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Abstract: Physics-informed neural networks (PINNs), built upon general neural networks, integrate
physical information into the loss function, achieving remarkable results in solving partial differential
equations (PDEs). Meanwhile, PINNs face challenges in solving complex interface problems, such
as the Navier–Stokes/Darcy interface model considered in this paper. To address these challenges,
we extend the general PINNs to propose subregion–identified physics-informed neural networks (SI-
PINNs), which consist of three different neural networks for different subregions (Navier–Stokes,
Darcy, and interface) with separated datasets. By identifying and classifying the regional features
of the neural networks and datasets, the complexity of the physical information that SI-PINNs need to
process is effectively split, while the networks also take all physical information into account during
the training. Additionally, this splitting feature substantially reduces the training costs while enhancing
or maintaining the accuracy of the general PINNs for the target model. Numerical experiments are
performed to validate the effectiveness of the SI-PINN method.

Keywords: SI-PINNs; subregion–identification; physics-informed neural networks;
Navier–Stokes/Darcy interface model; Beavers–Joseph interface condition

1. Introduction

The Stokes–Darcy model and the more advanced Navier–Stokes/Darcy model, which govern the
motion of fluid in a physical system where free flow and porous media flow coexist, are widely
applied in various fields such as petroleum extraction [1, 2], dual-porosity flow [3–5], and
groundwater systems in karst aquifers [6, 7]. Due to the complexity of interface conditions and
interactions between multiple subregions, various mesh-based numerical methods were developed for
these models, including Lagrange multiplier methods [8, 9], domain decomposition methods [10–13],
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multi-physics domain decomposition methods [14–16], finite element methods [17–21], ensemble
algorithms [22], boundary integral methods [23, 24], two-grid methods [25], least squares
methods [26] and many other methods [27–30].

In the past few decades, due to the advantages arising from the technological advancements and
the strong nonlinear approximation capabilities of deep neural networks (DNNs), DNNs have
become a research focus in various scientific fields, as seen in [31–35] and the references therein.
Related methods generally require the design of solution frameworks tailored to specific
problems [36–40]. Later, Raissi et al. [41] proposed physics-informed neural networks (PINNs) by
incorporating the information contained in the physical equations as constraint terms into the loss
function of the network.

In fact, it is challenging to directly apply PINNs to complex partial differential equations
(PDEs) [42, 43]. Therefore, a large body of research has been conducted in this area [44–48]. Fu et
al. [49] proposed the physics-informed kernel function neural networks (PIKFNNs) to solve various
linear and some specific nonlinear PDEs. Jagtap et al. [50] proposed conservative PINNs (cPINNs) on
discrete domains for nonlinear conservation laws. Built upon the cPINNs, Jagtap and
Karniadakis [51] proposed extended PINNs (XPINNs), a generalized space-time domain
decomposition approach for the PINNs to solve nonlinear PDEs on arbitrary complex-geometry
domains. The readers are referred to [52–54] and the references therein for more details about the
PINNs, coupled with domain decomposition. Although these studies have proposed new numerical
methods to improve PINNs, more efficient and accurate solutions are still worth exploring.

In this article, we propose subregion–identified physics-informed neural networks (SI-PINNs),
consisting of three different neural networks for three different subregions with separated datasets, for
solving the Navier–Stokes/Darcy interface model. These three subregions include the Navier–Stokes
region, the Darcy region, and the interface. Similar to XPINNs, SI-PINNs have multiple subregions
and assign a separate neural network to each subregion, while the training process of SI-PINNs is
based on the model’s interface between different physics to identify the subregions. In particular, the
interface itself serves as one subregion. By integrating the regional identification scheme, we identify
and classify the neural networks and datasets according to their regional features, enabling SI-PINNs
to require a smaller size and simpler composition for the datasets when addressing complex interface
problems. Therefore, the complexity of the information that the SI-PINNs need to process is
effectively split. Compared with the general PINNs, this splitting feature substantially reduces the
training costs while enhancing the accuracy.

