexistence constant steady-state solution and the existence
of Hopf bifurcation. Using the center manifold theorem and normal form method, we investigate the
properties of the Hopf bifurcation. Numerical simulations are conducted to validate the theoretical
results. Our findings show that when the predator’s gestation period is below the critical value, the
system tends to stabilize. However, when the gestation period exceeds this critical value, the system
exhibits periodic behavior. In ecology, this explains the shift in population dynamics from stable
equilibrium to periodic oscillations. As for the harvesting term, it not only affects the system’s constant
steady-state solution but also influences the time required for the system to reach stability. This study
investigates the effects of reproductive time delays and harvesting terms on population dynamics, using
sharks and tuna in marine ecosystems as a representative case study.
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Appendix

A computation of normal form

Here, we give the following results by the method of [20, 21]. Let u#(x,t) = u(x,7t) — u. and

V(x,t) = v(x,71t) — v,. For j € Ny and k € S| U S,, we denote 7 = Tk"i. Dropping the bar, (1.4) can be

written as
ou 3 a1 (u+ u)v +v,)?
i TldiAu+ (u+u) (1 —(u+u)) — T+ Gt v = hi(u+u)], )
v -1 +u)v(it—1)+v,)? ’
o = A T D a0 = Dy TRV
Define T = 7 + &, and B(t) = (u(x, 1), v(x, 1))?, and we obtain
? =1DAB(t) + L:(B,) + Y (B, &), (A.2)
where
_ a,1£1(0) — a»{»(0)
LO=E 4 )t + bi&i(=1) + bata(-1) (8.3)
and
Y({,8) = EDAL + Le({) + y(4, 6), (A4)
with

Y&, 6 = (T + OO ), 3L,
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@1(£(0) +v.)?
1+ (£1(0) + u.)(£2(0) + u)
(1= + u)(G(=1) +v.)
L+ (6D +u)((=1) +v.)

respectively, for & = (£1,4)" € Cy.
Consider equation

y1(d,6) = (£1(0) + u*)(l - 1(0) —u, -

(.6 = az(é’z(—l)+v*)(

dB(t
d—i) = tDAB(t) + L:(B,).
We know that A, := {iwT, —iw, T} are characteristic roots of
dm(t) Lk
7 = _lTDl_Zm(t) + L:(m,).
Choose
tE, o0 =0,
n'(o,7) =40, o€ (-1,0),
-7Y, o=-1,
where

E = al—dll;—zz a Y = 0 0
- —v—h—-dk) T T \b b))
0 Y hz d2l2 1 2

Define the bilinear paring

0 s

W) = Y(0)¢(0) - f W(E — (s, DpE)de

-1 Jg=0

0
= W(0)p(0) + 7 f e DYt

) —a1£1(0) — ax45(0),

b hz) + (Y + h2)5(0) = b141(=1) = balnr(-1),

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

for ¢ € C([-1,0],R?) and y € C([0, 1],R?). +iw,t are eigenvalues of A(7), which are also eigenvalues

of A*. Define p;(0) = (1,8) e (s € [-1,0]) and ¢;(r) = (1, v)e" " (r € [0, 1]), where

(5—i—a +dn—2+ia) v——e_imka—dn—2+iw
= a 1 llz k> — bl 1 112 AR
Let @ = (@, ®,) and 1" = (T}, T3)" with
_ 1) + pa(s) _ [Re(e™™) _ pi(®) = pa(s) _ [ Im(e™ )
h= 2 B (Re(éel"“k”) P =T = (e
for o € [-1,0] and

con - DD+ @) (Re(e™ ™)) L - qi() = ga(r) _ [ Im(e )

hin) = 2 = \Re(re-ionn)|> 120 = 2 ~ \Im(veiextr)

for r € [0, 1]. Then by (4.8) we obtain

Dy :=(T],D1), D;:=(T,P), D;:=(15P1), D,:=(T5 D).
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Dy D,

Define (7", ®) = (17, &;) = (D; D:

) and construct a new basis 71" for P* by

=T, T =, )T

Then (7, @) = L. In addition, define y, := (8}, ;), where
gl = [ Bx g - 0
ke 0 |0 "k \cos ’%x '

We also define
C Yk = clﬁllc + czﬁﬁ for ¢ = (cl,cz)T €Y.

1 i 1 I
(u,v) = —f uvidx + —f UrVodx
l7T 0 lﬂ' 0

for u= (ula l/l2), V= (V19 v2)9 u,v e X9 and (()Da yO) = ((()Da y(l))a (‘709 y%))T
Rewrite (A.1) in the abstract form

dB(1t)
d’t = A:B, + R(B,, &),
where
0, o€ [-1,0),
R(Bt’ 8) =
Y(B;,e), o=0.

