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Abstract: This paper focuses on the robust data-driven load frequency control (LFC) of an
interconnected power system involving Markovian jump parameters from damaged data by unknown
noise. Firstly, due to the changes in system structure, the LFC model for an interconnected power
system involving Markovian jump parameters is described. The vehicle-to-grid technique is also
applied to regulate the power system frequency by employing the electric vehicles as a new frequency
regulation loop in this model. Secondly, a data-driven control method is used to stabilize the
Markovian jump power system (MJPS). Drawing on the damaged data corrupted by unknown noise,
two robust stability conditions for the MJPS are formulated, corresponding to the energy-bound
approach and the instantaneous-bound approach, respectively. Then, the control gains of the system are
obtained by the data-based linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed
methods is verified by applying them to a two-area interconnected power system with the participation
of electric vehicles.
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1. Introduction

With the development of the economy and the increasing demand for electricity, the challenges
facing power systems become increasingly complex, especially in the context of the gradual increase
in the proportion of renewable energy sources. How to effectively regulate the system frequency
to adapt to the dynamic load changes and power fluctuations has become an urgent problem for power
engineers. Among that, load frequency control (LFC) plays a crucial role in ensuring the robust
stability [1, 2] of power systems. For example, integral [3], proportional-integral [4],
proportional-integral-derivative and other control techniques were studied which give the basic
analysis of the LFC of the power system. Sliding mode controller [5] and predictive control explore
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the basic conventional concepts of LFC. [6, 7] investigated controller design methodologies under
denial-of-service attacks.

Electric vehicles (EVs), as common charging and discharging devices in electric power systems,
can be used both as electrical equipment and as mobile power sources connected to the grid. The EV is
commonly regarded as a disturbance in the power system, which presents significant challenges to the
robust stability of the power system. With the advancement of vehicle-to-grid (V2G) technology, more
and more researchers have started to study the participation of EVs in the system frequency regulation
(FM). The EVs can be used for primary FM by droop control to simulate the operation of a turbine
governor. EVs are used as a power source to support the fast response of the power plant to LFC
requirements for secondary FM [8]. At the same time, the response frequency speed of EVs is more
rapid compared with the traditional FM units.

In recent years, data-driven methods have been applied to control. Data-driven control (DDC)
relies more on the data collected during the operation of the system rather than a strict mathematical
model. It is able to adapt to rapidly changing environments and conditions and also provides instant
feedback and adjustment of the system state through continuous monitoring and analysis of data.
Therefore, it has received wide attention. Specifically, some DDC methods based on reinforcement
learning were proposed in [9, 10]. Proportional-integral-derivative control was mentioned in [11, 12].
However, the control methods mentioned above are data intensive, and the computational dimensions
of the matrices will increase fast when the system dimension is increasing. Alternatively, the
fundamental theorem proposed by Willems provides another way to design control protocols for
unknown or uncertain systems by pre-collecting inputs and states data [13]. This DDC approach has
received much attention due to its reduced computational complexity compared to reinforcement
learning control methods. A number of DDC methods have been derived from Willems et al.,
including robust control [14, 15], model predictive control [16, 17], and event-triggered control [18].

