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Abstract: This paper studied a delayed diffusive predator-prey model with predator and prey
harvesting terms. The existence of constant steady-state solutions and Hopf bifurcation were analyzed.
Then by applying the central manifold theorem and the normal form method, the direction of the
Hopf bifurcation and stability of the bifurcating period solution were studied. Numerical simulations
were conducted to confirm the accuracy of the proposed theory. In addition, taking the predator-prey
relationship between sharks and tuna as an example, this study investigated the impact of predator
harvesting coefficients on the constant steady-state solutions of the system and the time required for
the system to reach stability.
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1. Introduction

The population dynamics of predator and prey within an ecosystem are shaped not just by their
relative densities, but also by various environmental factors including resource availability, interspecific
competition, and human harvesting activities. In the field of mathematical biology, predator-prey
systems are widely used as important tools for describing and analyzing species interactions and
population dynamics in ecosystems [1–4]. Researchers utilize this system to effectively depict the
complex interactions between predator and prey, and subsequently describe population changes under
different environmental conditions [5–7]. They study how these complex factors affect the stability
and evolutionary trends of species populations, thus helping us gain a deeper understanding of the
complexity of ecosystems [8–11].

In [1], the authors incorporated intraspecific cannibalism into the predator-prey model to account
for competition-alleviating mechanisms under resource limitation. In [2], the authors conducted a
systematic analysis of pattern formation dynamics in a harvested predator-prey system subject to
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no-flux boundary conditions, revealing that the prey’s diffusion rate determines the emergent spatial
patterns. In [3], the authors proposed a predator-prey model incorporating prey refuge effects that are
functionally dependent on predator size.

In [12], the authors proposed the following functional response:

ϕ(u, v) =
Ce0uv

1 + hCe0uv
.

The traditional Holling-type functional response [13] typically describes the change in the predation
rate based on prey size, while this functional response simultaneously considers the effects of both prey
size and predator size on the predation rate, reflecting the interactions between predators. K. Ryu et
al. [14] studied the following system. du

dt = ru
(
1 − u

K

)
−

Ce0uv2

1+hCe0uv ,
dv
dt = εCe0uv2

1+hCe0uv − µv.
(1.1)

u is the prey size. v is the predator size. The biological meanings and units of other parameters are
presented in Table 1.

Table 1. Parameters descriptions and units in model (1.1).

Parameter Description Unit
u Prey population density ind. · m−2

v Predator population density ind. · m−2

r Prey intrinsic growth rate year−1

C Capture rate (ind. · m2)−1 · year−1

h Handling time year · m2 · ind.−1

µ Predator mortality rate year−1

K Prey carrying capacity ind. · m−2

e0 Encounter rate /

ε Conversion efficiency /

We use the following parameter transformations:

rt = t̄,
u
K

= ū, hCe0Ky = v̄,
1

Ce0(hK)2r
= α1,

ε

rh
= α2,

µh
ε

= γ. (1.2)

System (1.1) is turned to  du
dt = u (1 − u) − α1uv2

1+uv ,
dv
dt = α2

(
uv2

1+uv − γv
)
.

(1.3)

K. Ryu et al. [14] focused on the study of saddle points, Hopf bifurcation, and Bogdanov-Takens
bifurcation in the context of coexistence constant steady-state solution states.

Since the survival struggle between predator and prey is affected by diffusion phenomena and energy
conversion delays, the reactive diffusion term and time delay can more accurately reflect natural states.
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In [15, 16], the authors examined the effects of the diffusion term and time delay on predator-prey
models, studying the instability caused by time delay and the Hopf bifurcation at the positive constant
steady-state solution.

Meanwhile, the survival of species in the real world is also affected by human intervention. In light
of this, many researchers have carefully studied the impact of human influence on the predator-prey
system [17–19], making it more aligned with real-life situations.

Inspired by their work, we expanded the spatial domain on the basis of [12] and focused on the
effects of two harvesting terms on predator-prey models compared to [15, 17]. We further studied the
following system, which builds on system (1.1) by considering the time delay between the predator
consuming the prey and the birth of new individuals, as well as the diffusion and harvesting of both the
predator and prey.

∂u(x,t)
∂t = u(1 − u) − α1uv2

1+uv − h1u + d1∆u, x ∈ Ω, t > 0,
∂v(x,t)
∂t =

α2u(t−τ)v2(t−τ)
1+u(t−τ)v(t−τ) − (γ + h2)v + d2∆v, x ∈ Ω, t > 0,

∂u(x,t)
∂ν

=
∂v(x,t)
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, t) = u1(x, t) ≥ 0, v(x, t) = v1(x, t) ≥ 0, x ∈ Ω, t ∈ [−τ, 0].

(1.4)

All parameters are positive. d1 and d2 are diffusion coefficients of the prey and predator, respectively.
τ is the gestation delay. h1 and h2 are harvesting coefficients of the prey and predator, respectively. This
type of model is widely observed in ecological systems. In marine ecosystems, many cartilaginous fish
species prey on other fish. These organisms engage in activities such as metabolism, reproduction,
and migration. They are captured by humans for various reasons. Therefore, their predator-prey
dynamics can be modeled using reaction-diffusion equations with time delays. Similarly, this model is
equally applicable to forest ecosystems where pests are controlled by their natural predators, as well as
grassland systems where herbivorous animals like rabbits are hunted by predators such as wolves.