The solution is

B, =® (XI))’k + h(xy, X2, €),
X2

where

X1

( ) = (T, < By, yr >)

X2
and

h(xy, x3,€) € P, h(0,0,0)=0, Dh(0,0,0)=0.
Then
o (x1(D)
Bt - CI) (xz(t))Yk + h(XI, X2, O)

Let m = x; — ix, and notice that p; = @, + i®,. Then

m+m

X 1 -
q)( 1)yk = (q)l’d)z)(i((mz—m))yk = =(pim + pym)y,
X2 5 2

and

B 1.0) = h(m+m i(m—ﬁ)’o)

272

(A.10)

(A.11)

(A.12)

(A.13)
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(A.13) becomes

1 . m+m i(m—m)
B, = =(pim + pym)y; + h( ,0)

f 2 2 (A.14)
= E(le + pim)y; + W(m, m)
where o B
W, ) = h(m ;— m’ l(mz— m),o)
and
m = iwtm + g(m, m), (A.15)
gm,m) = (11(0) — iC2(0)){Y (B, 0), yi). (A.16)
Let
m? >
W(m,ﬁ’l): W207+W1]mﬁ1+W027+--~ . (A17)
m? >
g(m,m) 28207 +g11mﬁ1+g027+--~ . (A.18)
Then . o
,(0) = 5 (m + i) cos( 1 ) + Wé};(O)— + W (Oymm + Wg‘;(O)— + -
1 kx ) @) @)
vi(0) = (6 +bim) cos | == | + Wyg (0)— + W(O0ymim + WS (0)— + -
| kx () () )
u(—1) = E(ze T 4 e’y cos 7 + W, (= 1)— + Wi (=Dmim+ W) (- 1)— + -
L s pmiont 0ty cos [ KX 4 W@ ) @1y
vi(—=1) = —(6ze + ome' ") cos T + Wy (— 1)— + W (=Dmm + W, (—1)7 +
and
Y] (Bt’ O) ==
= 1,u2(0) + Lt (0)v,(0) + A393(0) + L (0) (A.19)
+ 2512 (0)v,(0) + Asu, (012 (0) + 2797 (0) + O(4).
_ 1
Y»(B,,0) = ;Yz
(A.20)

= Bl (=1) + Bou(—1)v,(=1) + B3vi(=1) + Bari; (= 1)
+ Bsu (= 1)vi(=1) + Beu(=1)vi(=1) + Bvi(—1) + O(4),
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where
2%, v,
A=—F— -2 bHh=—
T 0w ) 2T A+ uan)
P 2u.a; , P 6via, ’
(1 + uv,)? (1+uv)*
1 = 6via, _ 2(—1 + 2u.v.)a,
T (A + wv)* 0 (1 + uv.)
1 = 6ula, B, = 2via,
7T+ ) YT ua)
B, = 2v.an By = 2u.ar
T A+ u)d T+ u)?
By = 6via, Bs = 6via,
YT A Fuv)t T+ un )t
2(1 = 2uv)a buta
Bs= S Br=
(1 + u,v,) (1 + u,v.)
Hence,
— 5 [kx _ me_
Y.(B;,0) = cos N7 + mmy 11 + 7)(20
m ’m 5 kx
T 1COS—+)(QCOST + e
2
Y,(B,,0) = cos ( )( G20 + mmgy; + 75‘20)
+ + s kx +
—_— cos— cos® — |+,
2 Sl ] (Y ]
(Y(B,,0), ) = f(i(Bt, 0)y, + Y2(By, 0)y})
_ (XZO)F+ (XII)F+ (Xzo)r+ msz(/q)ﬁ_n_
2 $20 S11 2 \Sx 2 \k2
with
1 k
I =— cos’ (—x)dx,
l7T 0 l
I I
k k
K1 =X cos’ = dx+)ﬁf cos? = dx,
lﬂ' 0 l lﬂ' 0
I I
Ky = il cos? k_x dx+2f cos* k— dx,
lﬂ' 0 l l 0
and

1 1 -
X20 = E(/ll +0(A + /135)))(1] = Z(Za/] + 2300 + a»(0 + 0)),

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)
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Denote

Notice that

We have

X1 = W02 + 16) + WD(0)(A; + 2236)
6 - A
+ W) (al ¥ %) F WO (45 + 5,
1 _ _ _
X2 = 1(3/14 + A5(0 + 20) + 6(2460 + A0 + 31700)),

1 —2iw, iw,
S0 = 7€ 2By + 0(By + (e2B3)0)),

1 _ _
S = 4_1(2'81 +23)06 + B2(6 + 9)),
§1 = e W (=1)(2B) + B29)

p— 1 n) S
4 o lel(_l)(ﬁz + 2330) + Ee’wk Wzlo(—l)(2ﬁ1 + 3,0)