Meanwhile, when considering the problem of DDC, process noise is usually assumed to be
measurable [9]. The literature mentioned above did not consider the effects of damaged data by
unknown noise, but this is not common in practice. These limitations motivate us to further investigate
DDC with unknown noise. [19] presented a new approach to obtain feedback controllers for unknown
dynamical systems directly from noisy input/state data. Non-conservative design methods for
quadratic stabilization, H2 and H∞ control with data-based linear matrix inequalities (LMIs) were
derived. However, the parameters in [19] are constant, and it does not take into account the parameter
jumps. In practical applications, various faults and trips often occur in the subsystems of a multi-area
interconnected power system, affecting the normal operation of the power system. Therefore, the
dynamic model of the power system may experience some dynamic jumps, and these unexpected
jumps can be modelled stochastically by Markovian processes [20]. So far, great efforts have been
made in Markovian jump power system (MJPSs) on various issues such as stability and stabilization
analyses [21]. In addition, control problems related to MJPSs have received more and more attention
and in-depth research, such as H∞ control [22], stochastic control [23], model predictive control [24],
etc. Moreover, in recent years, research focus has shifted towards integrating MJPSs with DDC [25].
However, none of these methods take into account the presence of unknown noise. To our knowledge,
the problem of DDC in MJPSs from damaged data remains largely unexplored. The coexistence of
random parameter fluctuations and unknown noise within the system introduces dual uncertainties of
both structural and stochastic nature. This inherent complexity renders traditional analytical methods,
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which rely upon precise modeling assumptions, largely inapplicable. Thus, constructing a stochastic
stability condition by LMIs based on damaged data is challenging, which motivates the present study.

In this paper, our main contribution is the application of data-driven LFC to the MJPS from
damaged data by unknown noise. Drawing on the collected state data, this study gives two robust
stability criteria, which are presented as LMIs. These criteria apply to noise-affected systems and
correspond to two distinct approaches: the energy-bound approach and the instantaneous-bound
approach. Using the matrix S-lemma, two data-based LMI conditions are given to ensure that the
robust stability criteria hold. The data-driven controllers are designed and solved for feasible state
feedback gains. By continuously monitoring and analyzing the data, immediate feedback and
adjustment of the MJPS state are achieved. In addition, the V2G technique is used to improve the
FM of the power system by employing the EVs as a new FM loop in the secondary FM process of
the power system. Finally, the effectiveness of the proposed method is verified by applying it to
the MJPS.

Notations: Rm×n means the set of all m × n real matrices. The transpose of the matrix and inverse
of the matrix are represented by the superscripts T and −1. The occurrence probability of the event
N is presented by Pr(N). The appropriate identity matrix is presented by I. The w largest 2-norm is
represented by sup ∥w∥2.

2. Problem formulation

2.1. Power system model with EVs

The essence of V2G technology is the bi-directional exchange of information and power between
EVs and the power grid through modern control systems. It relies on EVs charging and discharging
control devices and communication networks after EVs are connected to the power grid.

Based on the above technology, there are two main control methods used in the current research on
EVs participation in grid FM, namely, centralized control and decentralized control. In view of their
advantages and disadvantages, we use the virtual power plant as a centralized agent for the centralized
control method of EVs.

The dynamic model of an EV’s battery system is usually described by the following first-order
transfer function:

GEV(s) =
KEV

1 + sTEV
.

The simplified model of the multi-area power system is shown in Figure 1, which has the following
dynamic equations [26]:
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∆ ḟi(t) = −
Di

Mi
∆ fi(t) +

1
Mi

(∆Pmi(t) + ∆PEVi(t)

− ∆Ptie−i(t))

∆Ṗmi(t) =
1

Tchi
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Figure 1. LFC model with EVs participation.

Electronic Research Archive Volume 33, Issue 10, 6538–6557.



6542

Table 1 reflects the actual meanings expressed by the parameters.

Table 1. Parameters of power systems.

Notation Name
∆ f (t) Frequency deviation
∆Pm(t) Generator mechanical input deviation
∆Pv(t) Valve position deviation
∆PEV(t) Fluctuations in EV power output
β Frequency bias factor
ACE(t) Regional control error
M Generator moment of inertia
D Generator damping factor
Tg Time constant of the regulator
Tch Time constant of the turbine
TEV Time Constants for Electric Vehicles
R Revolutions per minute drop
Ti j Liaison line factor
KEV The gain of the EV
αi Participation factor for region i
N Representing N regions

Next, the state equation of the power system can be extracted from the LFC model in Figure 1.
Here, we let x(t) be the system state and u(t) be the control input, and we distinguish different areas of
the power system in the model by judging i and j.

