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1. Introduction

Partial differential equations (PDEs) play important roles in modeling and analyzing various
physical, biological, and engineering phenomena; see, for example, [1, 2]. These equations often do
not admit analytical solutions, making it essential to solve them using various numerical algorithms.
The authors of [3] used a quantum variational technique to solve certain nonlinear PDEs. In [4],
a deep learning framework was proposed to handle nonlinear PDEs. Moreover, another approach
for addressing such equations was developed in [5], where physics-informed neural networks were
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utilized. Additionally, a method for approximating solutions to a class of PDEs was introduced
in [6]. The authors of [7] developed some analytical and numerical solutions for certain nonlinear
PDEs. Among the important PDEs are the hyperbolic partial differential equations (HPDEs). Many
numerical algorithms were devoted to treating these types of equations. In [8], the authors introduced
many-stage optimal stabilized Runge–Kutta methods. A matrix approach was followed using Vieta–
Lucas polynomials in [9] to treat some HPDEs. In addition, a collocation algorithm was presented
in [10] to handle the HPDEs. The method of lines combined with the Runge–Kutta integration method
was employed in [11] for solving systems of certain delay HPDEs. Additionally, the authors of [12]
presented an exponential Jacobi spectral method to handle HPDEs.

When dealing with differential equations (DEs) of various types, spectral approaches are very useful
tools. These approaches are excellent for solving high-order ordinary DEs, PDEs, and other types of
DEs. Their key benefit over the standard numerical approaches is their excellent performance for
smooth problems, achieved by exponential or high-order convergence. These techniques provide an
accurate approximation with few degrees of freedom by expressing the solution in terms of global
basis functions, which are often particular functions or special polynomials. Spectral approaches have
found useful applications in many domains, including models of biological systems, fluid dynamics,
and quantum physics. One can refer to [13, 14] for some applications of these methods. Collocation,
tau, and Galerkin methods are the three most common spectral approaches. One benefit of collocation
techniques is that they can handle all DEs governed by any conditions; see, for example, [15–17]. Two
sets of basis functions, trial and test, are required to apply both the Galerkin and Tau approaches. In
the Galerkin method, these sets should be coincident; see, for example, [18–20], while the tau method
has no restrictions in choosing the basis functions; see, for example, [21–23].

The sequences of numbers and polynomials have important roles in the different fields of applied
sciences. For example, the sequences of Fibonacci and their generalized sequences are crucial [24].
Many polynomial sequences are beneficial in numerical analysis and, in particular, for treating all
types of DEs. For example, the authors of [25] introduced telephone polynomials and utilized them
to solve some models numerically. Shifted Lucas polynomials were utilized in [26] together with the
collocation method to handle the fractional FitzHugh–Nagumo DEs. Fibonacci polynomials were
employed in [27] to treat certain types of variable-order fractional DEs. Some specific Horadam
polynomials were used in [28] to solve certain Korteweg–de Vries (KdV)-type equations. Bernstein
polynomials were employed in [29] to solve some initial value problems. Multidimensional sinh-
Gordon equations were treated in [30] using Lucas polynomials. In addition, modified Lucas
polynomials were used in [31] to treat mixed-type fractional functional DEs. Vieta-Lucas polynomials
were employed in [32] to handle certain types of fractional optimal control problems.

Among the important sequences that have roles in different disciplines is the Pell sequence. Many
contributions were devoted to deriving formulas for the different Pell number sequences; see, for
example, [33–35]. In addition, Pell polynomials were used in many articles related to numerical
analysis to solve several important models. The authors of [36] followed a numerical approach
based on Pell polynomials to solve certain stochastic fractional DEs. The authors of [37] utilized
Pell polynomials to address nonlinear variable-order space fractional PDEs. The authors of [38] used
the Pell polynomials to handle certain fractional DEs. The authors of [39] developed a Crank–Nicolson
spectral Pell matrix algorithm to simulate the Rosenau–Burgers equations numerically.

The main objectives of this article are to introduce Pell coefficient polynomials and utilize them
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numerically to treat the linear hyperbolic first-order PDEs. More definitely, we can list the goals in the
following issues:

• Introducing Pell coefficient polynomials.
• Developing the inversion formula of these polynomials.
• Developing new moments, linearization, and derivative formulas of these polynomials.
• Utilizing the introduced polynomials to handle the linear hyperbolic first-order PDEs.
• Studying the error analysis of the suggested Pell coefficients expansion.
• Evaluating our numerical algorithm through some numerical examples.