1 — _
+ — W2 (=1)(B, + 2B30),

2
1 _ _ _
¢ = Ze"“"(3,84 + Bs(6 + 26) + 33,06% + Be(26 + 5))).
¥1(0) = iy2(0) := (y1 y2).
1 k
| cos Zax=0, k=1,23,--.
lﬂ' 0 l

(71(0) = iy2(0))XY (B, 0), yi)

2 —2
m . — . m — — .
= 7()’1)(20 + Y250 T+ mm(y x11 + y2510) T + 7()’1)(20 + Y2S0) T
m’m
+ TTD’]Kl + Y]+

Then by (A.16), (A.18), and (A.30) we have

820 = Y1Tx20 + ¥2T620,  &i1 = YiTxX11 +Y2TS11, 802 = Y1TX 20 + V21600,

and for k € Ny, we have g, = 7(y 1k + Y2K2).

From [20] we have

Electronic Research Archive

W(m, ﬁ) = Woomz + Wy 2m + anﬁ + Wozﬂ’lh’l +oeee,
2 —2

A%W(m, m) = A-szom? + AW mm + A¢W02m7 + e,
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(A.32)

(A.33)
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and
W(m,m) = A;W + H(m, m), (A.34)
where
m? m*
H(m,ﬁ):Hz()?+W11m%+H027+-~ (A.35)

= X0Y (B, 0) = @(y, (xoY (B, 0), i) - yi)-

Hence, we obtain

QiwgT = A)Wao = Hyy, —A:Wi1 = Hyy,  (F2iwt — A:)Wor = Hyp, (A.36)

Wi = Qiwyt — A:) ' Hy, Wi = —-A7'Hyy,  Wop = (<2iwyt — A+) "' Hop. (A.37)

H(m,m) = —@(0)y(0)XY(B;,0), ye) - Y&

__(P1(@) + pa(a) pi(o) = pa(0)) [D1(0)
B 2 ’ 2i D,(0)

) (Y(B;,0), yx) - yx
1
= _E[pl(o')(@l(o) —1D5(0)) + p2(o)(P1(0) + iD2(0) XY (B:, 0), yi) - Y&

1 2
=3 [(pl(a)gzo + pz(a)s_’oz)% + (p1(0)gn + p2(0)g, Jmm

—
_ .m
+ (p1(0)go2 + pz(O')gzo)7 +
Therefore,
0, k€N,
Hy(o) =4 | _
—5(p1(0)g20 + P2(0)8p2) - Yo, k=0,
0, keN,
Hy(o) =91 | —
—5(p1(o)gu + p2(0)gyy) - yo, k=0,
0, keN,
Hp(o) =4 | _
—5(P1(0)g02 + P2(0)8a0) - Yo, k=0,
and
H(m,m)(0) = Y(B;,0) — @(y,(Y(B;,0), yi)) - ¥
where

T ()(20] cos? (’%) , keN,
Hyp(0)={ +°%

X _
T(:O] — 1(11(0)g20 + P2(0)gp) - o k=0,
20
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7"()(11]cos2 ('%), keN,
Hy1(0) = i“
T(g“] — 1(P1(0)g11 + p2(0)gy) - yo, k=0.
1
We have
. . 1 _
Wao = A:Woy = 2iwitWo + E(pl(o-)gﬂ) + pa(0)80) Yy -1 <0 <0.
That is,
Wao(o) = it (gzopl(a') + —Pz(O')) Vi + E ¥,
where
E W20(0), k=1,2,3,---,
1= ,
W20(0) — 557(820p1(0) + g§2 p2(0) - yo, k=0.
We have that
82 o I 80
— (g20p1(0) + —Pz(o)) Yo + 2l TE) — Ar | 57— (£20p1(0) + —=p2(0) | - yo
2T 3
-AE, - L; (2 (gzopl(o) + —Pz(o)) Ve + Elezwkw)
Wi T
_ . [X20 —
= T( ) — = (p1(0)g20 + p2(0)g¢y) - Yo-
Sl 2
As
A:p1(0) + Li(p1 - yo) = iwop1(0) - yo,
A:p2(0) + Li(ps - yo) = —iwop2(0) - yo,
k
2iwoE| — A+E; — L E; ¥t = T(XZO) cos> (—x) k € N,.
20 [
That is,

Lo 2 -1
o 2iwiT — aq + dlll‘—z —as
pu— . . . . 9 . 2
—bye 2t it — bre T by + hy +dh)
. i
_W“:Q,a)T -1<0<0,
k
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2l(,t)kT

E, =1TE" (X“) cos® (k_x) ,

(P18 - pr(@)gn) + Ea,

St [
-1
—a; +d1]l<—22 —ra
—b, ~by+y + 1y + dos
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