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1. Introduction

Einstein metrics are pivotal in numerous domains of mathematical physics and differential geome-
try. They are also of interest in pure mathematics, particularly in the fields of geometric analysis and
algebraic geometry. An Einstein metric can be regarded as a fixed solution (up to diffeomorphism and
scaling) of the Hamilton Ricci flow equation. On a Riemannian manifold (M, g), a Ricci soliton is said
to exist when there is a smooth vector field X and a constant λ in the reals that satisfy the condition
stated below:

Ri j +
1
2

(LXg)i j = λgi j,

where Ri j is the Ricci curvature tensor, and LXg stands for the Lie derivative of g with respect to the
vector field X. This concept was introduced by Hamilton in [1], and later utilized by Perelman in his
proof of the long-standing Poincare conjecture [2]. Lauret further generalized the notion of Einstein
metrics to algebraic Ricci solitons in the Riemannian context, introducing them as a natural exten-
sion in [3]. Subsequently, Onda and Batat applied this framework to pseudo-Riemannian Lie groups,
achieving a complete classification of algebraic Ricci solitons in three-dimensional Lorentzian Lie
groups in [4]. Additionally, they proved that within the framework of pseudo-Riemannian manifolds,
there is algebraic Ricci solitons that are not of the conventional Ricci soliton type.

In [5], Etayo and Santamaria explored the concept of distinguished connections on (J2 = ±1)-metric
manifolds. This sparked interest among mathematicians in studying Ricci solitons linked to various
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affine connections, which can be found in [6–8]. The Bott connection was introduced in earlier works
(see [9–11]). In [12], the authors developed a theory on geodesic variations under metric changes in a
geodesic foliation, with the Bott connection serving as the primary natural connection respecting the
foliation’s structure. In [13], Wu and Wang studied affine Ricci solitons and quasi-statistical structures
on three-dimensional Lorentzian Lie groups associated with the Bott connection. Furthermore, in
[14, 15], the authors examined the algebraic schouten solitons and affine Ricci solitons concerning
various affine connections.

Inspired by Lauret’s work, Wears introduced algebraic T-solitons, linking them to T-solitons in [16].
Later, in [7], Azami introduced Schouten solitons, as a new type of generalized Ricci soliton. In this
paper, I focus on algebraic Schouten solitons concerning the Bott connection with three distributions,
aiming to classify and describe them on three-dimensional Lorentzian Lie groups.

In Section 2, I introduce the fundamental notions associated with three-dimensional Lie groups and
algebraic Schouten soliton. In Sections 3–5, I discuss and present algebraic Schouten solitons concern-
ing the Bott connection on three-dimensional Lorentzian Lie groups, each focusing on a different type
of distribution.

2. Preliminaries

In [17], Milnor conducted a survey of both classical and recent findings on left-invariant Riemannian
metrics on Lie groups, particularly on three-dimensional unimodular Lie groups. Furthermore, in
[18], Rahmani classified three-dimensional unimodular Lie groups in the Lorentzian context. The
non-unimodular cases were handled in [19, 20]. Throughout this paper, I use {Gi}

7
i=1 for connected,

simply connected three-dimensional Lie groups equipped with a left-invariant Lorentzian metric g.
Their corresponding Lie algebras are denoted by {gi}7i=1, and each possess a pseudo-orthonormal basis
{e1, e2, e3} (with e3 timelike, see [4]). Let ∇LC and RLC denote the Levi-Civita connection and curvature
tensor of Gi, respectively, then

RLC(X,Y)Z = ∇LC
X ∇

LC
Y Z − ∇LC

Y ∇
LC
X Z − ∇LC

[X,Y]Z.

The Ricci tensor of (Gi, g) is defined as follows:

ρLC(X,Y) = −g(RLC(X, e1)Y, e1) − g(RLC(X, e2)Y, e2) + g(RLC(X, e3)Y, e3).

Moreover, I have the expression for the Ricci operator RicLC:

ρLC(X,Y) = g(RicLC(X),Y).

Next, recall the Bott connection, denoted by ∇B. Consider a smooth manifold (M, g) that is equipped
with the Levi-Civita connection ∇, and let T M represent its tangent bundle, spanned by {e1, e2, e3}. I
introduce a distribution D spanned by {e1, e2} and its orthogonal complement D⊥, which is spanned by
{e3}. The Bott connection ∇B associated with distribution D is then defined as follows:

∇B
XY =


πD(∇LC

X Y), X,Y ∈ Γ∞(D),
πD([X,Y]), X ∈ Γ∞(D⊥), Y ∈ Γ∞(D),
πD⊥([X,Y]), X ∈ Γ∞(D), Y ∈ Γ∞(D⊥),
πD⊥(∇LC

X Y), X,Y ∈ Γ∞(D⊥),

(2.1)
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where πD (respectively, πD⊥) denotes the projection onto D (respectively, D⊥). For a more detailed
discussion, refer to [9–11,21]. I denote the curvature tensor of the Bott connection ∇B by RB, which is
defined as follows:

RB(X,Y)Z = ∇B
X∇

B
YZ − ∇B

Y∇
B
XZ − ∇B

[X,Y]Z. (2.2)

The Ricci tensor ρB associated to the connection ∇B is defined as:

ρB(X,Y) =
B(X,Y) + B(Y, X)

2
,

where
B(X,Y) = −g(RB(X, e1)Y, e1) − g(RB(X, e2)Y, e2) + g(RB(X, e3)Y, e3).

Using the Ricci tensor ρB, the Ricci operator RicB is given by:

ρB(X,Y) = g(RicB(X),Y). (2.3)

Then, I have the definition of the Schouten tensor as follows:

S B(ei, e j) = ρB(ei, e j) −
sB

4
g(ei, e j),

where sB represents the scalar curvature. Moreover, I generalized the Schouten tensor to:

S B(ei, e j) = ρB(ei, e j) − sBλ0g(ei, e j),

where λ0 is a real number. By [22], I obtain the expression of sB as

sB = ρB(e1, e1) + ρB(e2, e2) − ρB(e3, e3).