Here are the main contributions and novelty of the current paper:

• Introducing new Pell coefficient polynomials: As far as we know, this is the first time that these
kinds of polynomials have been defined and studied in the literature. This motivates us to study
and utilize these polynomials.
• New theoretical results: Several new formulas concerning the Pell coefficient polynomials are

introduced as the foundations to design the proposed numerical algorithm.
• Utilizing the spectral tau method: The suggested Pell coefficient polynomials are used as basis

functions to numerically solve linear hyperbolic first-order PDEs.
• Convergence and error analysis: The proposed expansion is thoroughly examined to determine

its convergence characteristics and error estimates.
• Numerical performance: The proposed method is tested by presenting some examples supported

with comparisons with other schemes in the literature.

The contents of the paper are structured as follows. Section 2 gives some fundamental characteristic
properties of the Pell numbers. In addition, we introduce the polynomials, namely, Pell coefficient
polynomials. Some new formulas of these formulas are developed in Section 3. Section 4 is devoted
to the numerical treatment of the one-dimensional linear HPDEs. Convergence and error analysis are
investigated in Section 5. Illustrative examples are presented in Section 6 to ensure the accuracy and
applicability of the proposed algorithm. Finally, some conclusions are given in Section 7.

2. Pell coefficient polynomials

In this section, we give an overview of the Pell numbers. In addition, we introduce polynomials
whose coefficients are the Pell numbers.

The standard Pell numbers meet the following recursive formula [40]:

P j+2 = 2 P j+1 + P j, P0 = 0, P1 = 1. (2.1)

A few Pell numbers are 0, 1, 2, 5, 12, 29, 70, 169.
They have the following combinatorial formula [41]:

Pi =

b i−1
2 c∑

m=0

2m

(
i

2m + 1

)
. (2.2)
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Now, we define the new Pell coefficient polynomials P∗i (θ) as

P∗i (θ) =

i∑
k=0

Pk+1 θ
i−k, (2.3)

where Pk represents the standard Pell numbers.
Formula (2.3) can also be written in the form

P∗i (θ) =

i∑
r=0

Pi−r+1 θ
r. (2.4)

From the expression (2.4), it is evident that P∗i (θ) satisfies the following recurrence relation:

P∗i (θ) − θP∗i−1(θ) − Pi+1 = 0. (2.5)

Remark 1. To the best of our knowledge, the introduced Pell coefficient polynomials are new, so their
theoretical background is traceless in the literature.

Remark 2. The following theorem presents the inversion formula of P∗i (θ). This formula, together with
the power form representation, will be pivotal in yielding further properties of these polynomials in the
next section.

Theorem 1. θi can be expanded as

θi =

i∑
r=0

µr,i P∗r(θ), i ≥ 0, (2.6)

where

µr,i =


1, if r = i,

−2, if r = i − 1,
−1, if r = i − 2,
0, if 0 ≤ r ≤ i − 3.

(2.7)

Proof. We will prove that the following identity holds:

θi = P∗i (θ) − 2 P∗i−1(θ) − P∗i−2(θ). (2.8)

Assume the following polynomial:

ηi(θ) = P∗i (θ) − 2 P∗i−1(θ) − P∗i−2(θ),

then, it is sufficient to show that
ηi(θ) = θi.

Based on the representation in (2.3), ηi(θ) may be expressed in the form

ηi(θ) =

i∑
r=0

Pr+1 θ
i−r − 2

i−1∑
r=0

Pr+1 θ
i−r−1 −

i−2∑
r=0

Pr+1 θ
i−r−2, (2.9)
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which is equal to

ηi(θ) =

i∑
r=0

Pr+1 θ
i−r − 2

i∑
r=1

Pr θ
i−r −

i∑
r=2

Pr−1 θ
i−r, (2.10)

and accordingly, we have

ηi(θ) = θi +

i∑
r=2

(Pr+1 − 2 Pr − Pr−1) θi−r, (2.11)

and therefore, the recurrence relation (2.1) leads to

ηi(θ) = θi. (2.12)

This ends the proof.

Remark 3. Formula (2.6) can be written in the following alternative form:

θi =

i∑
r=0

Gr,i P∗i−r(θ), (2.13)

with

Gr,i =


1, if r = 0,
−2, if r = 1,
−1, if r = 2,
0, if r ≥ 3.

(2.14)

3. Some further new formulas of the Pell coefficient polynomials

This section is confined to deriving some new formulas for the Pell coefficient polynomials, which
will be useful in determining our proposed algorithm.

The following two theorems give the expressions of the moment and linearization formulas of
the P∗i (θ).

Theorem 2. The following moment formula holds for every nonnegative integers r and s:

xr P∗s(θ) =

s+r∑
m=0

Mm,s P∗s+r−m(θ), (3.1)

with

Mm,s =

min(m,s)∑
r=0

Pr+1 Gm−r, s+r−k, (3.2)

and Gr,i are given in (2.14).