The subsequent structure of this paper is as follows. In Section 2, we introduce the
Navier–Stokes/Darcy model with the Beavers–Joseph (BJ) interface condition [55]. In Section 3, we
review the basic principles of PINNs and elaborate on the specific applications of SI-PINNs. In
Section 4, we conduct numerical experiments to validate the effectiveness of SI-PINNs. Conclusions
and prospects are presented in Section 5.

2. The Navier–Stokes/Darcy interface model

We consider the Navier–Stokes/Darcy interface model in a simplified region Ω, where the interface
Γ divides Ω into a free flow region Ω f and a porous media flow region Ωp. The fluid motion in Ω f and
Ωp is governed by the Navier–Stokes and Darcy equations, respectively. Γ f and Γp are the boundaries
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of Ω f and Ωp, respectively, excluding the interface. On the interface Γ, n⃗ is the normal vector from the
free flow region to the porous medium flow region, and τ⃗ denotes the tangent vector.

The fluid motion within Ω f is described by the Navier–Stokes equationsρ
(
∂u⃗ f

∂t
+ (u⃗ f · ∇)u⃗ f

)
− ∇ · T(u⃗ f , p f ) = ρg⃗ f in Ω f × T

∇ · u⃗ f = 0 in Ω f × T
, (2.1)

where u⃗ f is the fluid velocity in Ω f , p f is the fluid’s pressure, and g⃗ f is the resulting external
acceleration field acting on the fluid. T(u⃗ f , p f ) = 2µD(u⃗ f ) − p f I is the stress tensor. Here,
D(u⃗ f ) = 1

2 (∇u⃗ f + ∇u⃗T
f ) is the deformation tensor, µ is the dynamic viscosity of the fluid, and I is the

identity matrix.
The fluid motion within Ωp is described by the Darcy equationsS 0

∂ϕ

∂t
+ ∇ · u⃗p = fp in Ωp × T

u⃗p = −K∇ϕ in Ωp × T
, (2.2)

where u⃗p is the fluid velocity in Ωp, fp is the external force source term acting on the fluid in this
region, and S 0 is the specific mass storativity coefficient. Moreover, ϕ = z + pp

gρ is the height of the
liquid column, known as the pressure head, a term often related to fluid pressure in fluid mechanics
experiments. Here, pp is the dynamic pressure of the fluid, z is a relative depth referred to as the
elevation head, g is the gravitational acceleration, and ρ is the fluid density. K = ρgκI

µ
is the hydraulic

conductivity, which governs the difficulty of fluid flow through porous media. Here, µ is the dynamic
viscosity, κ is the permeability, and I is the identity matrix.

On Γ, the fluid’s motion also needs to satisfy the following three interface conditions:

u⃗ f · n⃗ = u⃗p · n⃗ on Γ,
−(T(u⃗ f , p f )n⃗) · n⃗ = gρ(ϕ − z) on Γ,

−(T(u⃗ f , p f )n⃗) · τ⃗ = α
√

gρµ
(Kτ⃗) · τ⃗

(u⃗ f − u⃗p) · τ⃗ on Γ.

(2.3)

The first equation describes the law of mass conservation. The second equation describes the
balance of the normal forces. The third equation is the well-known Beavers–Joseph (BJ) interface
condition [55–59], where the parameter α is the well-known BJ constant.

3. The SI-PINN structure

This section introduces the structure and procedure of SI-PINNs step by step. By identifying the
regional features of the neural networks and datasets and conducting the PINNs’ training, we achieve
more efficient and accurate solutions to complex interface problems. In the rest of the section, we
first review the general PINN framework and then elaborate on the SI-PINN structure, especially the
subregion–identification and loss function.
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3.1. General PINN structure

According to the universal approximation theorem of neural networks [60], the continuous
differentiable function output by the neural network can accurately approximate any continuous
function. Building upon DNNs, the physics-informed neural networks (PINNs) integrate physical
information into the training process of neural networks, ultimately forming a machine learning
framework that is better suited for numerical solutions to physical problems. We consider the general
form of parameterized and nonlinear PDEs

ut +N[u; λ] = 0, x ∈ Ω, t ∈ [0,T ]. (3.1)

Here, u(x, t) is the potential solution of the PDE,N[·; λ] is a nonlinear differential operator, θ is a subset
of RD, and the left-hand side of Eq (3.1) is the governing equation fNN , calculated as follows:

fNN = (uNN(x, t; θ))t +N[uNN(x, t; θ); λ]. (3.2)

Here, uNN(x, t; θ) is the numerical solution of the PDE approximated by the neural network, where the
time variable t and the spatial variable x serve as inputs to the PINN. The parameter θ is composed of
the weight matrices and bias vectors in the neural network.