Definition 1. A manifold (Gi, g) is called an algebraic Schouten soliton with associated to the connec-
tion ∇B if it satisfies:

RicB = (sBλ0 + c)Id + DB,

where c is a constant, and DB is a derivation of gi, i.e.,

DB[X1, X2] = [DBX1, X2] + [X1,DBX2], f or X1, X2 ∈ gi. (2.4)

3. Algebraic Schouten soliton concerning connection ∇B

In this section, I derive the algebraic criterion for the three-dimensional Lorentzian Lie group to
exhibit an algebraic Schouten soliton related to the connection ∇B. Moreover, I indicate that G4 and G7

do not have such solitons.

3.1. Algebraic Schouten soliton of G1

According to [4], I have the expression for g1:

[e1, e2] = αe1 − βe3, [e1, e3] = −αe1 − βe2, [e2, e3] = βe1 + αe2 + αe3,

where α , 0. From this, I derive the following theorem.
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Theorem 2. If (G1, g) constitutes an algebraic Schouten soliton concerning connection ∇B; then, it
fulfills the conditions: β = 0 and c = −1

2α
2 + 2(α2 + β2)λ0.

Proof. From [23], the expression for RicB is as follows:

RicB


e1

e2

e3

 =

−(α2 + β2) αβ 1

2αβ

αβ −(α2 + β2) −1
2α

2

−1
2αβ

1
2α

2 0



e1

e2

e3

 .
The scalar curvature is sB = −2(α2 + β2). Now, I can express DB as follows:

DBe1 = −(α2 + β2 + sλ0 + c)e1 + αβe2 +
αβ

2
e3,

DBe2 = αβe1 − (α2 + β2 + sλ0 + c)e2 −
α2

2
e3,

DBe3 = −
αβ

2
e1 +
α2

2
e2 + (2(α2 + β2)λ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B on (G1, g), if
and only if the following condition satisfies:

5
2
α2β + 2β3 − 2λ0β(α2 + β2) + cβ = 0,

α3

2
+ 2αβ2 − 2λ0α(α2 + β2) + cα = 0,

α2β = 0,
2α2β + β3 − 4λ0β(α2 + β2) + 2cβ = 0,

α3

2
+

3
2
αβ2 − 2λ0α(α2 + β2) + cα = 0.

Since α , 0, I have β = 0 and c = −1
2α

2 + 2(α2 + β2)λ0. □

3.2. Algebraic Schouten soliton of G2

According to [4], I have the expression for g2:

[e1, e2] = γe2 − βe3, [e1, e3] = −βe2 − γe3, [e2, e3] = αe1,

where γ , 0. From this, I derive the following theorem.

Theorem 3. If (G2, g) constitutes an algebraic Schouten soliton concerning the connection ∇B, then it
fulfills the conditions: α = 0 and c = −β2 − γ2 + (β2 + 2γ2)λ0.

Proof. From [23], the expression for RicB is as follows:

RicB


e1

e2

e3

 =

−(β2 + γ2) 0 0

0 −(γ2 + αβ) αγ

2
0 −

αγ

2 0



e1

e2

e3

 .
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The scalar curvature is sB = −(β2 + 2γ2 + αβ). Now, I can express DB as follows:
DBe1 = −(β2 + γ2 − (β2 + 2γ2 + αβ)λ0 + c)e1,

DBe2 = −(γ2 + αβ − (β2 + 2γ2 + αβ)λ0 + c)e2 +
αγ

2
e3,

DBe3 = −
αγ

2
e2 + ((β2 + 2γ2 + αβ)λ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B on (G2, g), if
and only if the following condition satisfies:

αγ2 − β3 + αβ2 + (β2 + 2γ2 + αβ)βλ0 − cβ = 0,
γ(β2 + γ2 + αβ − (β2 + 2γ2 + αβ)λ0 + c) = 0,
αγ2 − β3 − 2βγ2 − αβ2 + (β2 + 2γ2 + αβ)βλ0 − cβ = 0,
α(−β2 + αβ − (β2 + 2γ2 + αβ)λ0 + c) = 0.

Suppose that α = 0, then c = −β2 − γ2 + (β2 + 2γ2)λ0. If α , 0, I have
β(β2 + γ2 − (β2 + 2γ2 + αβ)λ0 + c) = 0,
β2 + γ2 + αβ − (β2 + 2γ2 + αβ)λ0 + c = 0,
− β2 + αβ − (β2 + 2γ2 + αβ)λ0 + c = 0.

Since γ , 0, solving the equations of the above system gives 2β2+γ2 = 0, which is a contradiction. □

3.3. Algebraic Schouten soliton of G3

According to [4], I have the expression for g3:

[e1, e2] = −γe3, [e1, e3] = −βe2, [e2, e3] = αe1.

From this, I derive the following theorem.

Theorem 4. If (G3, g) is an algebraic Schouten soliton concerning connection ∇B; then, one of the
following cases holds:

i. α = β = γ = 0, for all c;

ii. α , 0, β = γ = 0, c = 0;

iii. α = γ = 0, β , 0, c = 0;

iv. α , 0, β , 0, γ = 0, c = 0;

v. α = β = 0, γ , 0, c = 0;

vi. α , 0, β = 0, γ , 0, c = −αγ + αγλ0;

vii. α = 0, β , 0, γ , 0, c = −βγ + βγλ0.
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Proof. From [23], the expression for RicB is as follows:

RicB


e1

e2

e3

 =

−βγ 0 0

0 −αγ 0
0 0 0



e1

e2

e3

 .
The scalar curvature is sB = −γ(α + β). Now, I can express DB as follows:

DBe1 = −(βγ − γ(α + β)λ0 + c)e1,

DBe2 = −(αγ − γ(α + β)λ0 + c)e2,

DBe3 = (γ(α + β)λ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B on (G3, g), if
and only if the following condition satisfies:

βγ2 + αγ2 − γ2(α + β)λ0 + cγ = 0,
β2γ − βγ(α + β)λ0 + cβ = 0,
α2γ − αβγ − αγ(α + β)λ0 + cα = 0.

(3.1)

Assuming that γ = 0. In this case, (3.1) becomes:βc = 0,
αc = 0.