Proof. The analytic form in (2.3) gives

θr P∗s(θ) =

s∑
k=0

Pk+1 θ
s−k+r. (3.3)

Electronic Research Archive Volume 33, Issue 10, 6012–6035.



6017

Applying formula (2.13) leads to the following identity:

θr P∗s(θ) =

s∑
k=0

Pk+1

s−k+r∑
t=0

Gt,s+r−k P∗s+r−k−t(θ),

which can be rearranged to give

θr P∗s(θ) =

s+r∑
m=0

min(m,s)∑
r=0

Pr+1 Gm−r, s+r−k

 P∗s+r−m(θ). (3.4)

This proves Theorem 2.

Theorem 3. For every two nonnegative integers i and r, the following linearization formula is valid:

P∗i (θ) P∗r(θ) =

r+i∑
m=0

ζm,i,r P∗r+i−m(θ), (3.5)

with the linearization coefficients ζm,i,r given as

ζm,i,r =

min(i,m)∑
s=0

Ps+1

min(m−s,r)∑
L=0

PL+1 Gm−L−s,r+i−s+L. (3.6)

Proof. Starting with the representation (2.3) leads to

P∗i (θ) P∗r(θ) =

i∑
s=0

Ps+1 θ
i−s P∗r(θ). (3.7)

With the aid of the moment formula (3.4), the last formula turns into

P∗i (θ) P∗r(θ) =

i∑
s=0

Ps+1

r+i−s∑
m=0

Rm,r P∗r+i−m−s(θ), (3.8)

where

Rm,r =

min(m,r)∑
L=0

PL+1Gm−L,r+i−s+L.

Formula (3.8) can be written alternatively in the form

P∗i (θ) P∗r(θ) =

r+i∑
m=0

min(i,m)∑
s=0

Ps+1Rm−s,r

 P∗r+i−m(θ), (3.9)

and accordingly, Formula (3.5) can be obtained.

Corollary 1. The following integral formula holds:∫ `

0
P∗i (θ) P∗r(θ) dθ =

r+i∑
m=0

ζm,i,r Ji+r−m, (3.10)

where

Js =

s∑
r=0

`s−r+1

s − r + 1
Ps+1, (3.11)

and the coefficients ζm,i,r are those given in (3.6).
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Proof. From the explicit expression (2.3), we can write∫ `

0
P∗r(θ) dθ =

r∑
k=0

Pk+1

∫ `

0
θr−k dθ, (3.12)

and thus, we can write ∫ `

0
P∗r(θ) dθ = Jr, (3.13)

with

Jr =

r∑
k=0

Pk+1 `
r−k+1

r − k + 1
. (3.14)

Now, integrating both sides of the linearization formula (3.5), we get∫ `

0
P∗i (θ) P∗r(θ) dθ =

r+i∑
m=0

ζm,i,r

∫ `

0
P∗r+i−m(θ) dθ. (3.15)

Using the integral in (3.13), the following integral formula can be obtained:∫ `

0
P∗i (θ)P∗r(θ) dθ =

r+i∑
m=0

ζm,i,r Jr+i−m. (3.16)

This ends the proof.

The first-order derivatives are given in the following theorem in a closed form.

Theorem 4. The first derivative of P∗i (θ) can be expressed as

d P∗i (θ)
dθ

=

i−1∑
m=0

Hm,iP∗m(θ), i ≥ 1, (3.17)

where
Hm,i = −(m + 3) Pi−m−2 − 2(m + 2) Pi−m−1 + (m + 1) Pi−m. (3.18)

Proof. The power form representation of P∗i (θ) in (2.3) enables one to write

d P∗i (θ)
dθ

=

i−1∑
k=0

Pk+1 (i − k) θi−k−1. (3.19)

Inserting the inversion formula (2.8) into the last formula leads to

d P∗i (θ)
dθ

=

i−1∑
k=0

Pk+1 (i − k)(P∗i−k−1(θ) − 2P∗i−k−2(θ) − P∗i−k−3(θ)), (3.20)

which can be written as
d P∗i (θ)

dθ
=iP∗i−1(θ) − 2P∗i−2(θ)

+

i−1∑
L=2

((L − i − 2)PL−1 + 2(L − i − 1)PL + (i − L)PL+1) P∗i−L−1(θ),
(3.21)
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and accordingly, we can write

d P∗i (θ)
dθ

=

i−1∑
L=0

((L − i − 2)PL−1 + 2(L − i − 1)PL + (i − L)PL+1) P∗i−L−1(θ). (3.22)

An alternative formula for (3.22) is

d P∗i (θ)
dθ

=

i−1∑
m=0

(−(m + 3) Pi−m−2 − 2(m + 2) Pi−m−1 + (m + 1) Pi−m) P∗m(θ). (3.23)

This proves Theorem 4.