The task of PINNs is to continuously train the network using the existing data to ultimately obtain
the optimal parameters θ∗, enabling the network to map spatio-temporal coordinates to a superior
solution that closely approximates u(x, t) as much as possible. PINNs incorporate known governing
equations and boundary and initial conditions to compute the error of residuals for each component
under a certain definition. Thus, the PINNs’ training aims to find θ∗ by optimizing the loss function
L, i.e.,

θ∗ ∈ arg min
θ
L, (3.3)

L = L f +Lb +Li, (3.4)

where

L f =
1

N f

N f∑
j=1

∣∣∣∣ fNN

(
x f

j , t
f
j

)∣∣∣∣2, (3.5)

Lb =
1

Nb

Nb∑
j=1

∣∣∣∣uNN

(
xb

j , t
b
j

)
− u

(
xb

j , t
b
j

)∣∣∣∣2, (3.6)

Li =
1
Ni

Ni∑
j=1

∣∣∣∣uNN

(
xi

j, 0
)
− u

(
xi

j, 0
)∣∣∣∣2. (3.7)

Here, L f , Lb, and Li are the mean-squared error losses of the governing equations, boundary

conditions, and initial conditions, respectively;
{
x f

j , t
f
j

}N f

j=1
represents the collocation points for fNN;

and
{
xb

j , t
b
j

}Nb

j=1
and

{
xi

j, t
i
j

}Ni

j=1
are the boundary and initial training data of u(x, t), respectively. Through

the use of optimizers such as Kingma and Adam [61], θ will be continuously optimized to minimize
L, thereby rendering uNN(x, t; θ) close to u(x, t). When L is less than a preset tolerance ϵ, we consider
uNN(x, t; θ) at this point to have satisfied the governing equations and boundary and initial conditions
as much as possible.
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3.2. Subregion–identification

When studying interface problems such as the one in Section 2, the loss function of the neural
networks involves multiple subregions. Therefore, appropriate feeding of known regional information
into the neural network is essential, which also affects how we identify and classify the neural networks
and datasets for different subregions.

For the interface in this paper, we extend it to a narrow tubular neighborhood of the interface as
a subregion. Let Γ be a smooth interface curve in R2 . The tubular neighborhood of Γ with a half-
width w is defined as the set Γ̃ =

{
x ∈ R2 | dist(x,Γ) < w

}
, where dist(x,Γ) = infy∈Γ ∥x − y∥ denotes the

shortest Euclidean distance from the point x to the curve Γ. The Navier–Stokes subregion is defined
as Ω̃ f = Ω f /Γ̃, with its boundary being Γ̃ f = Γ f /Γ̃. Correspondingly, the Darcy subregion is defined
as Ω̃p = Ωp/Γ̃, with its boundary being Γ̃p = Γp/Γ̃. The subregion definition of SI-PINNs for the
Navier–Stokes/Darcy interface model is shown in Figure 1.

(a) The original interface of the target model (b) The definition of the subregions for SI-PINNs

Figure 1. The subregions’ definitions.

For the general PINNs, we often feed datasets from all subregions into the neural network
uniformly. For subregion–identified physics-informed neural networks (SI-PINNs), we first identify
the three different subregions on the basis of the physical distribution of the interface problems, which
will be used to identify the regional features corresponding to different datasets. Then, by integrating
physical information and empirical knowledge, a masking strategy is employed to mark the identified
dataset of each identified subregion, which is then delivered to SI-PINNs with smaller network sizes
corresponding to different subregions. In the literature, different masking strategies are applicable to
distinct problems and purposes. In accordance with the continuity of the mask, they can be broadly
categorized into hard and soft masking strategies. The former, a method that completely retains or
masks information from specific data during network training, denotes the process in which input data
undergoes hard filtering via binarization operations and even multilevel quantization operations. The
latter corresponds to the dynamic adjustment of data weights via continuous masking values, which
provide partial information during the training.