The rest of this paper is organized as follows. In Section 2, the stability of the coexisting constant
steady-state solution and existence of Hopf bifurcation is studied. In Section 3, the property of Hopf
bifurcation is studied. In Section 4, some numerical simulations are given. In Section 5, a short
conclusion is given.

2. Stability analysis

Similar to the results in [14], it is straightforward to show that the existence of constant steady-state
solutions for model (1.4).

Lemma 2.1. The existence of constant steady-state solutions for model (1.4) can be broken down into
four scenarios.

1) (0, 0) and (1 − h1, 0) are two boundary equilibria of model (1.4).

2) Model (1.4) has no positive constant steady-state solution for α1 > αbt := 4(1−h1)3α2(α2−γ−h2)
27(γ+h2)2 .

3) Model (1.4) has one positive constant steady-state solution (2
3 (1 − h1), 3(γ+h2)

2(α2−γ−h2)(1−h1) ) for α1 = αbt

and α2 > γ + h2.
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4) System (1.4) has two distinct constant steady-state solutions (u1, v1) and (u2, v2), where u1 <
2
3 (1 −

h1) < u2, and u1,2 are two roots of u3 + (h1 − 1)u2 +
α1(γ+h2)2

α2(α2−γ−h2) = 0, v1,2 =
γ + h2

(α2 − γ − h2)u1,2
for α1 < αbt

and α2 > γ + h2.

We make the following assumption:

(H0) α1 ≤ αbt, γ + h2 < α2.

If (H0) holds, model (1.4) has one or two constant steady-state solutions. We represent E∗(u∗, v∗) as
coexisting constant steady-state solutions and linearize system (1.4) at E∗(u∗, v∗):

∂u
∂t

(
u(x, t)
u(x, t)

)
= D

(
∆u(t)
∆v(t)

)
+ L1

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t − τ)
v(x, t − τ)

)
, (2.1)

where

D =

(
d1 0
0 d2

)
, L1 =

(
a1 a2

0 − γ − h2

)
, L2 =

(
0 0
b1 b2

)
,

and a1 =
u∗v3
∗α1

(1+u∗v∗)2 − u∗, a2 = −
u∗v∗(2+u∗v∗)α1

(1+u∗v∗)2 < 0, b1 =
v2
∗α2

(1+u∗v∗)2 > 0, b2 =
u∗v∗(2+u∗v∗)α2

(1+u∗v∗)2 > 0.
We obtain

λ2 + A1λ + A2 + (A3 − b2λ)e−λτ = 0, k ∈ N0, (2.2)

where

A1 = (d1 + d2)
k2

l2 + (γ + h2) − a1, A2 = d1d2
k4

l4 + [(γ + h2)d1 − a1d2]
k2

l2 − a1(γ + h2),

A3 = −b2d1
k2

l2 + a1b2 − a2b1, k ∈ N0.

(2.3)

2.1. The situation of τ = 0

When τ = 0, (2.2) is
λ2 + (A1 − b2)λ + A2 + A3 = 0, k ∈ N0. (2.4)

We make the following assumption:

(H1) A1 − b2 > 0, A2 + A3 > 0, for k ∈ N0.

Theorem 2.1. For model (1.4), if (H0) and (H1) hold, E∗(u∗, v∗) is locally asymptotically stable when
τ = 0.

Proof. If (H1) is set, it follows that the eigenvalues of (2.4) all have a negative real radical.

2.2. The situation of τ > 0

When τ > 0, let iω (ω > 0) be a solution of (2.2). Then

−ω2 + iωA1 + A2 + (A3 − b2iω)(cosωτ − isinωτ) = 0.
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We can obtain −w2 + A2 + A3cosωτ − wb2sinωτ = 0,
A1w − A3sinωτ − wb2cosωτ = 0.

This leads to cosωτ =
ω2(b2A1+A3)−A2A3

A2
3+b2

2ω
2 , sinωτ =

ω(A1A3+A2b2−b2ω
2)

A2
3+b2

2ω
2 .

In addition,
ω4 + ω2

(
A2

1 − 2A2 − b2
2

)
+ A2

2 − A2
3 = 0. (2.5)

Let m = ω2, and then (2.5) becomes

m2 + m
(
A2

1 − 2A2 − b2
2

)
+ A2

2 − A2
3 = 0, (2.6)

and the roots of (2.6) are m± = 1
2 [−Fk ±

√
F2

k − 4GkRk] , where Fk = A2
1 − 2A2 − b2

2, Gk = A2 + A3, and
Rk = A2 − A3. If (H0) and (H1) hold, Gk > 0 (k ∈ N0). We have

Fk =

(
h2 + γ − a1 + (d1 + d2)

k2

l2

)2

+ 2
(
d1d2k4

l4 − a1(h2 + γ) +
k2(−a1d2 + d1(h2 + γ))

l2

)
− b2

2,

Rk = d1d2
k4

l4 + [b2d1 − a1d2 + d1(γ + h2)]
k2

l2 + a2b1 − a1b2 − a1(γ + h2) for k ∈ N0.