Corollary 2. The following integral formula holds:∫ `

0

dP∗i (θ)
dθ

P∗r(θ) d θ =

i−1∑
m=0

Hm,iS m,r, (3.24)

where Hm,i are those given in (3.18), S m,r are given by

S m,r =

r+m∑
p=0

ζp,m,r Jr+m−p,

and the coefficients ζp,m,r, and Jm are, respectively, given by (3.6) and (3.11).

Proof. Making use of the first-order derivative in (3.17), we get

dP∗i (θ)
dθ

P∗r(θ) =

i−1∑
m=0

Hm,i P∗m(θ) P∗r(θ). (3.25)

If we integrate both sides of the last formula, and make use of formula (3.25), then the following
formula can be obtained: ∫ `

0

dP∗i (θ)
dθ

P∗r(θ) dθ =

i−1∑
m=0

Hm,iS m,r. (3.26)

This ends the proof.

4. Approximate solution of the one-dimensional linear HPDEs of first-order

Consider the following one-dimensional linear HPDEs of first-order [42]:

∂tZ(θ, t) − ν1 ∂θZ(θ, t) − ν2 Z(θ, t) = f (θ, t), 0 < θ < `, 0 < t < τ, (4.1)

subject to the following initial and boundary conditions:

Z(θ, 0) = Z0(θ), 0 < θ < `, (4.2)
Z(0, t) = Z1(t), 0 < t < τ, (4.3)
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where f (θ, t), Z0(θ), and Z1(t) are given functions, and a, b are positive constants. Moreover, f (θ, t) , 0.
If we define the following space:

∆N = span{P∗i (θ) P∗j(t) : 0 ≤ i, j ≤ N},

then any function ZN (θ, t) ∈ ∆N may be assumed to have the following expression:

ZN (θ, t) =

N∑
i=0

N∑
j=0

ci j P∗i (θ) P∗j(t) = P∗(θ) C P∗(t)T , (4.4)

where P∗(θ) = [P∗0(θ),P∗1(θ), . . . ,P∗
N

(θ)], P(t)T = [P∗0(t),P∗1(t), . . . ,P∗
N

(t)]T , and C = (ci j)0≤i, j≤N is the
unknown matrix of dimension (N + 1)2.
The residual R(θ, t) of Eq (4.1) can be expressed as

R(θ, t) = ∂tZN (θ, t) − a ∂θZN (θ, t) − b ZN (θ, t) − f (θ, t). (4.5)

Now, the application of the Tau method leads to

(R(θ, t) , P∗r(θ) P∗s(t)) = 0, 0 ≤ r, s ≤ N − 1. (4.6)

Now, if we let

F = ( fr,s)N×N , frs = ( f (θ, t) , P∗r(θ) P∗s(t)), (4.7)
G = (gi,r)(N+1)×N , gi,r = (P∗i (θ) , P∗r(θ)), (4.8)

H = (hir)(N+1)×N , hir =

(
d P∗i (θ)

d θ
, P∗r(θ)

)
, (4.9)

then Eq (4.6) can be rewritten as
N∑

i=0

N∑
j=0

ci j gi,r h j,s − ν1

N∑
i=0

N∑
j=0

ci j hi,r g j,s − ν2

N∑
i=0

N∑
j=0

ci j gi,r g j,s = fr,s, 0 ≤ r, s ≤ N − 1, (4.10)

or in matrix form as
G

T CH − ν1H
T CG − ν2G

T CG = F. (4.11)

In addition, the conditions (4.2) and (4.3) lead to
N∑

i=0

N∑
j=0

ci j gi,r P∗j(0) = (Z0(θ) , P∗r(θ)), 0 ≤ r ≤ N , (4.12)

N∑
i=0

N∑
j=0

ci j g j,s P∗i (0) = (Z1(t) , P∗s(t)), 0 ≤ s ≤ N − 1. (4.13)

An appropriate method may now be employed to solve the resultant algebraic system of equations of
order (N + 1)2, including Eqs (4.11)–(4.13).

Remark 4. The elements gi,r and hi,r in (4.10) are given in Corollaries 1 and 2, where

(a) gi,r =

∫ `

0
P∗i (θ) P∗r(θ) dθ.

(b) hi,r =

∫ `

0

d P∗i (θ)
d θ

P∗r(θ) dθ.
(4.14)
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5. Convergence and error analysis

This section is interested in analyzing in detail the expansion in terms of P∗i (θ). Thus, some
important lemmas and theorems are presented and proved.