Furthermore, on the basis of their own regional features and the distance relationship to Γ, the
datasets provide SI-PINNs with different weights. Finally, after different SI-PINNs acquire the
physical information from their datasets, they individually obtain θ corresponding to the different
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regional features through the successive training. In general, through this approach, SI-PINNs
effectively relax the requirements on the size and specific composition of the datasets, while splitting
the complexity of the information that SI-PINNs need to process during the subsequent training.

The main steps of the subregion–identification of SI-PINNs are listed in Procedure 1.

Procedure 1 The regional identification of SI-PINNs
Step 1 Identify the three different subregions Γ̃, Ω̃ f , and Ω̃p according to the physical distribution
of the interface problems.
Step 2 The masking strategy marks the identified dataset of each identified subregion.
Step 3 The dataset provides SI-PINNs with different weights corresponding to their own regional
features and the distance relationship to Γ.
Step 4 Obtain network parameters θ corresponding to the different regional features.

3.3. Loss function of SI-PINNs

Built upon PINNs, SI-PINNs, consisting of three different neural networks for different subregions,
integrate the general PINN framework with regional identification. By continuously optimizing θ,
we ensure that uNN(x, t; θ) ultimately adheres to all the governing equations and the corresponding
boundary and initial conditions as closely as possible.

In the subsequent numerical examples, the loss function of SI-PINNs for the Navier–Stokes/Darcy
model with the BJ interface condition is formulated as follows:

L = Lns +Ld +Li f , (3.8)

where

Lns =
1

N fns

N fns∑
j=1

∣∣∣∣∣∣∣ρ
∂u⃗Nf
∂t
+ (u⃗Nf · ∇)u⃗Nf


−

(
∇ · T(u⃗Nf , pNf )

) (
x fns

j , t
fns
j

)
− ρg⃗

(
x fns

j , t
fns
j

) ∣∣∣∣∣2
+

1
N fns

N fns∑
j=1

∣∣∣∣(∇ · u⃗Nf )
(
x fns

j , t
fns
j

)
− 0

∣∣∣∣2
+

1
Nbns

Nbns∑
j=1

∣∣∣∣⃗uNf (
xbns

j , t
bns
j

)
− u⃗ f

(
xbns

j , t
bns
j

)∣∣∣∣2
+

1
Nins

Nins∑
j=1

∣∣∣∣⃗uNf (
xins

j , t
ins
j

)
− u⃗ f

(
xins

j , t
ins
j

)∣∣∣∣2

in Ωc
p × T, (3.9)
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Ld =
1

N fd

N fd∑
j=1

∣∣∣∣∣∣∣S 0

∂ϕN (x fd
j , t

fd
j )

∂t
+ (∇ · u⃗Np )(x fd

j , t
fd
j ) − fp(x fd

j , t
fd
j )

∣∣∣∣∣∣∣
2

+
1

N fd

N fd∑
j=1

∣∣∣∣⃗uNp (x fd
j , t

fd
j ) + (K∇ϕN )(x fd

j , t
fd
j )

∣∣∣∣2
+

1
Nbd

Nbd∑
j=1

∣∣∣∣ϕN (xbd
j , t

bd
j ) − ϕ(xbd

j , t
bd
j )

∣∣∣∣2
+

1
Nid

Nid∑
j=1

∣∣∣∣ϕN (xid
j , t

id
j ) − ϕ(xid

j , t
id
j )

∣∣∣∣2

in Ωc
f × T, (3.10)

Li f =
1

Ni f

Ni f∑
j=1

∣∣∣∣(u⃗Nf · n⃗)(xi f
j , t

i f
j ) − (u⃗Np · n⃗)(xi f

j , t
i f
j )

∣∣∣∣2
+

1
Ni f

Ni f∑
j=1

∣∣∣∣− (
(T(u⃗Nf , pNf )n⃗) · n⃗

)
(xi f

j , t
i f
j ) − gρ(ϕN (xi f

j , t
i f
j ) − z)