ẋ(t) = Ax(t) + Bu(t), (2.1)

where

x(t) =
[
xi(t)
x j(t)

]
, u(t) =

[
ui(t)
u j(t)

]
.

xi(t) =
[
∆ fi(t) ∆Pmi(t) ∆Pvi(t) ∆PEVi(t)

∫
ACEi(t)dt ∆Ptie−i(t)

]⊤
,

A =
[
Aii Ai j

A ji A j j

]
,

Aii =



−
Di
Mi

1
Mi

0 1
Mi

0 − 1
Mi

0 − 1
Tchi

1
Tchi

0 0 0
− 1

TgiRi
0 − 1

Tgi
0 0 0

0 0 0 − 1
TEVi

0 0
βi 0 0 0 0 1

2π
∑n

j=1, j,i Ti j 0 0 0 0 0


,
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Ai j = A ji =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−2πTi j 0 0 0 0 0


,

B =
[
Bi

B j

]
,

Bi =
[
0 0 α0

Tgi

KEViαi
TEVi

0 0
]⊤
.

Inspired by [27], the power system is described as the following discrete-time MJPS:

x(k + 1) = Ā(r(k))x(k) + B̄(r(k))u(k), k = 0, 1, 2, 3 . . . . (2.2)

Here, Ā , B̄ indicate the true but unknown system matrices. The stochastic variable r(k) stands for
the Markovian chain and its transition probability matrix Γ = {Γpq}M×M is expressed as

Pr{r(k + 1) = q|r(k) = p} = Γpq, 0 ≤ Γpq ≤ 1,

p, q ∈ M = {1, 2, . . . ,M},
M∑

q=1

Γpq = 1.

For the presentation convenience, take r(k) = p, Ā(r(k)) = Āp, B̄(r(k)) = B̄p.
Remark 1: In practice, rapid changes in power demand can affect the operational state of the

system. When the load exceeds expectations, it may be necessary to start backup generators or
perform load shifting, which triggers a jump in the system state and a change in the system’s
parameters. In the meantime, various faults and trips often occur in the sub-systems of a multi-area
interconnected power system. Some jumps in the parameters of the power system may occur, and
these unexpected jumps can be modeled by Markovian processes. To validate the feasibility of our
proposed methodology, we selected scenarios where system dynamics exhibit statistical regularity
and can be learned from historical data. Consequently, we set the Markov transition probabilities
as known.

The data of the system is collected on a time interval, and the collected data is stored in the form of
the following matrices:

χp :=
[
xp(0) xp(1) . . . xp(K − 1)

]
,

χ+p :=
[
xp(1) xp(2) . . . xp(K)

]
,

Ω̄p :=
[
wp(0) wp(1) . . . wp(K − 1)

]
,

Up :=
[
up(0) up(1) . . . up(K − 1)

]
.

K represents the number of samples collected, and k represents the kth collection moment.
We clearly have

χ+p = Āpχp + B̄pUp + Ω̄p. (2.3)
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For the kth moment
xp(k + 1) = Āpxp(k) + B̄pup(k) + wp(k). (2.4)

Follow-up articles use wp for wp(k). The matrix Ω̄p and wp are unknown, and {Āp}p∈M, {B̄p}p∈M

are the system matrices. Bring Up = Kpχp and up = Kpxp(k) into the above equation of state to obtain
the closed-loop system

χ+p = (Āp + B̄pKp)χp + Ω̄p,

xp(k + 1) = (Āp + B̄pKp)xp(k) + wp(k).
(2.5)

Remark 2: A similar model for discrete-time systems was introduced in [19]. They proposed a new
method to obtain feedback controllers of an unknown dynamical system directly from damaged data.
Based on the article, we apply the method to an interconnected power system with Markovian jump
parameters. Since the noise is unknown, the controller will be designed from the state and input data
that can be collected.