Lemma 1. Let θ ∈ [0, `], ` > 0. This inequality holds:

|P∗i (θ)| ≤ (` ε)i+2, ∀ i ≥ 0, (5.1)

where ε =
√

2 + 1.

Proof. The application of Eq (2.4) enables us to write

|P∗i (θ)| =
i∑

r=0

|λi−r| |θ
r|. (5.2)

Now, λi−r can be summed as

λi−r =

(√
2 + 1

)i−r+1

2
√

2
. (5.3)

Therefore, |P∗i (θ)| is given by

|P∗i (θ)| =
i∑

r=0

∣∣∣∣∣∣∣∣
(√

2 + 1
)i−r+1

2
√

2

∣∣∣∣∣∣∣∣ |θr|. (5.4)

The previous equation can be summed and written after using |θr| ≤ `r as

|P∗i (θ)| =

(√
2 + 2

) ((√
2 + 1

)i+1
− `i+1

)
4
(
−` +

√
2 + 1

) . (5.5)

At the end, using the following estimation:(√
2 + 2

) ((√
2 + 1

)i+1
− `i+1

)
4
(
−` +

√
2 + 1

) ≤ (` ε)i+2, ∀ i ≥ 0, (5.6)

where ε =
√

2 + 1, we get the desired result.

Lemma 2. Let g(θ) be an infinitely differentiable function at the origin that may be expressed as

g(θ) =

∞∑
n=0

∞∑
s=n

gs(0) µn,s

s!
P∗n(θ), (5.7)

where µn,s is defined in Eq (2.7).
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Proof. First, write g(θ) as

g(θ) =

∞∑
n=0

g(n)(0)
n!

θn. (5.8)

Thanks to the inversion formula (2.6), the previous expansion turns into

g(θ) =

∞∑
n=0

n∑
r=0

g(n)(0) µr,n

n!
P∗r(θ), (5.9)

which can be transformed again into the following form, based on some algebraic computations:

g(θ) =

∞∑
n=0

∞∑
s=n

gs(0) µn,s

s!
P∗n(θ). (5.10)

This ends the proof.

Theorem 5. If g(θ) is defined on [0, `], and |g(i)(0)| ≤ λi, i > 0, where λ > 0, and g(θ) =

∞∑
i=0

ĝi P∗i (θ),

then we get

|ĝi| ≤
2 eλλi

i!
, ∀i > 0. (5.11)

Furthermore, the series is absolutely convergent.

Proof. Using Lemma 2, we can write

|ĝi| =

∣∣∣∣∣∣∣
∞∑
s=i

f s(0) µi,s

s!

∣∣∣∣∣∣∣ =

∞∑
s=i

| f s(0)|
∣∣∣µi,s

∣∣∣
s!

. (5.12)

The application of the assumption |g(i)(0)| ≤ λi, i > 0 enables us to write

|ĝi| ≤

∞∑
s=i

2 λs

s!
=

2 eλ((i − 1)! − Γ(i, λ))
(i − 1)!

, (5.13)

where Γ(i, λ) is the incomplete gamma function.
If we make use of the following inequality:

2 eλ((i − 1)! − Γ(i, λ))
(i − 1)!

≤
2 eλ λi

i!
, ∀ i > 0, (5.14)

then the inequality in (5.13) leads to

|ĝi| ≤
2 eλλi

i!
. (5.15)

To prove the second part of this theorem, using inequalities (5.1) and (5.11), we can write∣∣∣∣∣∣∣
∞∑

i=0

ĝi Pi(θ)

∣∣∣∣∣∣∣ =

∞∑
i=0

|ĝi|
∣∣∣P∗i (θ)

∣∣∣
≤

∞∑
i=0

2 eλλi (` ε)i+2

i!

= 2 ε2 `2 eλ (1+ε `),

(5.16)

so the series converges absolutely.
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Theorem 6. Let ZN (θ, t) = f1(θ) f2(t) =

∞∑
i=0

∞∑
j=0

ci j P∗i (θ) P∗j(t), with | f (i)
1 (0)| ≤ Qi

1 and | f (i)
2 (0)| ≤ Qi

2,

where Q1 and Q2 are positive constants. One has

|ci j| ≤
4 eQ1+Q2Qi

1Q
j
2

i! j!
. (5.17)

Moreover, the series converges absolutely.