Define

S1 = {k|Rk < 0, k ∈ N0},

S2 = {k|Rk > 0, Fk < 0, F2
k − 4GkRk > 0, k ∈ N0},

S3 = {k|Rk > 0, F2
k − 4GkRk < 0, k ∈ N0},

and

ω±k =

√
m±k , τ

j,±
k =

 1
ω±k

arccos(V (k,±)
cos ) + 2 jπ, V (k,±)

sin ≥ 0,
1
ω±k

[
2π − arccos(V (k,±)

cos )
]

+ 2 jπ, V (k,±)
sin < 0,

V (k,±)
cos =

(ω±k )2(b2A1 + A3) − A2A3

A2
3 + b2

2(ω±k )2
, V (k,±)

sin =
ω±k

(
A1A3 + A2b2 − b2(ω±k )2

)
A2

3 + b2
2(ω±k )2

.

(2.7)

Lemma 2.2. When (H0) and (H1) hold, the roots of (2.2) can be classified into three cases.

1) k ∈ S1: a pair of purely imaginary roots ±iω+
k at τ j,+

k for j ∈ N0 .

2) k ∈ S2: two pairs of purely imaginary roots ±iω±k at τ j,±
k for j ∈ N0 .

3) k ∈ S3: no purely imaginary root.

Proof. When k ∈ S1, m+ is the positive real root, m− is the negative real root. Then we can obtain
case 1). When k ∈ S2, m±k are two positive real roots. Then we can obtain case 2). When k ∈ S3, m±k are
two negative real roots. Then we can obtain case 3).

Lemma 2.3. Assume (H0) and (H1) hold, and then Re( dλ
dτ )|τ=τ j,+

k
> 0, Re( dλ

dτ )|τ=τ j,−
k
< 0 for k ∈ S1 ∪ S2

and j ∈ N0.
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Proof. By (2.2), we have

(
dλ
dτ

)−1 =
2λ + A1 − b2e−λτ

(A3 − b2λ)λe−λτ
−
τ

λ
.

Then

[Re(
dλ
dτ

)−1]τ=τ j,±
k

= Re[
2λ + A1 − b2e−λτ

(A3 − b2λ)λe−λτ
−
τ

λ
]τ=τ j,±

k

= [
1

A2
3 + b2

2ω
2
(2ω2 + A2

1 − 2A2 − b2
2)]τ=τ j,±

k

= ±[
1

A2
3 + b2

2ω
2

√
(A2

1 − 2A2 − b2
2)2 − 4(A2

2 − A2
3)]τ=τ j,±

k
.

Therefore Re(dλ
dτ )|τ=τ j,+

k
> 0, Re(dλ

dτ )|τ=τ j,−
k
< 0.

Denote τ∗ = min{τ0
k | k ∈ S1 ∪ S2}. We can obtain the following theorem.

Theorem 2.2. When (H0) and (H1) hold, model (1.4) has four situations.

1) If S1 ∪ S2 = ∅, E∗(u∗, v∗) is locally asymptotically stable for τ > 0.

2) If S1 ∪ S2 , ∅, E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗).

3) If S1 ∪ S2 , ∅, E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0.

4) Hopf bifurcation occurs at E(u∗, v∗) when τ = τ
j,+
k (τ = τ

j,−
k ), j ∈ N0, and k ∈ S1 ∪ S2.

3. Properties of Hopf bifurcation

Here we define

c1(0) =
i

2ωkτ̇

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

1
2

g21,

ξ2 = −
Re(c1(0))

Re(λ′(τ j
k))
,

T2 = −
1
ωkτ̇

[Im(c1(0)) + ξ2Im(λ′(τ j
k))],

β2 = 2Re(c1(0)),

where

g20 = γ1τ̇χ20 + γ2τ̇ς20, g11 = γ1τ̇χ11 + γ2τ̇ς11, g02 = γ1τ̇χ20 + γ2τ̇ς20, (3.1)

and for k ∈ N0, we have g21 = τ̇(γ1κ1 + γ2κ2). The detailed computation is given in the Appendix of
the works [20, 21].

Theorem 3.1. For the model (1.4), assume (H0) and (H1) hold. For any critical value τ j+
k (or τ j−

k ), the
bifurcating periodic solutions exist for τ > τ

j+
k (or τ < τ

j−
k ) when ξ2 > 0 (or ξ2 < 0) and are orbitally

asymptotically stable (or unstable) when β2 < 0 (or β2 > 0).
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4. Numerical simulations

We present numerical simulations of model (1.4) to examine the effects of delays and harvesting
terms. The parameters are selected as shown in Table 2.

Table 2. Parameter - Value Table.

Parameter Value Parameter Value
α1 0.05 α2 1.748
h1 0.1 h2 0.9
d1 0.3 d2 0.2
γ 0.4 l 2

At this time, we have two positive equilibria E1 ≈ (0.589608, 4.92155) and E2 ≈ (0.610273, 4.7549)
that satisfy H0. Since E2 is unstable, we mainly analyze the property of the model (1.4) at E1. Through
direct calculation, we obtain A1 ≈ 1.65877, b2 ≈ 1.63318, A2 ≈ 0.466398, and A3 ≈ −0.456011 for
k=0 . Then A1 − b2 > 0 and A2 + A3 > 0, which satisfy H1. ω0 ≈ 0.914943, τ∗ = τ0

0 ≈ 6.28172. From
Theorem 2.2, we know that a Hopf bifurcation occurs at τ = τ∗. From Theorem 3.1, µ2 ≈ 1908.34 > 0,
β2 ≈ −22.904 < 0, and T2 ≈ 36.0408 > 0.