(3.2)

If β = 0, for Cases i and ii, system (3.1) holds. If β , 0, for Cases iii and iv, system (3.1) holds. Then,
I assume that γ , 0. Thus, system (3.1) becomes:βγ + αγ − γ(α + β)λ0 + c,

αβ = 0.
(3.3)

If β = 0, I have Cases v and vi. If β , 0, for Case vii, system (3.1) holds □

3.4. Algebraic Schouten soliton of G4

According to [4], g4 takes the following form:

[e1, e2] = −e2 + (2η − β)e3, [e1, e3] = e3 − βe2, [e2, e3] = αe1,

where η = 1 or − 1. From this, I derive the following theorem.

Theorem 5. (G4, g) is not an algebraic Schouten soliton concerning connection ∇B.

Proof. According to [23], the expression for RicB is derived as follows:

RicB


e1

e2

e3

 =

−(β − η)2 0 0

0 2αη − αβ − 1 −1
2α

0 1
2α 0



e1

e2

e3

 .
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The scalar curvature is sB = −((β − η)2 + αβ − 2αη + 1). Now, I can express DB as follows:
DBe1 = −((β − η)2 − ((β − η)2 + αβ − 2αη + 1)λ0 + c)e1,

DBe2 = (2αη − αβ − 1 + ((β − η)2 + αβ − 2αη + 1)λ0 − c)e2 −
a
2

e3,

DBe3 =
α

2
e2 + (((β − η)2 + αβ − 2αη + 1)λ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B on (G4, g), if
and only if the following condition satisfies:

− (2η − β)((β − η)2 − 2αη + αβ + 1 − ((β − η)2 + αβ − 2αη + 1)λ0 + c) = α,
β((β − η)2 + 2αη − αβ − 1 − ((β − η)2 + αβ − 2αη + 1)λ0 + c) = α,
(β − η)2 − ((β − η)2 + αβ − 2αη + 1)λ0 + c = α(η − β),
α((β − η)2 + 2αη − αβ − 1 + ((β − η)2 + αβ − 2αη + 1)λ0 − c) = 0.

(3.4)

I now analyze the system under different assumptions.
Assuming that α = 0. Then, system (3.4) becomes:

(2η − β)((β − η)2 + 1 − ((β − η)2 + 1)λ0 + c) = 0,
β((β − η)2 − 1 − ((β − η)2 + 1)λ0 + c) = 0,
(β − η)2 − ((β − η)2 + 1)λ0 + c = 0.

Upon direct calculation, it is evident that (2η − β) = β = 0, which leads to a contradiction.
If α , 0, we have

(2η − β)(αη − 1) = α,
β(3αη − 2αβ − 1) = α,
(β − η)2 − α(η − β) − ((β − η)2 − 2αη + αβ + 1)λ0 + c = 0,
α((β − η)2 + 2αη − αβ − 1 + ((β − η)2 − 2αη + αβ + 1)λ0 − c) = 0.

(3.5)

From the last two equations in (3.5), we have (β − η)2 = (1 − αη). Substituting into the first two
equations in (3.5) yields α = η, which is a contradiction. Therefore, system (3.4) has no solutions.
Then, the theorem is true. □

3.5. Algebraic Schouten soliton of G5

According to [4], we have the expression for g5:

[e1, e2] = 0, [e1, e3] = αe1 + βe2, [e2, e3] = γe1 + δe2,

where α + δ , 0 and αγ − βδ = 0. From this, we derive the following theorem.

Theorem 6. If (G5, g) constitutes an algebraic Schouten soliton concerning connection ∇B, then c = 0.
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Proof. According to [23], the expression for RicB is derived as follows:

RicB


e1

e2

e3

 =

0 0 0
0 0 0
0 0 0



e1

e2

e3

 .
The scalar curvature is sB = 0. Now, I can express DB as follows:

DBe1 = −ce1,

DBe2 = −ce2,

DBe3 = −ce3.

Hence, by (2.4), I conclude that there is an algebraic Schouten soliton associated with ∇B on (G5, g).
Furthermore, for this algebraic Schouten soliton, I have c = 0. □

3.6. Algebraic Schouten soliton of G6

According to [4], I have the expression for g6:

[e1, e2] = αe2 + βe3,

[e1, e3] = γe2 + δe3,

[e2, e3] = 0,

where α + δ , 0 and αγ − βδ = 0. From this, I derive the following theorem.

Theorem 7. If (G6, g) constitutes an algebraic Schouten soliton concerning connection ∇B, then one
of the following cases holds:

i. α = β = γ = 0, δ , 0, c = 0;

ii. α = β = 0, γ , 0, δ , 0, c = 0;

iii. α , 0, β = γ = δ = 0, c = −α2 + 2α2λ0;

iv. α , 0, β = γ = 0, δ , 0, c = −α2 + 2α2λ0.

Proof. From [23], I have the expression for RicB as follows:

RicB


e1

e2

e3

 =

−(α2 + βγ)2 0 0

0 −α2 0
0 0 0



e1

e2

e3

 .
The scalar curvature is sB = −(2α2 + βγ). Now, I can express DB as follows:

DBe1 = −(α2 + βγ − (2α2 + βγ)λ0 + c)e1,

DBe2 = −(α2 − (2α2 + βγ)λ0 + c)e2,

DBe3 = ((2α2 + βγ)λ0 − c)e3.

(3.6)
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B on (G6, g), if
and only if the following condition satisfies:

β(2α2 + βγ − (2α2 + βγ)λ0 + c) = 0,
α(α2 + βγ − (2α2 + βγ)λ0 + c) = 0,
γ(βγ − (2α2 + βγ)λ0 + c) = 0,
δ(α2 + βγ − (2α2 + βγ)λ0 + c) = 0.

From the first equation above, we have either β = 0 or β , 0. I now analyze the system under different
assumptions.

Assuming that β = 0, I have: 
α(α2 − 2α2λ0 + c) = 0,
γ(−2α2λ0 + c) = 0,
δ(α2 − 2α2λ0 + c) = 0.