2.2. Assumption on the Noisy

Assumption 1 (Noisy model): For each p ∈ M, there exist energy-bound Ω̄i ∈ Wp or an
instantaneous-bound wp(k) ∈ Wp, where

Wp :=
Ω̄p ∈ R

n×K |

[
I
Ωp
⊤

]⊤
Ψp

[
I
Ωp
⊤

]
≥ 0
 , (2.6)

Wp :=
wp ∈ R

n|

[
I

wp
⊤

]⊤
Ψp

[
I

wp
⊤

]
≥ 0
 . (2.7)

For some known matrices Ψp
1,1 = Ψ

p
1,1
⊤ , Ψp

1,2 , Ψp
2,2 = Ψ

p
2,2
⊤
< 0,

where

Ψp =

[
Ψ

p
1,1 Ψ

p
1,2

Ψ
p
1,2
⊤
Ψ

p
2,2

]
.

Remark 3: The specific application of the energy-bounded model in Assumption 1 is as follows:
when designing LFC controllers, random load variations can be modelled as energy-bounded
disturbances. The controller is designed to maintain frequency deviation and regional control error
within acceptable limits even under worst-case load fluctuations. The specific application of the
instantaneous-bounded model in Assumption 1 is as follows: In power system state estimation,
measurement errors are assumed to have known upper and lower bounds. The output is not an optimal
estimate but a state interval, guaranteeing that the true state lies within this range. During current
surges caused by lightning strikes, the amplitude can theoretically reach extremely high levels, far
exceeding the boundaries of conventional load fluctuations or measurement errors. The current model
becomes inapplicable in such scenarios. However, our primary objective focuses on constructing a
controllable and reproducible environment to validate the methodology. Therefore, this phenomenon
is not considered in this paper. In this case, Assumption 1, for general norm-bounded noise
sup ∥wp∥

2 ≤ wp, we divide the noise constraint into two cases. The energy-bound approach holds with
Ψ

p
1,1 = KwpI, Ψp

1,2 = 0, Ψp
2,2 = −I. The instantaneous-bound approach holds with Ψp

1,1 = wpI,
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Ψ
p
1,2 = 0, Ψp

2,2 = −I. Descriptions of noisy data can also be found in [19]. We further extend this to the
robust DDC of the MJPS involving EVs.

Define, for the energy-bound approach, with each p ∈ M, the compatibility set

Cp := {(Ap,Bp) | ∃Ωp ∈ Wp : χ+p = Apχp + BpUp + Ωp} = {(Ap,Bp) | (2.3) holds}. (2.8)

Define, for the instantaneous-bound approach, with each p ∈ M, the compatibility set

Cpk := {(Ap,Bp) | ∃wp ∈ Wp : xp(k + 1) = Apxp(k)
+ Bpup(k) + wp(k)} = {(Ap,Bp) | (2.4)holds}.

(2.9)

Subsequent studies need to use the following lemma.
Lemma 1 (Matrix S-lemma [19]): Let G,N be symmetric. Consider the following:

(a) ∃α ≥ 0, β > 0, such that G − αN ⩾
[
βI 0
0 0

]
.

(b)
[
I
Z

]⊤
G
[
I
Z

]
> 0,∀Z ∈ Rn×k such that

[
I
Z

]⊤
N
[
I
Z

]
≥ 0.

Then (a)⇒ (b).
Lemma 2 (Matrix S-lemma [28]): Let G,Nk be symmetric, where the matrix Nk depends on the

index k. Consider the following:

(a) ∃α ≥ 0, τk > 0, such that G −
∑K−1

k=0 τkNk ⩾

[
βI 0
0 0

]
.

(b)
[
I
Z

]⊤
G
[
I
Z

]
> 0,∀Z ∈ Rn×k such that

[
I
Z

]⊤
Nk

[
I
Z

]
≥ 0.

Then (a)⇒ (b).