.

Figure 1. When τ = 6.2 < τ0
0 and the other parameters are the same as shown in Table 2, we

show the simulated solutions for the size of the prey (left) and the size of the predator (right),
where the system is locally asymptotically stable.
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From Theorem 2.2, E1 is locally asymptotically stable for τ ∈ [0, τ∗), which can be shown in
Figure 1, where we choose τ = 6.2. This indicates that when the gestation delay of the predator is lower
than the critical value, the system eventually stabilizes. Stably spatially inhomogeneous bifurcating
periodic solutions exist for τ > τ∗, and there exist stable spatially inhomogeneous bifurcating periodic
solutions. This is shown in Figure 2, where we choose τ = 6.3. This indicates that when the predator’s
gestation period exceeds the critical value, the system exhibits periodic behavior. This mechanistic
framework explains the periodic oscillations observed between cartilaginous fish species such as sharks
and their prey populations in marine ecosystems, while offering enhanced theoretical justification for
implementing ecosystem-based fishery management strategies, with particular relevance to fishing
cycle regulation.

Next, we keep the values of other parameters unchanged and vary the harvest term coefficients h1

and h2 to study their influence on model (1.4).

Figure 2. When τ = 6.3 > τ0
0 and the other parameters are the same as shown in Table 2, we

show the simulated solutions for the size of the prey (left) and the size of the predator (right),
where the system is periodic.

Here, we fix h2 = 0.9 and vary h1 from 0 to 0.1. At this point we find that τ is always less than τ0
0

and therefore convergent. In this case, the third case of Lemma 2.1, meaning there are two constant
steady-state solutions, we use MATLAB to plot the changes in the constant steady-state solutions of
the predator and prey with respect to h1, which is shown in Figure 3. Under the assumption that
other factors are not considered, as the harvest amount of prey increases, the prey size at the larger
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constant steady-state solution (dashed line) decreases. Here, the predator size (dashed line) increases.
Meanwhile, the prey size at the smaller constant steady-state solution (solid line) increases while the
predator size (solid line) decreases. The density changes of the predator and prey at the other constant
steady-state solution follow an opposite trend. Eventually, the two constant steady-state solutions tend
to be equal.

Figure 3. Changes in the two constant steady-state solutions of prey size (left) and predator
size (right) with prey harvest h1. The other parameters are the same as shown in Table 2.

Next, we fix h1 = 0.1 and vary h2 from 0 to 0.9. At this point we find that τ is always less
than τ0

0 and therefore convergent. Under these conditions, system (1.4) also has two constant steady-
state solutions, as shown in Figure 4. Under the assumption that other factors are not considered, as
the predator harvest increases, the prey size at the larger constant steady-state solution (dashed line)
decreases, while the predator size (dashed line) increases. Meanwhile, the prey size at the smaller
constant steady-state solution (solid line) increases. It is worth noting that the predator size (solid line)
first increases and then decreases, with the inflection point referred to as the maximum capture point.
Eventually, the two constant steady-state solutions tend to become equal.

Figure 4. Changes in the two constant steady-state solutions of prey size (left) and predator
size (right) with predator harvest h2. The other parameters are the same as shown in Table 2.
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We also investigated the effect of harvesting terms on the critical τ.

Here we keep other parameters constant and setting h2 = 0.9, then:

If h1 < 0.099, H1 is not satisfied, implying no critical τ exists.

If h1 > 0.1, H0 is not satisfied, indicating no positive constant steady-state solution exists.

When h1 is in [0.099, 0.1], the critical τ increases with the increase of prey harvesting h1.

Here we keep other parameters constant and setting h1 = 0.1, then:

If h2 < 0.899, H1 is not satisfied, meaning no critical τ exists.

If h2 > 0.9, H0 is not satisfied, indicating no positive constant steady-state solution exists.

When h2 is in [0.899, 0.9], the critical τ increases with the increase of predator harvesting h2.

Additionally, we study the impact of the harvesting term on the time it takes for the system to reach
stability. Here we specify that the fluctuation range of the prey population u is considered to be in
a stable state when the range of u dose not exceed 10−6. Taking h2 = 0.9, we use MATLAB to plot
the time for system (1.4) to reach stability when h1 takes 0.099, 0.0995, and 0.1, which is shown in
Figure 5. From the figure, the time for the prey to reach stability increases with the increase in prey
harvesting h1.

Figure 5. The time chart of the system reaching stability when taking different values of h1.

In Figure 4, it is observed that when other parameters remain unchanged and h1 = 0.1, the predator
size at the constant steady-state solution will have an inflection point as h2 changes. Further research
shows that values of h2 smaller than the inflection point part will make the system not satisfy (H0).
Therefore, we keep h1 = 0.1 unchanged and plot the time for system (1.4) to reach stability when h2

takes 0.899, 0.8995, and 0.9, which is shown in Figure 6. Here we specify that the fluctuation range
of the predator size is considered to be in a stable state when the range of v dose not exceed 10−6. It
is clear from the figure that the time for the system to reach stability increases with the increase in
predator harvesting h2.