∣∣∣∣2
+

1
Ni f

Ni f∑
j=1

∣∣∣∣− (
(T(u⃗Nf , pNf )n⃗) · τ⃗

)
(xi f

j , t
i f
j )

− α

√
gρµ

(Kτ⃗) · τ⃗

(
(u⃗Nf − u⃗Np ) · τ⃗

)
(xi f

j , t
i f
j )

∣∣∣∣∣2
in Γ̃ × T, (3.11)

where (·)N is the numerical solution of the target model approximated by the neural network. Let{
x fns

j , t
fns
j

}
,
{
xbns

j , t
bns
j

}
, and

{
xins

j , t
ins
j

}
be the collocation points in Ω̃c

p, the training data on Γ̃c
p, and the

initial training data in Ω̃c
p, respectively. Let

{
x fd

j , t
fd
j

}
,
{
xbd

j , t
bd
j

}
, and

{
xid

j , t
id
j

}
be the collocation points

in Ω̃c
f , the training data on Γ̃c

f , and the initial training data in Ω̃c
f , respectively;

{
xi f

j , t
i f
j

}
represents the

training data in Γ̃.
Similar to the general PINNs, by specifying parameters such as the network size and the different

sampling points in different networks, setting the weights for each component of the loss function, and
selecting the optimizer for the training, we ultimately train the network by continuously minimizing
its loss to obtain uNN(x, t; θ) close to u(x, t). The differences in the frameworks between SI-PINNs and
general PINNs can be clearly observed in Figure 2, and the complete training process of SI-PINNs can
be found in Procedure 2.

Procedure 2 Training process of SI-PINNs
Step 1 Identify and classify the regional features of the training datasets per Procedure 1.
Step 2 Transfer the classified datasets into the subregion-specific PINN frameworks.
Step 3 Train the network to obtain the approximation uNN(x, t; θ).
Step 4 Calculate the network loss L in the formulation (3.8).
Step 5 If L > the tolerance ϵ and the maximum number of iterations is not reached, update θ with
the optimizer and return to Step 3.
Step 6 Obtain the predicted solution uNN(x, t; θ).
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(a) Framework of SI-PINNs (b) Framework of general PINNs

Figure 2. Framework comparison between SI-PINNs and general PINNs. AD (marked with
*) denotes automatic differentiation.

4. Numerical experiments

In this section, we conduct numerical experiments to validate the effectiveness of the proposed
SI-PINN. The SI-PINN framework proposed in this paper is implemented using the DeepXDE Python
library [62], a tool developed specifically for scientific machine learning and physics-informed
learning. It supports diverse network designs, including PINNs and multifidelity neural networks
(MFNNs), to solve various forward and inverse problems, such as partial differential equations
(PDEs), integro-differential equations (IDEs), and fractional PDEs (fPDEs). Additionally, DeepXDE
supports constructive solid geometry (CSG) technology, enabling the construction of complex
geometric regions without generating meshes.

The swish activation function, a smooth approximation of the rectified linear unit (ReLU), is
selected for the subsequent optimization [63–65], demonstrating better performance compared with
ReLU and many of its improved variants on various tasks. Correspondingly, we selected He
initialization as the network’s initialization strategy. This is an improved version of the Xavier
initialization strategy designed for ReLU-like functions [64, 66]. This improved version can address
some of the challenges faced by these functions to a certain extent [67], thereby ensuring the smooth
progress of network training. Additionally, the Adam optimizer is adopted to update θ on the basis of
the training data [61]. By incorporating momentum information and adaptively adjusting the learning
rates, the Adam optimizer dynamically tunes the learning rate for each parameter to achieve fast
convergence. This generally makes it the preferred choice for problems involving large-scale datasets
and nonconvex optimization.