3. Data-driven stabilization

In the set Cp, we have
χ+p = Apχp + BpUp + Ωp. (3.1)

Substitute (3.1) into Assumption 1, one has
I
A⊤p
B⊤p
0


⊤ 

I χ+p
0 −χp

0 −Up

0 0

Ψp


I χ+p
0 −χp

0 −Up

0 0


⊤ 

I
A⊤p
B⊤p
0

 ≥ 0, (3.2)

Assume that (Up, χp) satisfies (3.2) for some Ωp satisfying Assumption 1. The data (Up, χp) are
called informative for robust stabilization if there exists a feedback gain Kp and a matrix Pp > 0 such
that [29]

Pp − (Ap + BpKp)(
M∑

p=1

ΓpqPq)(Ap + BpKp)⊤ > 0. (3.3)

Next, the data-driven controller design is presented. For brevity, we define

Acl
p := Ap + BpKp,
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Pp
cl =

M∑
q=1

ΓpqPq.

For the energy-bound approach, we have Theorem 1.
Theorem 1: Suppose the Assumption 1 holds. For all (Ap,Bp) ∈ Cp, the MJPS (2.3) is

stochastically stable, if there exist matrices Dp > 0, Dp
cl, Lp, and the scalars α ≥ 0, β > 0, and

satisfying the following LMI:
Gp − αNp ≥ 0, p ∈ M, (3.4)

where

Gp =


Dp

cl − βI 0 0 0
∗ −Dp −Lp

⊤ 0
∗ ∗ 0 Lp

∗ ∗ ∗ Dp

 > 0, (3.5)

Np =


I χ+p
0 −χp

0 −Up

0 0

Ψp


I χ+p
0 −χp

0 −Up

0 0


⊤

≥ 0. (3.6)

Then the control gain matrix Kp = LpD−1
p can be acquired.

Proof. It is easy to find that (3.3) is equivalent to[
Pp A

cl
p Pp

cl

∗ Pp
cl

]
> 0. (3.7)

Let Dp = Pp
−1, we can obtain that

I
Ap
⊤

Bp
⊤


⊤ 

Dp
cl 0 0
∗ −Dp −DpKp

⊤

∗ ∗ −KpDpKp
⊤




I
Ap
⊤

Bp
⊤

 > 0. (3.8)

Let
Kp = LpD−1

p , (3.9)

then 
I
Ap
⊤

Bp
⊤


⊤ 

Dp
cl 0 0
∗ −Dp −Lp

⊤

∗ ∗ −LpDp
−1Lp

⊤




I
Ap
⊤

Bp
⊤

 > 0. (3.10)

By applying the Schur complement lemma to the above inequality, we can obtain
Dp

cl 0 0 0
∗ −Dp −Lp

⊤ 0
∗ ∗ 0 Lp

∗ ∗ ∗ Dp

 > 0. (3.11)
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It can be known from Lemma 1 that (3.11) holds if and only if there exist scalars α ≥ 0, β > 0
satisfied 

Dp
cl 0 0 0
∗ −Dp −Lp

⊤ 0
∗ ∗ 0 Lp

∗ ∗ ∗ Dp

 − α

I χ+p
0 −χp

0 −Up

0 0

Ψp


I χ+p
0 −χp

0 −Up

0 0


⊤

≥ 0. (3.12)

This means that the feasible control gain Kp found to stabilize all (Ap,Bp) ∈ Cp using only the
data (Up, χp).

This proof is completed.

For the instantaneous-bound approach, we have Theorem 2.
Theorem 2: Suppose the Assumption 1 holds. For all (Ap,Bp) ∈ Cpk, the MJPS (2.4) is

stochastically stable, if there exist matrices Dp > 0 , Dp
cl, Lp, and the scalars τk ≥ 0, β > 0, and

satisfying the following LMI:

Gp −

K−1∑
k=0

τkNp2 ≥ 0, p ∈ M, (3.13)

where

Gp =


Dp

cl − βI 0 0 0
∗ −Dp −Lp

⊤ 0
∗ ∗ 0 Lp

∗ ∗ ∗ Dp

 > 0, (3.14)

Np2 =


I xp(k + 1)
0 −xp(k)
0 −up(k)
0 0

Ψp


I xp(k + 1)
0 −xp(k)
0 −up(k)
0 0


⊤

≥ 0. (3.15)

The proof process is similar to Theorem 1.
Remark 4: With respect to (3.4), solving (3.13) involves K variables τk instead of a single one α.