(3.7)

Given αγ − βδ = 0 and α + δ , 0, assume first that α = 0. In this case, system (3.7) can be simplified
to:

sBλ0 + c = 0.

Then, I have Cases i and ii. If β , 0, system (3.7) becomes:

α2 + sBλ0 + c = 0. (3.8)

Then, I have Cases iii and iv.
If β , 0, system (3.7) becomes:β(2α2 + βγ − (2α2 + βγ)λ0 + c) = 0,

α(α2 + βγ − (2α2 + βγ)λ0 + c) = 0,
(3.9)

which is a contradiction. □

3.7. Algebraic Schouten soliton of G7

According to [4], I have the expression for g7:

[e1, e2] = −αe1 − βe2 − βe3,

[e1, e3] = αe1 + βe2 + βe3,

[e2, e3] = γe1 + δe2 + δe3,

where α + δ , 0 and αδ = 0. From this, I derive the following theorem.

Theorem 8. (G7, g) is not an algebraic Schouten soliton concerning connection ∇B.

Proof. From [23], I have the expression for RicB as follows:

RicB


e1

e2

e3

 =

−α2 1

2β(δ − α) −δ(α + δ)
1
2β(δ − α) −(α2 + β2 + βδ) −δ2 − 1

2 (βγ + αδ)
δ(α + δ) δ2 + 1

2 (βγ + αδ) 0



e1

e2

e3

 .
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The scalar curvature is sB = −(2α2 + β2 + βδ). Now, I can express DB as follows:
DBe1 = −(α2 − (2α2 + β2 + βδ)λ0 + c)e1 +

1
2β(δ − α)e2 − δ(α + δ)e3,

DBe2 =
1
2β(δ − α)e1 − (α2 + β2 + βδ − (2α2 + β2 + βδ)λ0 + c)e2 − (δ2 + 1

2 (βγ + αδ))e3,

DBe3 = δ(α + δ)e1 + (δ2 + 1
2 (βγ + αδ))e2 + ((2α2 + β2 + βδ)λ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B on (G7, g), if
and only if the following condition satisfies:

α(α2 + β2 + βα + sBλ0 + c) + (γ + β)δ(α + δ) + 1
2β

2(δ − α) = α(δ2 + 1
2 (βγ + αδ)),

β(α + sBλ0 + c) + δ2(α + δ) + 1
2αβ(δ − α) = 0,

β(2α2 + β2 + βα + sBλ0 + c) + δ(δ − α)(α + δ) = 2β(δ2 + 1
2 (βγ + αδ)),

α(sBλ0 + c) + α(δ2 + 1
2 (βγ + αδ)) + 1

2β(β − γ)(δ − α) + βδ(α + δ) = 0,
β(−β2 − βα + sBλ0 + c) − 1

2β(δ − α)2 + 2β(δ2 + 1
2 (βγ + αδ)) = 0,

β(α2 + sBλ0 + c) = αδ(α + δ) + 1
2βδ(δ − α),

γ(β2 + βα + sBλ0 + c) = δ(α − δ)(α + δ) − 1
2β(δ − α)2,

δ(sBλ0 + c) + δ(δ2 + 1
2 (βγ + αδ)) = βδ(α + δ) + 1

2β(δ − α)(β − γ),
δ(α2 + β2 + βα + sBλ0 + c) − δ(δ2 + 1

2 (βγ + αδ)) = (β + γ)δ(α + δ) + 1
2β

2(δ − α).

Recall that α + δ , 0 and αγ = 0. I now analyze the system under different assumptions:
Assume first that α , 0, γ = 0. Then, the above system becomes:

α(α2 + β2 + βα + sλ0 + c) + βδ(α + δ) + 1
2β

2(δ − α) = α(δ2 + 1
2αδ),

β(α + sλ0 + c) + δ2(α + δ) + 1
2αβ(δ − α) = 0,

β(2α2 + β2 + βα + sλ0 + c) + δ(δ − α)(α + δ) = 2β(δ2 + 1
2αδ),

α(sλ0 + c) + α(δ2 + 1
2αδ) +

1
2β

2(δ − α) + βδ(α + δ) = 0,
β(−β2 − βα + sλ0 + c) − 1

2β(δ − α)2 + 2β(δ2 + 1
2αδ) = 0,

β(α2 + sλ0 + c) = αδ(α + δ) + 1
2βδ(δ − α),

δ(α − δ)(α + δ) − 1
2β(α − δ)

2 = 0,
βδ(α + δ) + 1

2β
2(δ − α) = δ(sλ0 + c) + δ(δ2 + 1

2αδ),
βδ(α + δ) + 1

2β
2(δ − α) = δ(α2 + β2 + βα + sλ0 + c) − δ(δ2 + 1

2αδ).

(3.10)

Next, suppose that β = 0, I have:α(α2 + sλ0 + c) − α(δ2 +
1
2
αδ) = 0,

δ2(α + δ) = 0.
(3.11)

Which is a contradiction.
If β , 0, we further assume that δ = 0. Under this assumption, the last equation in (3.10) yields

α2β = 0, which leads to a contradiction. If we presume α = δ, then the equations in (3.10) imply that
αδ(α+ δ) = −δ2(α+ δ), which is a contradiction. Additionally, if I assume that δ , 0 and δ , −α, then
from equation system (3.10), I have the following equation:

α2 + sλ0 + c =
(δ − α)2

2
,

− β2 − αβ =
(δ − α)2

2
− (δ2 +

αδ

2
).