To evaluate the accuracy of this method in Γ̃, we calculate the joint error, defined as follows:
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errorrel
u =

√∥∥∥∥u⃗Nf − u⃗∗f
∥∥∥∥2

L2
Γ̃

+
∥∥∥u⃗Np − u⃗∗p

∥∥∥2

L2
Γ̃√∥∥∥∥u⃗∗f

∥∥∥∥2

L2
Γ̃

+
∥∥∥u⃗∗p

∥∥∥2

L2
Γ̃

, (4.1)

errorrel
p =

√∥∥∥p f
N − p f

∗
∥∥∥2

L2
Γ̃

+
∥∥∥ϕN − ϕ∗∥∥∥2

L2
Γ̃√∥∥∥p f

∗
∥∥∥2

L2
Γ̃

+ ∥ϕ∗∥2L2
Γ̃

. (4.2)

Here, x∗ denotes the exact solution in the corresponding region, and xN denotes the approximation in
the corresponding region, where x = u⃗ f , u⃗p, p f , and ϕ.

In the following numerical experiments, we will compare the proposed SI-PINNs with general
PINNs for the Navier–Stokes/Darcy model. For SI-PINNs, a soft masking strategy based on the
standard logistic function with an adjustment coefficient α0 for network inputs is employed, enabling
efficient tuning of the function’s slope. This logistic-type function S(x) is defined as follows:

S(x) =
1

1 + e−α0 SD(x) , (4.3)

and the function f (x) for the soft masking strategy used herein is defined as follows:

f (x) =


S(x) in Ω̃ f

4 S(x)(1 − S(x)) in Γ̃
S(−x) in Ω̃p

. (4.4)

Here, SD(x) = (x−p) ·n(p) is the signed distance function in this paper (with Γ taken as a reference, the
signed distance in Ω f is positive, while that in Ωp is negative), p ∈ ΠΓ(x) denotes the point on Γ closest
to x, and ΠΓ(x) = {p ∈ Γ | ∥x − p∥ = dist(x,Γ)} denotes the set of all points on Γ closest to x; n(p) is
n⃗ at p. Due to the strategy, the SI-PINNs will mostly accept the information of the data when the data
match the regional features. Otherwise, the f (x)-based masking strategy will smoothly decrease the
weights of the physical information provided by the datasets according to their own regional features
and the distance to Γ.

The Navier–Stokes/Darcy model is considered in the domain Ω [0, 0] × [1, 2], where [0, 1] × [1, 2]
is the Navier–Stokes region Ω f and [0, 0] × [1, 1] is the Darcy region Ωp. The interface Γ is defined as
[0, 1]× {1}, with the normal vector n⃗ = (0,−1)T and the tangential vector τ⃗ = (1, 0)T . The time domain
for this target model is T = [0, 2]. The parameters are chosen as z = 0, ρ = µ = S 0 = g = k = α = 1,
K = ρgkI

µ
= I, and w = 1.0× 10−2. The source terms, boundary conditions, and initial conditions are set

up such that the analytical solutions are given as follows:
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

u∗fx1
= (x2(y − 1)2 + y)

cos(t)
3

in Ω̃c
p × T

u∗fx2
=

(
−

2
3

x(y − 1)3 + 2 − π sin(πx)
)

cos(t)
3

in Ω̃c
p × T

p∗f = (2 − π sin(πx)) sin
(
πy
2

) cos(t)
3

in Ω̃c
p × T

u∗px1
= π2(−y − cos(πy) + 1)

cos(t)
3

cos(πx) in Ω̃c
f × T

u∗px2
= (π sin(πx) − 2)(π sin(πy) − 1)

cos(t)
3

in Ω̃c
f × T

ϕ∗ = (2 − π sin(πx))(1 − y − cos(πy))
cos(t)

3
in Ω̃c

f × T

. (4.5)

In the general PINNs, the sampling points for training the PINNs are all sampled on the basis of the
Latin hypercube sampling (LHS) method [68]. By first performing equal-probability stratification on
the entire parameter space and then conducting random sampling, it can better cover each parameter
subspace, ensuring more comprehensive information for the training process. Specifically, the number
of sampling points inΩ is 9000, including those externally generated via LHS to address the difficulties
in automatic sampling on Γ. These points are fed into general PINNs through DeepXDE’s anchor
interface. The number of boundary condition sampling points is 680 and the number of initial condition
sampling points is 340. We set 14 hidden layers, each having 20 neurons. The swish function is selected
as the activation function for all hidden layers to approximate u(x, y, t). The weights of each component
in the loss function are set to be equal by default. After 1.0 × 104 training epochs, Figures 3–6 show
the exact and approximate solutions at t = 2, respectively.