Having as many decision variables as data points is demanding on decision variables.
Remark 5: These two theorems correspond respectively to the energy-bound method and the

instantaneous-bound method. The energy-bound method examines the total impact of a signal
throughout its entire temporal evolution, primarily analyzing the stability and performance of a
system under finite modelling errors or external disturbances. The instantaneous-bound method
constrains the instantaneous amplitude of the signal at any given moment within a known range,
investigating the potential influence of the signal at each individual point in time.

4. Numerical examples

In this section, a numerical example is employed to illustrate the validity of the control design
method for a two-area interconnected MJPS. The required power system parameters are in [26].

In reality, a variety of circumstances will lead to uncertainty about our parameters. Therefore, we
cannot determine the state of the parameter matrices A and B. For an interconnected power system
with two modes. Consider the transfer parameters and their impacts.
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For mode one, D1 = 2; M1 = 2; R1 = 1; Tg1 = 0.2; Tch1 = 0.4; TEV1 = 1; KEV1 = 1; β1 = 3; D2 = 2;
M2 = 2; R2 = 1; Tg2 = 0.2; Tch2 = 0.5; TEV2 = 1; KEV2 = 1; β2 = 3.

For mode two, D1 = 2; M1 = 2; R1 = 1; Tg1 = 0.2; Tch1 = 0.4; TEV1 = 1; KEV1 = 1; β1 = 3;
D2 = 1.5; M2 = 2; R2 = 1; Tg2 = 0.25; Tch2 = 0.45; TEV2 = 1; KEV2 = 1; β2 = 2.5.

In the simulation case, we set the sampling interval to 0.05 s. The above parameters are state
parameters in the continuous time, and we need to discretize them. This paper employs the zero-
order hold method to discretize the continuous-time system model. This approach assumes that the
control input remains constant over the sampling interval, aligning with practical control systems and
representing the most commonly used discretization method in engineering practice. However, during
the controller gain solution, the parameters of the MJPS are unknown, but the state data are known.
Therefore, we have to get the control gain from the collected damaged data. During the data collection
phase, the initial states as well as the inputs of the followers are randomly generated.

For the energy-bound approach, by solving the LMI-based damaged data in (3.4), we obtain a set
of feasible control gain matrices:

Ke1 =

[
K1

e1 K2
e1

K3
e1 K4

e1

]
,Ke2 =

[
K1

e2 K2
e2

K3
e2 K4

e2

]
,

K1
e1 =
[
−0.054 0.009 −0.815 −0.080 −0.223 0.411

]
,

K2
e1 =
[
−0.743 −0.302 0.491 1.515 −0.094 0.369

]
,

K3
e1 =
[
−0.531 −0.146 0.279 0.732 0.031 −0.072

]
,

K4
e1 =
[
−0.121 0.002 −0.691 −0.050 −0.335 0.230

]
,

K1
e2 =
[
−1.637 −0.418 1.052 2.057 0.073 −1.300

]
,

K2
e2 =
[

0.163 0.049 −0.406 −0.196 0.177 −0.899
]
,

K3
e2 =
[
−0.050 −0.019 0.652 0.099 −0.100 0.564

]
,

K4
e2 =
[
−0.244 −0.055 0.064 0.186 −0.310 0.626

]
.

For the instantaneous-bound approach, by solving the LMI-based damaged data in (3.12), we obtain
a set of feasible control gain matrices:

Kb1 =

[
K1

b1 K2
b1

K3
b1 K4

b1

]
,Kb2 =

[
K1

b2 K2
b2

K3
b2 K4

b2

]
,

K1
b1 =
[

441.198 121.824 76.686 −621.811 −192.403 857.341
]
,

K2
b1 =
[

143.540 51.114 −138.297 −252.865 −69.685 625.313
]
,

K3
b1 =
[
−726.127 −193.704 −40.838 967.256 161.268 −906.159

]
,

K4
b1 =
[
−455.198 −167.137 303.992 821.155 −1.827 −594.690

]
,

K1
b2 =
[
−111.025 −30.197 −127.750 148.907 111.591 −519.799

]
,
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K2
b2 =
[
−31.808 −9.918 −20.963 38.701 87.962 −437.998

]
,

K3
b2 =
[

89.652 24.063 −18.065 −119.915 −13.727 84.327
]
,

K4
b2 =
[

51.694 20.792 −72.656 −112.148 −2.450 53.598
]
.