(3.12)
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Substituting (3.12) into the third equation in system (3.10) yields α2 = −1
2 (δ − α)2, which is a contra-

diction.
Second, let α = 0, γ , 0. Then, if β = 0, the second equation in (3.10) reduces to δ3 = 0, which

contradicts with α+δ , 0. On the other hand, if β , 0, I can derive from the second and sixth equations
in system (3.10) that δ + 1

2β = 0. Substituting into the fourth equation in (3.10) yields γ = 0, which is
a contradiction. □

4. Algebraic Schouten solitons concerning connection ∇B1

In this section, I formulate the algebraic criterion necessary for a three-dimensional Lorentzian
Lie group to have an algebraic Schouten soliton related to the Bott connection ∇B1 . Recall the Bott
connection, denoted by ∇B1 , with the second distribution. Consider a smooth manifold (M, g) that
is equipped with the Levi-Civita connection ∇, and let T M represent its tangent bundle, spanned by
{e1, e2, e3}. I introduce a distribution D1 spanned by {e1, e3} and its orthogonal complement D⊥1 , which
is spanned by {e2}. The Bott connection ∇B

1 associated with the distribution D1 is then defined as
follows:

∇
B1
X Y =


πD1(∇

LC
X Y), X,Y ∈ Γ∞(D1),

πD1([X,Y]), X ∈ Γ∞(D⊥1 ), Y ∈ Γ∞(D1),
πD⊥1

([X,Y]), X ∈ Γ∞(D1), Y ∈ Γ∞(D⊥1 ),

πD⊥1
(∇LC

X Y), X,Y ∈ Γ∞(D⊥1 ),

where πD1 (respectively, πD⊥1
) denotes the projection onto D1 (respectively, D⊥1 ).

4.1. Algebraic Schouten soliton of G1

Lemma 9. [13] The Ricci tensor ρB1 concerning connection ∇B1 of (G1, g) is given by:

ρB1(ei, e j) =


α2 − β2 1

2αβ −αβ
1
2αβ 0 1

2α
2

−αβ 1
2α

2 β2 − α2

 . (4.1)

From this, I derive the following theorem.

Theorem 10. If (G1, g) constitutes an algebraic Schouten soliton concerning connection ∇B1 , then it
fulfills the conditions: β = 0 and c = 1

2α
2 − 2α2λ0.

Proof. According to (4.1), the expression for RicB1 is derived as follows:

RicB1


e1

e2

e3

 =

α2 − β2 1

2αβ αβ
1
2αβ 0 −1

2α
2

−αβ 1
2α

2 α2 − β2



e1

e2

e3

 .
The scalar curvature is sB1 = 2(α2 − β2). Now, I can express DB1 as follows:

DB1e1 = (α2 − β2 − 2(α2 − β2)λ0 − c)e1 +
1
2
αβe2 + αβe3,

DB1e2 =
1
2
αβe1 − (2(α2 − β2)λ0 + c)e2 −

α2

2
e3,

DB1e3 = −αβe1 +
1
2
α2e2 + (α2 − β2 − 2(α2 − β2)λ0 − c)e3.
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B1 on (G1, g), if
and only if the following condition satisfies:



α(2(α2 − β2)λ0 + c) + 2αβ2 −
1
2
α3 = 0,

α2β = 0,
β(2(α2 − β2)λ0 + c) − 2α2β = 0,

α(α2 − β2 − 2(α2 − β2)λ0 − c) − αβ2 −
1
2
α3 = 0,

β(α2 − 2β2 − 2(α2 − β2)λ0 − c) = 0,

α(2(α2 − β2)λ0 + c) −
1
2
α3 + 2αβ2 = 0.

(4.2)

Since α , 0, the second equation in (4.2) yields β = 0. Then, I have c = 1
2α

2 − 2α2λ0. □

4.2. Algebraic Schouten soliton of G2

Lemma 11. [13] The Ricci tensor ρB1 concerning the connection ∇B1 of (G2, g) is given by:

ρB1(ei, e j) =


−(β2 + γ2) 0 0

0 0 −1
2αγ

0 −1
2αγ αβ + γ

2

 . (4.3)

From this, I derive the following theorem.

Theorem 12. If (G2, g) constitutes an algebraic Schouten soliton concerning connection ∇B1; then, it
fulfills the conditions: α = β = 0 and c = −γ2 + γ2λ0.

Proof. According to (4.3), the expression for RicB1 is derived as follows:

RicB1


e1

e2

e3

 =

−(β2 + γ2) 0 0

0 0 1
2αγ

0 −1
2αγ −αβ − γ

2



e1

e2

e3

 .
The scalar curvature is sB1 = −(β2 + γ2 + αβ). Now, I can express DB1 as follows:


DB1e1 = −(β2 + γ2 − (β2 + γ2 + αβ)λ0 + c)e1,

DB1e2 = ((β2 + γ2 + αβ)λ0 − c)e2 +
1
2
αγe3,

DB1e3 = −
1
2
αγe2 − (αβ + γ2 − (β2 + γ2 + αβ)λ0 + c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B1 on (G2, g), if
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and only if the following condition satisfies:

α(β2 + γ2 − (β2 + γ2 + αβ)λ0 + c) +
1
2
αβγ = 0,

β((β2 + γ2 + αβ)λ0 − c) + αγ2 = 0,
β(β2 + 2γ2 + αβ − (β2 + γ2 + αβ)λ0 + c) − αγ2 = 0,

γ(β2 + γ2 − (β2 + γ2 + αβ)λ0 + c) +
1
2
αβγ = 0,

α(αβ − β2 − (β2 + γ2 + αβ)λ0 + c) = 0.

(4.4)

By solving (4.4), I get α = β = 0, c = −γ2 + γ2λ0. □

4.3. Algebraic Schouten soliton of G3

Lemma 13. [13] The Ricci tensor ρB1 concerning connection ∇B1 of (G3, g) is given by:

ρB1(ei, e j) =


−βγ 0 0

0 0 0
0 0 αβ

 . (4.5)

From this, I derive the following theorem.

Theorem 14. If (G3, g) constitutes an algebraic Schouten soliton concerning connection ∇B1; then,
one of the following cases holds:

i. α = β = γ = 0, for all c;

ii. α , 0, β = γ = 0, c = 0;

iii. α = 0, β , 0, γ = 0, c = 0;

iv. α , 0, β , 0, γ = 0, c = αβλ0;

v. α = β = 0, γ , 0, c = 0,;

vi. α , 0, β = 0, γ , 0, c = 0;

vii. α = 0, β , 0, γ , 0, c = −βγ + βγλ0.