In SI-PINNs, the number of sampling points in both Ω̃ f and Ω̃p is 4000. For each subregion, the
boundary conditions involve 300 sampling points and the initial conditions involve 150 sampling
points. In Γ̃, the number of sampling points for the governing equations is 1000, the number of
sampling points for the boundary conditions is 80, and the number of sampling points for the initial
conditions is 40. All of these points are still sampled using the LHS method. We set four hidden
layers with 20 neurons each for the individual subregions of Ω̃ f and Ω̃p, respectively. For Γ̃, we set six
hidden layers with 20 neurons each. An excessively shallow or deep neural network may increase the
errors, and the same applies to the width of the neural network. The selection of activation functions
and the assignment of loss weights are kept consistent with the general PINNs. Additionally, we set
the logistic function coefficient a0 = 2.5. When α0 changes significantly, it may also amplify errors.
We then train SI-PINNs according to Procedure 2.

After 1.0 × 104 training epochs, Figures 7–10 show the exact and approximate solutions at t = 2.
Compared with the general PINNs, the error of SI-PINNs in each subregion is lower under the same
network size and dataset composition. Table 1 presents the time consumption and the joint relative
error in Γ̃ corresponding to SI-PINNs and the general PINNs. Table 2 shows the L2 norm errors of both
of these PINNs in Ω̃ f and Ω̃p, respectively. All these tables illustrate that under the same number of
training epochs, SI-PINNs exhibit shorter computational times while achieving a lower L2 norm error.
Our results show that SI-PINNs achieve higher accuracy in each subregion at a significantly lower
training cost.
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Figure 3. PINNs: Comparison of exact solutions and approximations for u, v, and p in Ω̃ f at
t = 2, with their errors.

Figure 4. PINNs: Comparison of exact solutions and approximations for u, v, and ϕ in Ω̃p at
t = 2, with their errors.
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Figure 5. PINNs: Comparison of exact solutions and approximations for u and v in Γ̃ at
t = 2, with their errors.

Figure 6. PINNs: Comparison of exact solutions and approximations for p and ϕ in Γ̃ at
t = 2, with their errors.
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Figure 7. SI-PINNs: Comparison of exact solutions and approximations for u, v, and p in
Ω̃ f at t = 2, with their errors.

Figure 8. SI-PINNs: Comparison of exact solutions and approximations for u, v, and ϕ in
Ω̃p at t = 2, with their errors.
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Figure 9. SI-PINNs: Comparison of exact solutions and approximations for u and v in Γ̃ at
t = 2, with their errors.

Figure 10. SI-PINNs: Comparison of exact solutions and approximations for p and ϕ in Γ̃ at
t = 2, with their errors.
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Table 1. Loss comparison of the SI-PINNs and the general PINNs in Γ̃ at t = 2.

Total training time ψ joint error p and ϕ joint error
SI-PINNs 803.208 s 2.24 × 10−2 1.53 × 10−2

PINNs 8097.952 s 6.77 × 10−1 1.27 × 10−1

Table 2. Loss comparison of the SI-PINNs and the general PINNs in L2 norm at t = 2.

u f v f p up vp ϕ

SI-PINNs 1.30 × 10−2 2.33 × 10−2 6.71 × 10−2 1.65 × 10−2 6.67 × 10−2 1.75 × 10−2

PINNs 5.79 × 10−2 1.06 × 10−1 1.72 × 10−1 1.05 × 10−1 4.71 × 10−1 1.09 × 10−1

5. Conclusions

This paper proposes the subregion–identified physics-informed neural networks (SI-PINNs) to
solve complex interface problems, such as the Navier–Stokes/Darcy model. By identifying the
regional features of the neural networks and datasets for classification, SI-PINNs reduce the
requirements on the size and composition of the training data, splitting the complexity of physical
information that the networks need to process. All the three subregion-specific low-complexity neural
networks together can incorporate all the physical information while effectively reducing the training
cost of the neural networks. The key issue of the proposed method is its ability to clearly identify and
classify different subregions, which may pose certain difficulties and limitations in some complex
problems, such as the identification of the original interface in the model and the interface subregion
constructed in the algorithm.
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