Increased human fishing directly reduces the tuna population, leading to a shortage of food resources
for predatory sharks. Due to reproductive time lags, sharks cannot rapidly compensate for prey decline
through population growth, delaying the recovery of their prey-regulation capacity. Consequently,
rebuilding predator-prey dynamic equilibrium requires more time, ultimately prolonging the system’s
recovery period. This demonstrates how biological reproductive delays and fishing activities jointly
affect ecosystem stability.
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Figure 6. The time chart of the system reaching stability when taking different values of h2.

5. Conclusions

In this paper, we analyze a diffusion predator-prey system with predator and prey harvesting terms
and gestation delay, and study the impact of time delay and harvesting terms on the system’s dynamic
behavior. We study the stability of the coexistence constant steady-state solution and the existence
of Hopf bifurcation. Using the center manifold theorem and normal form method, we investigate the
properties of the Hopf bifurcation. Numerical simulations are conducted to validate the theoretical
results. Our findings show that when the predator’s gestation period is below the critical value, the
system tends to stabilize. However, when the gestation period exceeds this critical value, the system
exhibits periodic behavior. In ecology, this explains the shift in population dynamics from stable
equilibrium to periodic oscillations. As for the harvesting term, it not only affects the system’s constant
steady-state solution but also influences the time required for the system to reach stability. This study
investigates the effects of reproductive time delays and harvesting terms on population dynamics, using
sharks and tuna in marine ecosystems as a representative case study.
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Appendix

A computation of normal form

Here, we give the following results by the method of [20, 21]. Let ū(x, t) = u(x, τt) − u∗ and
v̄(x, t) = v(x, τt) − v∗. For j ∈ N0 and k ∈ S1 ∪ S2, we denote τ̇ = τ

j,±
k . Dropping the bar, (1.4) can be

written as 
∂u
∂t

= τ[d1∆u + (u + u∗) (1 − (u + u∗)) −
α1(u + u∗)(v + v∗)2

1 + (u + u∗)(v + v∗)
− h1(u + u∗)],

∂v
∂t

= τ[d2∆v +
α2(u(t − 1) + u∗)(v(t − 1) + v∗)2

1 + (u(t − 1) + u∗)(v(t − 1) + v∗)
− (γ + h2)(v + v∗)].

(A.1)

Define τ = τ̇ + ξ, and B(t) = (u(x, t), v(x, t))T , and we obtain

dB(t)
dt

= τ̇D∆B(t) + Lτ̇(Bt) + Y(Bt, ξ), (A.2)

where

Lξ(ζ) = ξ

(
a1ζ1(0) − a2ζ2(0)

(γ + h2)ζ2(0) + b1ζ1(−1) + b2ζ2(−1)

)
(A.3)

and
Y(ζ, ξ) = ξD∆ζ + Lξ(ζ) + y(ζ, ξ), (A.4)

with
y(ζ, ξ) = (τ̇ + ξ)(y1(ζ, ξ), y2(ζ, ξ))T ,

Electronic Research Archive Volume 33, Issue 8, 5064–5084.

https://dx.doi.org/https://doi.org/10.1142/S1793524523500894
https://dx.doi.org/https://doi.org/10.1088/1361-6544/ad7fc3
https://dx.doi.org/https://doi.org/10.52846/ami.v42i2.644
https://dx.doi.org/https://doi.org/10.15388/NA.17.4.14046


5077

y1(ζ, ξ) = (ζ1(0) + u∗)
(
1 − ζ1(0) − u∗ −

α1(ζ2(0) + v∗)2

1 + (ζ1(0) + u∗)(ζ2(0) + u∗)

)
− a1ζ1(0) − a2ζ2(0),

y2(ζ, ξ) = α2(ζ2(−1)+v∗)
(

(ζ1(−1) + u∗)(ζ2(−1) + v∗)
1 + (ζ1(−1) + u∗)(ζ2(−1) + v∗)

− γ − h2

)
+ (γ + h2)ζ2(0)− b1ζ1(−1)− b2ζ2(−1),

respectively, for ζ = (ζ1, ζ2)T ∈ C1.
Consider equation

dB(t)
dt

= τ̇D∆B(t) + Lτ̇(Bt). (A.5)

We know that Λk := {iωkτ̇,−iωkτ̇} are characteristic roots of

dm(t)
dt

= −iτ̇D
k2

l2 m(t) + Lτ̇(mt). (A.6)

Choose

ηn(σ, τ) =


τE, σ = 0,
0, σ ∈ (−1, 0),
−τY, σ = −1,

(A.7)

where

E =

a1 − d1
k2

l2 a2

0 −γ − h2 − d2
k2

l2

 , Y =

(
0 0
b1 b2

)
. (A.8)

Define the bilinear paring

(ψ, ϕ) = ψ(0)ϕ(0) −
∫ 0

−1

∫ s

ξ=0
ψ(ξ − s)dηn(s, τ)ϕ(ξ)dξ

= ψ(0)ϕ(0) + τ̇

∫ 0

−1
ψ(ξ + 1)Yϕ(ξ)dξ

(A.9)

for ϕ ∈ C([−1, 0],R2) and ψ ∈ C([0, 1],R2). ±iωkτ̇ are eigenvalues of A(τ̇), which are also eigenvalues
of A∗. Define p1(σ) = (1, δ)T eiωk τ̇s(s ∈ [−1, 0]) and q1(r) = (1, ν)e−iωk τ̇r(r ∈ [0, 1]), where

δ =
1
a2

(
−a1 + d1

n2

l2 + iωk

)
, ν = −

e−iτ̇ωk

b1

(
a1 − d1

n2

l2 + iωk

)
.