Proof. The application of Lemma 2, along with the assumption ZN (θ, t) = f1(θ) f2(t), enables us
to write

ci j =

∞∑
p=i

∞∑
q= j

f p
1 (0) f q

2 (0) µ j,q µi,p

p! q!
. (5.18)

If we make use of the assumption | f (i)
1 (0)| ≤ Qi

1 and | f (i)
2 (0)| ≤ Qi

2, then we can write

|ci j| ≤

∞∑
p=i

Q
p
1 µi,p

p!
×

∞∑
q= j

Q
q
2 µ j,q

q!
. (5.19)

Ultimately, by replicating the methods analogous to the proof of Theorem 5, we obtain

|ci j| ≤
4 eQ1+Q2Qi

1Q
j
2

i! j!
. (5.20)

Theorem 7. The following upper estimation holds if ZN (θ, t) satisfies the assumptions of Theorem 6.

|Z(θ, t) − ZN (θ, t)| <
4 `2 τ2 εN+4 eQ1(1+ε`) eQ2(1+ετ)

[
(`Q1)N + (τQ2)N

]
N!

. (5.21)

Proof. The application of definitions Z(θ, t) and ZN (θ, t) enables us to write

|Z(θ, t) − ZN (θ, t)| =

∣∣∣∣∣∣∣
∞∑

i=0

∞∑
j=0

ci j P∗i (θ) P∗j(t) −
N∑

i=0

N∑
j=0

ci j P∗i (θ) P∗j(t)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
N∑

i=0

∞∑
j=N+1

ci j P∗i (θ) P∗j(t)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∞∑

i=N+1

∞∑
j=0

ci j P∗i (θ) P∗j(t)

∣∣∣∣∣∣∣ .
(5.22)

With the help of Theorem 6 along with Lemma 1, the following estimations may be obtained.
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N∑
i=0

2 eQ1Qi
1 (` ε)i+2

i!
=

2 ε2`2eλε`+Q1Γ(N + 1,Q1ε`)
N!

< 2 ε2 `2 eQ1 (1+ε `),

∞∑
j=N+1

2 eQ2Q
j
2 (τ ε) j+2

j!
=

2(N + 1)QN2 eQ2ετ+Q2(ετ)N+2(Q2ετ)−N (N! − Γ(N + 1,Q2ετ))
(N + 1)!

<
2QN2 eQ2(1+ετ)(ετ)N+2

N!
,

∞∑
i=N+1

2 eQ1Qi
1 (` ε)i+2

i!
=

2(N + 1)QN1 eQ1ε`+Q1(ε`)N+2(Q1ε`)−N (N! − Γ(N + 1,Q1ε`))
(N + 1)!

<
2QN1 eQ1(1+ε`)(ε`)N+2

N!
,

∞∑
j=0

2 eQ2Q
j
2 (τ ε) j+2

j!
= 2 ε2 τ2 eQ2 (1+ε τ).

(5.23)

Using the estimations in (5.23), we get the following estimation:

|Z(θ, t) − ZN (θ, t)| <
4 `2 τ2 εN+4 eQ1(1+ε`) eQ2(1+ετ)

[
(`Q1)N + (τQ2)N

]
N!

, (5.24)

which is the desired result.

6. Some illustrative examples

This section presents three illustrative examples to ensure the proposed algorithm’s applicability
and accuracy.

Test Problem 1. [43, 44]. Consider the following equation:

∂tZ(θ, t) + ∂θZ(θ, t) + Z(θ, t) = (θ − t)2, 0 < θ, t < 1, (6.1)

with the following conditions:

Z(θ, 0) = θ2, Z(0, t) = t2, 0 < θ, t < 1, (6.2)

whose exact solution is given as: Z(θ, t) = (θ − t)2.

For N = 2, applying Theorem 4 yields

G =


1 5

2
5
2

19
3

19
3

193
12

 ,
H =


0 0
1 5

2
3 23

3

 .
(6.3)
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Therefore, Eq (4.11) can be rewritten as

(
1 5

2
19
3

5
2

19
3

193
12

) 
c00 c01 c02

c10 c11 c12

c20 c21 c22




0 0
1 5

2
3 23

3


+

(
0 1 3
0 5

2
23
3

) 
c00 c01 c02

c10 c11 c12

c20 c21 c22




1 5
2

5
2

19
3

19
3

193
12


+

(
1 5

2
19
3

5
2

19
3

193
12

) 
c00 c01 c02

c10 c11 c12

c20 c21 c22




1 5
2

5
2

19
3

19
3

193
12

 =

( 1
6

5
12

5
12

37
36

)
.