Proof. According to (4.5), the expression for RicB1 is derived as follows:

RicB1


e1

e2

e3

 =

−βγ 0 0

0 0 0
0 0 −αβ



e1

e2

e3

 .
The scalar curvature is sB1 = −(βγ + αβ). Now, I can express DB1 as follows:

DB1e1 = −(βγ − (βγ + αβ)λ0 + c)e1,

DB1e2 = ((βγ + αβ)λ0 − c)e2,

DB1e3 = −(αβ − (βγ + αβ)λ0 + c)e3.
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B1 on (G3, g), if
and only if the following condition satisfies:

γ(βγ − αβ − (βγ + αβ)λ0 + c) = 0,
β(αβ + βγ − (βγ + αβ)λ0 + c) = 0,
α(αβ − βγ − (βγ + αβ)λ0 + c) = 0.

(4.6)

Assume first that γ = 0; then, (4.6) reduces to:β(αβ − αβλ0 + c) = 0,
α(αβ − αβλ0 + c) = 0.

Then, I have Cases i–iv.
Now, let γ , 0. From the last two equations in (4.6), I obtain αβγ = 0. If β = 0, then it follows that

c = 0. Therefore, Cases v and vi are valid. If β , 0, we deduce c = −βγ + βγλ0; then, for Case vii,
system (4.6) holds. □

4.4. Algebraic Schouten soliton of G4

Lemma 15. [13] The Ricci tensor ρB1 concerning connection ∇B1 of (G4, g) is given by:

ρB1(ei, e j) =


−(β − η)2 0 0

0 0 1
2α

0 1
2α αβ + 1

 . (4.7)

From this, I derive the following theorem.

Theorem 16. If (G4, g) constitutes an algebraic Schouten soliton concerning connection ∇B1; then, it
fulfills the conditions: β = η, α = −β and c = 0.

Proof. According to (4.7), the expression for RicB1 is derived as follows:

RicB1


e1

e2

e3

 =

−(β − η)2 0 0

0 0 −1
2α

0 1
2α −αβ − 1



e1

e2

e3

 .
The scalar curvature is sB1 = −((β − η)2 + αβ + 1). Now, I can express DB1 as follows:

DB1e1 = −((β − η)2 − ((β − η)2 + αβ + 1)λ0 + c)e1,

DB1e2 = (((β − η)2 + αβ + 1)λ0 − c)e2 −
1
2
αe3,

DB1e3 =
1
2
α − (αβ + 1 − ((β − η)2 + αβ + 1)λ0 + c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B1 on (G4, g), if
the following condition satisfies:

(β − η)2 − ((β − η)2 + αβ + 1)λ0 + c − α(η − β) = 0,
(2η − β)((β − η)2 − αβ − 1 − ((β − η)2 + αβ + 1)λ0 + c) + α = 0,
β((β − η)2 + αβ + 1 − ((β − η)2 + αβ + 1)λ0 + c) − α = 0,
α(αβ + 1 − (β − η)2 − ((β − η)2 + αβ + 1)λ0 + c) = 0.

(4.8)
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By solving the above system, I obtain the solutions β = η, α = −β and c = 0. In this case, the theorem
is true. □

4.5. Algebraic Schouten soliton of G5

Lemma 17. [13] The Ricci tensor ρB1 concerning connection ∇B1 of (G5, g) is given by:

ρB1(ei, e j) =


α2 0 0
0 0 0
0 0 −(βγ + α2)

 . (4.9)

From this, I derive the following result.

Theorem 18. If (G5, g) constitutes an algebraic Schouten soliton concerning connection ∇B1; then,
one of the following cases holds:

i. α = β = γ = 0, c = 0;

ii. α = β = 0, γ , 0, c = 0;

iii. α = 0, β , 0, γ , 0, c = −βγ + βγλ0;

iv. α , 0, β = δ = γ = 0, c = −α2 − 2α2λ0;

v. α , 0, β = γ = 0, δ , 0, c = α2 − 2α2λ0.

Proof. From (4.9), I have the expression for RicB1 as follows:

RicB1


e1

e2

e3

 =

α2 0 0
0 0 0
0 0 (βγ + α2)



e1

e2

e3

 .
The scalar curvature is sB1 = (2α2 + βγ). Now, I can express DB1 as follows:

DB1e1 = (α2 − (2α2 + βγ)λ0 − c),
DB1e2 = −((2α2 + βγ)λ0 + c)e2

DB1e3 = (βγ + α2 − (2α2 + βγ)λ0 − c)e3.

Therefore, based on Eq (2.4), there exists an algebraic Schouten soliton associated to ∇B1 on (G5, g), if
and only if the following condition satisfies:

α(βγ + α2 − (βγ + 2α2)λ0 − c) = 0,
β(βγ + 2α2 − (βγ + 2α2)λ0 − c) = 0,
γ(βγ − (βγ + 2α2)λ0 − c) = 0,
δ(βγ + α2 − (βγ + 2α2)λ0 − c) = 0.

(4.10)

Assume first that α = 0, so I have: 
β(βγ − βγλ0 − c) = 0,
γ(βγ − βγλ0 − c) = 0,
δ(βγ − βγλ0 − c) = 0.

(4.11)
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Then, for Cases i–iii, system (4.10) holds.
Now, I let α , 0. The second equation in (4.10) leads to β = 0, then system (4.10) reduces to:

α(α2 − 2α2λ0 − c) = 0,
γ(2α2λ0 + c) = 0,
δ(α2 − 2α2λ0 − c) = 0.

(4.12)

This proves that Cases iv and v hold. □

4.6. Algebraic Schouten soliton of G6

Lemma 19. [13] The Ricci tensor ρB1 concerning connection ∇B1 of (G6, g) is given by:

ρB1(ei, e j) =


−(δ2 + βγ) 0 0

0 0 0
0 0 δ2

 . (4.13)

From this, I derive the following result.

Theorem 20. If (G6, g) constitutes an algebraic Schouten soliton concerning connection ∇B1; then,
one of the following cases holds:

1) α = β = γ = 0, δ , 0, c = −δ2 + 2δ2λ0;

2) α , 0, β = δ = γ = 0, c = 0;

3) α , 0, β , 0, δ = γ = 0, c = 0;

4) α , 0, β = γ = 0, δ , 0, c = −δ2 + 2δ2λ0.