Let Φ = (Φ1, Φ2) and Υ∗ = (Υ∗1, Υ
∗
2)T with

Φ1(s) =
p1(s) + p2(s)

2
=

(
Re(eiωk τ̇s)
Re(δeiωk τ̇s)

)
, Φ2(s) =

p1(s) − p2(s)
2i

=

(
Im(eiωk τ̇s)
Im(δeiωk τ̇s)

)
for σ ∈ [−1, 0] and

Υ∗1(r) =
q1(r) + q2(r)

2
=

(
Re(e−iωk τ̇r)
Re(νe−iωk τ̇r)

)
, Υ∗2(r) =

q1(r) − q2(r)
2i

=

(
Im(e−iωk τ̇r)
Im(νe−iωk τ̇r)

)
for r ∈ [0, 1]. Then by (4.8) we obtain

D∗1 := (Υ∗1, Φ1), D∗2 := (Υ∗1, Φ2), D∗3 := (Υ∗2, Φ1), D∗4 := (Υ∗2, Φ2).
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Define (Υ∗, Φ) = (Υ∗j , Φk) =

(
D∗1 D∗2
D∗3 D∗4

)
and construct a new basis Υ for P∗ by

Υ = (Υ1, Υ2)T = (Υ∗, Φ)−1Υ∗.

Then (Υ,Φ) = I2. In addition, define yk := (β1
k , β

2
k), where

β1
k =

(
cos kπ

l x
0

)
, β2

k =

(
0

cos kπ
l x

)
.

We also define
c · yk = c1β

1
k + c2β

2
k for c = (c1, c2)T ∈ Y1.

(u, v) :=
1
lπ

∫ lπ

0
u1v1dx +

1
lπ

∫ lπ

0
u2v2dx

for u = (u1, u2), v = (v1, v2), u, v ∈ X, and (ϕ, y0) = ((ϕ, y1
0), (ϕ, y2

0))T .
Rewrite (A.1) in the abstract form

dBt(t)
dt

= Aτ̇Bt + R(Bt, ε), (A.10)

where

R(Bt, ε) =

0, σ ∈ [−1, 0),
Y(Bt, ε), σ = 0.

(A.11)

The solution is

Bt = Φ

(
x1

x2

)
yk + h(x1, x2, ε), (A.12)

where (
x1

x2

)
= (Υ, < Bt, yk >)

and
h(x1, x2, ε) ∈ PS C1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

Then

Bt = Φ

(
x1(t)
x2(t)

)
yk + h(x1, x2, 0). (A.13)

Let m = x1 − ix2 and notice that p1 = Φ1 + iΦ2. Then

Φ

(
x1

x2

)
yk = (Φ1,Φ2)

( m+m
2

i((m−m)
2

)
yk =

1
2

(p1m + p1m)yk

and

h(x1, x2, 0) = h
(
m + m

2
,

i(m − m)
2

, 0
)
.
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(A.13) becomes

Bt =
1
2

(p1m + p1m)yk + h
(
m + m

2
,

i(m − m)
2

, 0
)

=
1
2

(p1m + p1m)yk + W(m,m)
(A.14)

where

W(m, m̄) = h
(
m + m̄

2
,

i(m − m̄)
2

, 0
)

and

ṁ = iωkτ̇m + g(m, m̄), (A.15)
g(m, m̄) = (Υ1(0) − iΥ2(0))〈Y(Bt, 0), yk〉. (A.16)

Let

W(m, m̄) = W20
m2

2
+ W11mm̄ + W02

m̄2

2
+ · · · , (A.17)

g(m, m̄) = g20
m2

2
+ g11mm̄ + g02

m̄2

2
+ · · · . (A.18)

Then

ut(0) =
1
2

(m + m̄) cos
(
kx
l

)
+ W (1)

20 (0)
m2

2
+ W (1)

11 (0)mm̄ + W (1)
02 (0)

m̄2

2
+ · · · ,

vt(0) =
1
2

(δ + δ̄m̄) cos
(
kx
l

)
+ W (2)

20 (0)
m2

2
+ W (2)

11 (0)mm̄ + W (2)
02 (0)

m̄2

2
+ · · · ,

ut(−1) =
1
2

(ze−iωk τ̇ + m̄eiωk τ̇) cos
(
kx
l

)
+ W (1)

20 (−1)
m2

2
+ W (1)

11 (−1)mm̄ + W (1)
02 (−1)

m̄2

2
+ · · · ,

vt(−1) =
1
2

(δze−iωk τ̇ + δ̄m̄eiωk τ̇) cos
(
kx
l

)
+ W (2)

20 (−1)
m2

2
+ W (2)

11 (−1)mm̄ + W (2)
02 (−1)

m̄2

2
+ · · · ,

and

Ȳ1(Bt, 0) =
1
τ̇

Y1

= λ1u2
t (0) + λ2ut(0)vt(0) + λ3v2

t (0) + λ4u3
t (0)

+ λ5u2
t (0)vt(0) + λ6ut(0)v2

t (0) + λ7v3
t (0) + O(4).