(6.4)

Moreover, conditions (4.12) and (4.13), after putting Z0(θ) = θ2 and Z1(t) = t2 enable us to write
c00 + 2c01 + 5c02 + 5

2c10 + 5c11 + 25
2 c12 + 19

3 c20 + 38
3 c21 + 95

3 c22
5
2c00 + 5c01 + 25

2 c02 + 19
3 c10 + 38

3 c11 + 95
3 c12 + 193

12 c20 + 193
6 c21 + 965

12 c22
19
3 c00 + 38

3 c01 + 95
3 c02 + 193

12 c10 + 193
6 c11 + 965

12 c12 + 613
15 c20 + 1226

15 c21 + 613
3 c22

 =


1
3
11
12
71
30

 , (6.5)

and (
c00 + 5

2c01 + 19
3 c02 + 2c10 + 5c11 + 38

3 c12 + 5c20 + 25
2 c21 + 95

3 c22
5
2c00 + 19

3 c01 + 193
12 c02 + 5c10 + 38

3 c11 + 193
6 c12 + 25

2 c20 + 95
3 c21 + 965

12 c22

)
=

( 1
3

11
12

)
. (6.6)

Now, we get a system of nine equations from (6.4), (6.5), and (6.6), and this system can be solved
exactly to give:

c00 → −10, c01 → 2, c02 → 1, c10 → 2, c11 → −2, c12 → 0, c20 → 1, c21 → 0, c22 → 0,

and, therefore: Z2(θ, t) = (θ − t)2, which is the exact solution.

Test Problem 2. [44] Consider the following equation:

∂tZ(θ, t) + ∂θZ(θ, t) + Z(θ, t) = cos(θ + t) − 2 sin(θ + t), 0 < θ, t < 1, (6.7)

with the following conditions:

Z(θ, 0) = cos(θ), Z(0, t) = cos(t), 0 < θ, t < 1, (6.8)

whose exact solution is given as: Z(θ, t) = cos(θ + t).
In Table 1, we give a comparison of absolute errors (AEs) between our method and the method

in [44] at various θ and t. Table 2 shows the maximum absolute errors (MAEs), L∞-errors, and L2-
errors at different values of N . Figure 1 shows the AEs (left) and approximate solution (right) at
N = 6. Figure 2 shows the AEs at θ = t and different values ofN . Finally, Figure 3 shows the stability
|ZN+1(θ, 0.3) − ZN (θ, 0.3)| at different values of N .
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Table 1. Comparison of the AEs for Example 2.

(θ, t) Legendre wavelet at M = 6 [44] Chebyshev wavelet at M = 6 [44] Present method at N = 6
(0.1,0.1) 9.12 × 10−5 4.53 × 10−4 1.74541 × 10−7

(0.2,0.2) 3.36 × 10−5 2.07 × 10−4 1.80389 × 10−7

(0.3,0.3) 1.86 × 10−5 6.92 × 10−5 2.69712 × 10−7

(0.4,0.4) 2.42 × 10−5 1.39 × 10−4 2.95508 × 10−7

(0.5,0.5) 8.30 × 10−5 2.64 × 10−4 2.69978 × 10−7

(0.6,0.6) 1.38 × 10−4 7.62 × 10−5 2.67529 × 10−7

(0.7,0.7) 9.90 × 10−5 2.10 × 10−5 3.3939 × 10−7

(0.8,0.8) 1.20 × 10−6 2.01 × 10−5 4.73848 × 10−7

(0.9,0.9) 9.00 × 10−5 3.00 × 10−4 5.27481 × 10−7

Table 2. Errors of Example 2.

N 2 3 4 5 6
MAEs 1.78021 × 10−2 6.68349 × 10−4 4.37397 × 10−5 2.65074 × 10−6 6.09552 × 10−7

L∞-errors 1.80157 × 10−2 6.98176 × 10−4 4.39709 × 10−5 1.67709 × 10−6 6.09552 × 10−7

L2-errors 7.18447 × 10−3 3.14754 × 10−4 1.89696 × 10−5 7.28894 × 10−7 3.05884 × 10−7

Figure 1. The AEs (left) and approximate solution (right) of Example 2 at N = 6.
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Figure 2. The AEs of Example 2 at θ = t and different values of N .
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Figure 3. Stability |ZN+1(θ, 0.3) − ZN (θ, 0.3)| of Example 2.

Test Problem 3. [45] Consider the following equation:

∂tZ(θ, t) + ∂θZ(θ, t) + Z(θ, t) = −
√

2 e−
√

2 t−θ, 0 < θ, t < 1, (6.9)
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with the following conditions:

Z(θ, 0) = e−θ, Z(0, t) = e−
√

2t, 0 < θ, t < 1, (6.10)

whose exact solution is given as: Z(θ, t) = e−(
√

2 t+θ).
In Table 3, we give a comparison of AEs between our method and the method in [45] at different

values of θ when t = 0.1. Also, Table 4 presents a comparison of AEs between our method and the
method in [45] at different values of θ when t = 0.5. Table 5 shows the MAEs, L∞-errors, and L2-
errors at different values of N . Figure 4 shows the AEs (left) and approximate solution (right) at
N = 6. Figure 5 shows the AEs at different values of N and θ when t = 0.1. Finally, Figure 6 shows
the AEs at different values of N and θ when t = 0.9.