Proof. From (4.13), I have the expression for RicB1 as follows:

RicB1


e1

e2

e3

 =

−(δ2 + βγ) 0 0

0 0 0
0 0 −δ2



e1

e2

e3

 .
The scalar curvature is sB1 = −(2δ2 + βγ). Now, I can express DB1 as follows:

DB1e1 = −(δ2 + βγ − (2δ2 + βγ)λ0 + c)e1,

DB1e2 = ((2δ2 + βγ)λ0 − c)e2,

DB1e3 = −(δ2 − (2δ2 + βγ)λ0 + c).

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B1 on (G6, g), if
and only if the following condition satisfies:

α(δ2 + βγ − (2δ2 + βγ)λ0 + c) = 0,
β(βγ − (2δ2 + βγ)λ0 + c) = 0,
γ(2δ2 + βγ − (2δ2 + βγ)λ0 + c) = 0,
δ(δ2 + βγ − (2δ2 + βγ)λ0 + c) = 0.

(4.14)
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Assume first α = 0. Then, α + δ , 0 and αγ − βδ = 0 leads to β = 0 and δ , 0. Therefore, system
(4.14) reduces to: γ(2δ2 − 2δ2λ0 + c) = 0,

δ(δ2 − 2δ2λ0 + c) = 0.
(4.15)

Then, for Case 1), system (4.14) holds.
Now, let α , 0. Suppose δ = 0, from the equations in (4.14) I can derive that γ = 0. Then, I

have c = 0. Consequently, I have Cases 2) and 3). If δ , 0, the equations in (4.14) imply that γ = 0.
Substituting into the second equation in (4.14) leads to β = 0. Then, we have 4). □

4.7. Algebraic Schouten soliton of G7

Lemma 21. [13] The Ricci tensor ρB1 concerning connection ∇B1 of (G7, g) is given by:

ρB1(ei, e j) =


α2 β(α + δ) 1

2β(δ − α)
β(α + δ) 0 δ2 + 1

2 (βγ + αδ)
1
2β(δ − α) δ2 + 1

2 (βγ + αδ) β2 − α2 − βγ

 . (4.16)

From this, we derive the following theorem.

Theorem 22. If (G7, g) constitutes an algebraic Schouten soliton concerning connection ∇B1; then, it
fulfills the conditions: α = 2δ, β = γ = 0, c = α

2

2 − 2α2λ0.

Proof. From (4.16), I have the expression for RicB1 as follows:

RicB1


e1

e2

e3

 =

α2 β(α + δ) −1

2β(δ − α)
β(α + δ) 0 −δ2 − 1

2 (βγ + αδ)
1
2β(δ − α) δ2 + 1

2 (βγ + αδ) −β2 + α2 + βγ



e1

e2

e3

 .
The scalar curvature is sB1 = 2α2 − β2 + βγ. Now, I can express DB1 as follows:

DB1e1 = (α2 − (2α2 − β2 + βγ)λ0 − c)e1 + β(α + δ)e2 −
1
2β(δ − α)e3,

DB1e2 = β(α + δ)e1 − ((2α2 − β2 + βγ)λ0 + c)e2 − (δ2 + 1
2 (βγ + αδ))e3,

DB1e3 =
1
2β(δ − α)e1 + (δ2 + 1

2 (βγ + αδ))e2 + (α2 − β2 + βγ − (2α2 − β2 + βγ)λ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B1 on (G7, g), if
and only if the following condition satisfies:

α(sB1λ0 + c) − 1
2β(β + γ)(δ − α) − β2(α + δ) − α(δ2 + 1

2 (βγ + αδ)) = 0,
β(−α2 + sB1λ0 + c) + 1

2βδ(δ − α) + αβ(α + δ) = 0,
β(−β2 + βγ + sB1λ0 + c) + 1

2β(δ − α)2 − 2β(δ2 + 1
2 (βγ + αδ)) = 0,

α(α2 + βγ − β2 − sB1λ0 − c) + β(γ − β)(α + δ) − β
2(δ−α)

2 − α(δ2 +
βγ+αδ

2 ) = 0,
β(2α2 + βγ − β2 − sB1λ0 − c) + β(δ − α)(α + δ) − 2β(δ2 +

βγ+αδ

2 ) = 0,
β(α2 − sB1λ0 − c) + βδ(α + δ) + 1

2αβ(δ − α) = 0,
γ(−β2 + βγ − sB1λ0 − c) + β(α − δ)(α + δ) − 1

2β(α − δ)
2 = 0,

δ(α2 − β2 + βγ − sB1λ0 − c) + β(β − γ)(α + δ) + β
2(δ−α)

2 − δ(δ2 +
βγ+αδ

2 ) = 0,
−δ(sB1λ0 + c) + β2(α + δ) + 1

2β(β + γ)(δ − α) + δ(δ2 + 1
2 (βγ + αδ)) = 0.

(4.17)
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Since αγ = 0 and α + δ , 0, I now analyze the system under different assumptions.
First, if α = 0 and γ , 0, from the equations above, and after simple calculation, we have β = 0.

Furthermore, the seventh and eighth equations imply that δ3 = 0, which leads to a contradiction.
Second, if α , 0 and γ = 0. the seventh equation gives rise to three possible subcases: β = 0,

α = δ, or α + 3δ = 0. Initially, let’s assume β = 0. In this case, the equations in system (4.17), imply
that (α − 2δ)(α + δ) = 0, leading to α = 2δ, and the theorem is true. Next, I consider the subcase
where α = δ and β , 0. Then, the fifth and sixth equations result in 4α2 + β2 = 0, which leads to a
contradiction. Additionally, I consider that α + 3δ = 0 and β , 0. The first and last equations provide
(2α2 − β2 + βγ)λ0 + c = 0. Substituting this into the third equation derives β = 0, which leads to a
contradiction.