(A.19)

Ȳ2(Bt, 0) =
1
τ̇

Y2

= β1u2
t (−1) + β2ut(−1)vt(−1) + β3v2

t (−1) + β4u3
t (−1)

+ β5u2
t (−1)vt(−1) + β6ut(−1)v2

t (−1) + β7v3
t (−1) + O(4),

(A.20)
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where

λ1 =
2v2
∗α1

(1 + u∗v∗)2 − 2, λ2 = −
2v∗α1

(1 + u∗v∗)3 , (A.21)

λ3 = −
2u∗α1

(1 + u∗v∗)2 , λ4 = −
6v4
∗α1

(1 + u∗v∗)4 , (A.22)

λ5 =
6v2
∗α1

(1 + u∗v∗)4 , λ6 =
2(−1 + 2u∗v∗)α1

(1 + u∗v∗)4 , (A.23)

λ7 =
6u2
∗α1

(1 + u∗v∗)4 , β1 = −
2v3
∗α2

(1 + u∗v∗)3 , (A.24)

β2 =
2v∗α2

(1 + u∗v∗)3 , β3 =
2u∗α2

(1 + u∗v∗)3 , (A.25)

β4 =
6v4
∗α2

(1 + u∗v∗)4 , β5 = −
6v2
∗α2

(1 + u∗v∗)4 , (A.26)

β6 =
2(1 − 2u∗v∗)α2

(1 + u∗v∗)4 , β7 = −
6u2
∗α2

(1 + u∗v∗)4 . (A.27)

Hence,

Y1(Bt, 0) = cos2
(
kx
l

) (
m2

2 20
+ mmχ11 +

m2

2
χ20

)
+

m2m
2

(
χ1 cos

kx
l

+ χ2 cos3 kx
l

)
+ · · · ,

Y2(Bt, 0) = cos2
(
kx
l

) (
m2

2
ς20 + mmς11 +

m2

2
ς20

)
+

m2m
2

(
ς1 cos

kx
l

+ ς2 cos3 kx
l

)
+ · · · ,

(A.28)

〈Y(Bt, 0), yk〉 = τ̇(Y1(Bt, 0)y1
k + Y2(Bt, 0)y2

k)

=
m2

2
τ̇

(
χ20

ς20

)
Γ + mmτ̇

(
χ11

ς11

)
Γ +

m2

2
τ̇

(
χ20

ς20

)
Γ +

m2m
2

τ̇

(
κ1

κ2

)
+ · · ·

(A.29)

with

Γ =
1
lπ

∫ lπ

0
cos3

(
kx
l

)
dx,

κ1 =
χ1

lπ

∫ lπ

0
cos2

(
kx
l

)
dx +

χ2

lπ

∫ lπ

0
cos4

(
kx
l

)
dx,

κ2 =
ς1

lπ

∫ lπ

0
cos2

(
kx
l

)
dx +

ς2

lπ

∫ lπ

0
cos4

(
kx
l

)
dx,

and

χ20 =
1
2

(λ1 + δ(λ2 + λ3δ)) χ11 =
1
4

(2α1 + 2α3δδ + α2(δ + δ)),
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χ1 = W (1)
11 (0)(2λ1 + λ2δ) + W (2)

11 (0)(λ2 + 2λ3δ)

+ W (1)
20 (0)

λ1 +
λ2δ

2

 + W (2)
20 (0)

(
λ3δ +

λ2

2

)
,

χ2 =
1
4

(3λ4 + λ5(δ + 2δ) + δ(2λ6δ + λ6δ + 3λ7δδ)),

ς20 =
1
2

e−2iωk(β1 + δ(β2 + (e2iωkβ3)δ)),

ς11 =
1
4

(2β1 + 2β3)δδ + β2(δ + δ)),

ς1 = e−iωkW1
11(−1)(2β1 + β2δ)

+ e−iωkW2
11(−1)(β2 + 2β3δ) +

1
2

eiωkW1
20(−1)(2β1 + β2δ)

+
1
2

eiωkW2
20(−1)(β2 + 2β3δ),

ς2 =
1
4

e−iωk(3β4 + β5(δ + 2δ) + 3β7δδ
2 + β6(2δ + δ))).

Denote

γ1(0) − iγ2(0) := (γ1 γ2).

Notice that

1
lπ

∫ lπ

0
cos3 kx

l
dx = 0, k = 1, 2, 3, · · · .

We have

(γ1(0) − iγ2(0))〈Y(Bt, 0), yk〉

=
m2

2
(γ1χ20 + γ2ς20)Γτ̇ + mm(γ1χ11 + γ2ς11)Γτ̇ +

m2

2
(γ1χ20 + γ2ς20)Γτ̇

+
m2m

2
τ̇[γ1κ1 + γ2κ2] + · · · .