Table 3. Comparison of the AEs for Example 3 at t = 0.1.

θ Method in [45] at M = N = 16 Present method at N = 6
0.1 2.84 × 10−7 2.7611 × 10−7

0.2 8.79 × 10−6 4.1743 × 10−7

0.3 1.20 × 10−5 4.40967 × 10−7

0.4 1.12 × 10−5 3.70131 × 10−7

0.5 7.95 × 10−6 3.0252 × 10−7

0.6 3.29 × 10−6 3.26524 × 10−7

0.7 1.78 × 10−6 4.40008 × 10−7

0.8 6.53 × 10−6 5.26572 × 10−7

0.9 1.04 × 10−5 4.39639 × 10−7

Table 4. Comparison of the AEs for Example 3 at t = 0.5.

θ Method in [45] at M = N = 16 Present method at N = 6
0.1 8.95 × 10−6 2.82859 × 10−7

0.2 4.10 × 10−6 3.28433 × 10−7

0.3 1.39 × 10−5 5.28007 × 10−7

0.4 2.07 × 10−5 7.55095 × 10−7

0.5 2.47 × 10−5 8.30558 × 10−7

0.6 2.62 × 10−5 6.76593 × 10−7

0.7 2.55 × 10−5 3.66795 × 10−7

0.8 2.31 × 10−5 1.03841 × 10−7

0.9 1.93 × 10−5 1.53321 × 10−7

Table 5. Errors of Example 3.

N 2 3 4 5 6
MAEs 1.05726 × 10−2 9.47791 × 10−4 6.56318 × 10−5 3.56142 × 10−6 1.39114 × 10−6

L∞-errors 1.13462 × 10−2 9.94362 × 10−4 4.70445 × 10−5 3.71657 × 10−6 1.63616 × 10−6

L2-errors 6.10254 × 10−3 5.10838 × 10−4 3.37253 × 10−5 1.87435 × 10−6 5.93552 × 10−7
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Figure 4. AEs (left) and approximate solution (right) of Example 3 at N = 6.
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Figure 5. The AEs of Example 3 at t = 0.1 and different values of N .
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Figure 6. The AEs of Example 3 at t = 0.9 and different values of N .

Test Problem 4. Consider the following equation:

∂tZ(θ, t) + ∂θZ(θ, t) + Z(θ, t) = f (θ, t), 0 < θ, t < 1, (6.11)

with the following conditions:

Z(θ, 0) = |θ| , Z(0, t) = |t| , 0 < θ, t < 1, (6.12)

where f (θ, t) is chosen such that the exact solution of this problem is Z(θ, t) = |θ − t|.
Figure 7 shows the AEs (left) and approximate solution (right) at N = 4. Table 6 shows the L∞-errors
and L2-errors at different values of t when N = 4.

Figure 7. The AEs (left) and approximate solution (right) of Example 4 at N = 4.
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Table 6. Errors of Example 4 at N = 4.

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L∞-errors 2.7 × 10−2 2.4 × 10−2 3.0 × 10−2 3.6 × 10−2 2.4 × 10−2 3.6 × 10−2 2.9 × 10−2 2.5 × 10−2 2.8 × 10−2

L2-errors 1.6 × 10−2 1.5 × 10−2 2.6 × 10−2 2.5 × 10−2 2.0 × 10−2 2.5 × 10−2 2.6 × 10−2 1.5 × 10−2 1.6 × 10−2

Remark 5. According to the error analysis section, the solutions need to be smooth enough. For
a non-smooth solution, it is better to be constructed fractional-order Pell coefficient polynomials as
basis functions.

7. Concluding remarks

This work was confined to introducing new polynomials whose coefficients are the celebrated Pell
numbers. New formulas regarding these polynomials, such as moment, linearization, and derivative
formulas of these polynomials, have been found and used to design a numerical algorithm to treat the
linear hyperbolic first-order partial differential equations. The spectral tau method was utilized for such
a purpose. The numerical results demonstrated the high accuracy of our proposed numerical algorithm.
The use of these polynomials in numerical analysis is novel to the best of our knowledge. In future
work, we aim to introduce other polynomials that generalize our introduced polynomials. In addition,
we believe that these polynomials can be utilized to solve other types of differential equations.
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