In all numerical simulations, the system’s initial state vector x and external input u are both
randomly generated from a standard normal distribution. Moreover, our simulation conducted a
comparative analysis for noise boundaries of 0.1 and 0.05.

In Figure 2, the switching process of the MJPS is illustrated. For the energy-constrained method,
as shown in Figures 3 and 4, after introducing our designed controller, the frequency deviation with a
noise boundary of 0.1 approaches zero within 7.5 seconds, while that with a noise boundary of 0.05
approaches zero within 6 seconds. Moreover, as depicted in Figures 5 and 6, the ∆Pm(t) with a noise
boundary of 0.1 converges to zero within 5 seconds; the∆Pm(t) with a noise boundary of 0.05 converges
to zero within 3 seconds. For the instantaneous constraint strategy, as depicted in Figures 7 and 8, after
introducing our designed controller, the frequency deviation with a noise boundary of 0.1 approaches
zero within 7.5 seconds, while that with a noise boundary of 0.05 approaches zero within 5 seconds.
Furthermore, as depicted in Figures 9 and 10, the ∆Pm(t) with a noise boundary of 0.1 converges to
zero within 4 seconds; the ∆Pm(t) with a noise boundary of 0.05 converges to zero within 3.5 seconds.
In summary, the LFC strategy proposed in this paper is able to make full use of the FM capability of
both conventional units and EVs. So the MJPS reaches robust stability, which proves the feasibility of
our control method.

Remark 6: The paper aims to address the practical challenge of obtaining precise model
parameters in LFC. Its primary objective is to validate the methodology’s feasibility. In contrast to
model-reliant approaches such as H∞ control, its data-driven nature enables robust handling of both
model inaccuracies and parameter jumps, thereby substantially extending its applicability.
Furthermore, compared to existing data-driven strategies that typically require known noise
assumptions, our approach overcomes this critical limitation by operating directly on measurement
data alone. These characteristics significantly enhance the method’s engineering utility.
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Figure 2. Switching signal.
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Figure 3. Frequency deviation signal for the energy-bound approach 0.1.
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Figure 4. Frequency deviation signal for the energy-bound approach 0.05.
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Figure 5. Generator mechanical input deviation signal for the energy-bound approach 0.1.
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Figure 6. Generator mechanical input deviation signal for the energy-bound approach 0.05.
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Figure 7. Frequency deviation signal for the instantaneous-bound approach 0.1.
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Figure 8. Frequency deviation signal for the instantaneous-bound approach 0.05.
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Figure 9. Generator mechanical input deviation signal for the instantaneous-bound
approach 0.1.
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Figure 10. Generator mechanical input deviation signal for the instantaneous-bound
approach 0.05.
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5. Conclusions

In this paper, a data-driven load frequency controller based on damaged data by unknown noise
has been designed for a power system with uncertain Markovian jump parameters. The robust
stability condition of the MJPS has been constructed in the form of an LMI based on the damaged
data. The control gain matrix has been determined by solving the data-based LMI. And the
effectiveness of the strategy proposed in this paper in the MJPS has been verified by applying it to a
two-area interconnected power system with the participation of EVs. But for complex systems
such as high-dimensional, multi-agent systems, the scale of corresponding LMI problems
increases dramatically, leading to prolonged solution times and even numerical instability.
Consequently, it is imperative that future approaches integrate the aforementioned DDC methods
with event-triggered [30, 31] or distributed control [32].
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