(A.30)

Then by (A.16), (A.18), and (A.30) we have

g20 = γ1τ̇χ20 + γ2τ̇ς20, g11 = γ1τ̇χ11 + γ2τ̇ς11, g02 = γ1τ̇χ20 + γ2τ̇ς20, (A.31)

and for k ∈ N0, we have g21 = τ̇(γ1κ1 + γ2κ2).
From [20] we have

Ẇ(m,m) = W20mż + W11żm + W11mṁ + W02ṁm + · · · , (A.32)

Aτ̇W̃(m,m) = Aτ̇W20
m2

2
+ Aτ̇W11mm + Aτ̇W02

m2

2
+ · · · , (A.33)

Electronic Research Archive Volume 33, Issue 8, 5064–5084.



5082

and

Ẇ(m,m) = Aτ̇W + H(m,m), (A.34)

where

H(m,m) = H20
m2

2
+ W11mm + H02

m2

2
+ · · ·

= χ0Y(Bt, 0) −Φ(γ, 〈χ0Y(Bt, 0), yk〉 · yk).
(A.35)

Hence, we obtain

(2iωkτ̇ − Aτ̇)W20 = H20, −Aτ̇W11 = H11, (−2iωkτ̇ − Aτ̇)W02 = H02, (A.36)

W20 = (2iωkτ̇ − Aτ̇)−1H20, W11 = −A−1
τ̇ H11, W02 = (−2iωkτ̇ − Aτ̇)−1H02. (A.37)

H(m,m) = −Φ(0)γ(0)〈Y(Bt, 0), yk〉 · yk

= −

(
p1(σ) + p2(σ)

2
,

p1(σ) − p2(σ)
2i

) (
Φ1(0)
Φ2(0)

)
〈Y(Bt, 0), yk〉 · yk

= −
1
2

[p1(σ)(Φ1(0) − iΦ2(0)) + p2(σ)(Φ1(0) + iΦ2(0))]〈Y(Bt, 0), yk〉 · yk

= −
1
2

[
(p1(σ)g20 + p2(σ)g02)

m2

2
+ (p1(σ)g11 + p2(σ)g11)mm

+ (p1(σ)g02 + p2(σ)g20)
m2

2

]
+ · · · .

Therefore,

H20(σ) =

0, k ∈ N,

−1
2 (p1(σ)g20 + p2(σ)g02) · y0, k = 0,

H11(σ) =

0, k ∈ N,

−1
2 (p1(σ)g11 + p2(σ)g11) · y0, k = 0,

H02(σ) =

0, k ∈ N,

−1
2 (p1(σ)g02 + p2(σ)g20) · y0, k = 0,

and

H(m,m)(0) = Y(Bt, 0) −Φ(γ, 〈Y(Bt, 0), yk〉) · yk,

where

H20(0) =


τ̇

χ20

ς20

 cos2
(

kx
l

)
, k ∈ N,

τ̇

χ20

ς20

 − 1
2 (p1(0)g20 + p2(0)g02) · y0, k = 0,
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H11(0) =


τ̇

χ11

ς11

 cos2
(

kx
l

)
, k ∈ N,

τ̇

χ11

ς11

 − 1
2 (p1(0)g11 + p2(0)g11) · y0, k = 0.

We have

Ẇ20 = Aτ̇W20 = 2iωkτ̇W20 +
1
2

(p1(σ)g20 + p2(σ)g02) · yk, −1 ≤ σ < 0.

That is,

W20(σ) =
i

2iωkτ̇

(
g20 p1(σ) +

g02

3
p2(σ)

)
· yk + E1e2iωk τ̇σ,

where

E1 =

W20(0), k = 1, 2, 3, · · · ,
W20(0) − i

2ωk τ̇
(g20 p1(σ) +

g02
3 p2(σ)) · y0, k = 0.

We have that

− (g20 p1(0) +
g02

3
p2(0)) · y0 + 2iωkτ̇E1 − Aτ̇

(
i

2ωkτ̇

(
g20 p1(0) +

g02

3
p2(0)

)
· y0

)
− Aτ̇E1 − Lτ̇

(
i

2ωkτ̇

(
g20 p1(0) +

g02

3
p2(0)

)
· yk + E1e2iωk τ̇σ

)
= τ̇

(
χ20

ς20

)
−

1
2

(p1(0)g20 + p2(0)g02) · y0.

As

Aτ̇p1(0) + Lτ̇(p1 · y0) = iω0 p1(0) · y0,

Aτ̇p2(0) + Lτ̇(p2 · y0) = −iω0 p2(0) · y0,

2iω0E1 − Aτ̇E1 − Lτ̇E1e2iω0τ̇ = τ̇

(
χ20

ς20

)
cos2

(
kx
l

)
, k ∈ N0.

That is,

E1 = τ̇E
(
χ20

ς20

)
cos2

(
kx
l

)
,

E =

2iωkτ̇ − a1 + d1
k2

l2 −a2

−b1e−2iωk τ̇ 2iωkτ̇ − b2e−2iω0τ̇ + γ + h2 + d2
k2

l2

−1

,

−Ẇ11 =
i

2ωkτ̇
(p1(σ)g11 + p2(σ)g11) · yk, −1 ≤ σ < 0,
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W11(σ) =
i

2iωkτ̇
(p1(σ)g11 − p1(σ)g11) + E2,

E2 = τ̇E∗
(
χ11

ς11

)
cos2

(
kx
l

)
,

E∗ =

−a1 + d1
k2

l2 −ra2

−b1 −b2 + γ + h2 + d2
k2

l2

−1

.
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