Finally, if α = γ = 0. The first equation in system (4.17) leads to β = 0. Then, using the equations
in (4.17), we have δ3 = 0, which leads to a contradiction. □

5. Algebraic Schouten solitons concerning connection ∇B2

In this section, I formulate the algebraic criterion necessary for a three-dimensional Lorentzian Lie
group to have an algebraic Schouten soliton related to the given Bott connection ∇B2 . Let us recall
the Bott connection with the third distribution, denoted by ∇B2 . Consider a smooth manifold (M, g)
that is equipped with the Levi-Civita connection ∇, and let T M represent its tangent bundle, spanned
by {e1, e2, e3}. I introduce a distribution D2 spanned by {e2, e3} and its orthogonal complement D⊥2 ,
which is spanned by {e1}. The Bott connection ∇B

2 associated with the distribution D2 is then defined
as follows:

∇
B2
X Y =


πD2(∇

LC
X Y), X,Y ∈ Γ∞(D2),

πD2([X,Y]), X ∈ Γ∞(D⊥2 ), Y ∈ Γ∞(D2),
πD⊥2

([X,Y]), X ∈ Γ∞(D2), Y ∈ Γ∞(D⊥2 ),

πD⊥2
(∇LC

X Y), X,Y ∈ Γ∞(D⊥2 ),

(5.1)

where πD2 (respectively, πD⊥2
) denotes the projection onto D2 (respectively, D⊥2 ).

5.1. Algebraic Schouten soliton of G1

Lemma 23. [13] The Ricci tensor ρB2 concerning connection ∇B2 of (G1, g) is given by:

ρB2(ei, e j) =


0 1

2αβ −
1
2αβ

1
2αβ −β2 0
−1

2αβ 0 β2

 . (5.2)

From this, I derive the following theorem.

Theorem 24. If (G1, g) constitutes an algebraic Schouten soliton concerning connection ∇B2; then, it
fulfills the conditions: α , 0, β = 0 and c = 0.

Proof. According to (5.2), the expression for RicB2 is derived as follows:

RicB2


e1

e2

e3

 =


0 1
2αβ

1
2αβ

1
2αβ −β2 0
−1

2αβ 0 −β2



e1

e2

e3

 .
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The scalar curvature is sB2 = −2β2. Now, I can express DB2 as follows:

DB2e1 = (2β2λ0 − c)e1 +
1
2
αβe2 +

1
2
αβe3,

DB2e2 =
1
2
αβe1 − (β2 − 2β2λ0 + c)e2,

DB2e3 = −
1
2
αβe1 − (β2 − 2β2λ0 + c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B2 on (G1, g), if
and only if the following condition satisfies:

α(β2 − 2β2λ0 + c) + αβ2 = 0,
α2β = 0,
α(−2β2λ0 + c) − αβ2 = 0,
β(−2β2λ0 + c) + α2β = 0.

(5.3)

By solving (5.3), I have α , 0, β = 0 and c = 0. □

5.2. Algebraic Schouten soliton of G2

Lemma 25. [13] The Ricci tensor ρB2 concerning connection ∇B2 of (G2, g) is given by:

ρB2(ei, e j) =


0 0 0
0 −αβ −αγ

0 −αγ αβ

 . (5.4)

From this, I derive the following theorem.

Theorem 26. If (G2, g) constitutes an algebraic Schouten soliton concerning connection ∇B2; then,
one of the following cases holds:

1) α = 0, β = 0, c = 0;

2) α = 0, β , 0, c = 0.

Proof. From (5.4), I have the expression for RicB2 as follows:

RicB2


e1

e2

e3

 =

0 0 0
0 −αβ αγ

0 −αγ −αβ



e1

e2

e3

 .
The scalar curvature is sB2 = −2αβ. Now, I can express DB2 as follows:

DB2e1 = (2αβλ0 − c)e1,

DB2e2 = −(αβ − 2αβλ0 + c)e2 + αγe3,

DB2e3 = −αγe2 − (αβ − 2αβλ0 + c)e3.
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B2 on (G2, g), if
and only if the following condition satisfies:

γ(−2αβλ0 + c) − 2αβγ = 0,
β(−2αβλ0 + c) − 2αγ2 = 0,
α(2αβ − 2αβλ0 + c) = 0.

(5.5)

Since γ , 0, I assume first that α = 0. Under this assumption, the first two equations in (5.5) yield
c = 0. Therefore, Cases 1) and 2) hold. Now, let α , 0, then I have β = 0, and the second equation in
(5.5) becomes 2αγ2 = 0, which is a contradiction. □

5.3. Algebraic Schouten soliton of G3

Lemma 27. [13] The Ricci tensor ρB2 concerning connection ∇B2 of (G3, g) is given by:

ρB2(ei, e j) =


0 0 0
0 0 0
0 0 αβ

 . (5.6)

From this, I derive the following theorem.

Theorem 28. If (G3, g) constitutes an algebraic Schouten soliton concerning connection ∇B2; then,
one of the following cases holds:

1) α = β = γ = 0, for all c;

2) α = γ = 0, β , 0, c = 0;

3) α , 0, β = γ = 0, c = 0;

4) α , 0, β , 0, γ = 0, c = −αβ + αβλ0;

5) α = β = 0, γ , 0, c = 0.

Proof. According to (5.6), the expression for RicB2 is derived as follows:

RicB2


e1

e2

e3

 =

0 0 0
0 0 0
0 0 −αβ



e1

e2

e3

 .
The scalar curvature is sB2 = −αβ. Now, I can express DB2 as follows:

DB2e1 = (αβλ0 − c)e1,

DB2e2 = (αβλ0 − c)e2,

DB2e3 = −(αβ − αβλ0 + c)e3.

(5.7)

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B2 on (G3, g), if
and only if the following condition satisfies:

γ(−αβ − αβλ0 + c) = 0,
β(αβ − αβλ0 + c) = 0,
α(αβ − αβλ0 + c) = 0.

(5.8)
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Assuming that γ = 0, I have β(αβ − αβλ0 + c) = 0,
α(αβ − αβλ0 + c) = 0.

(5.9)

Then, for Cases 1)–4), system (5.8) holds. Now, let γ , 0, then we have α = β = 0. Then, the Case 5)
is true. □

5.4. Algebraic Schouten soliton of G4

Lemma 29. [13] The Ricci tensor ρB2 concerning connection ∇B2 of (G4, g) is given by:

ρB2(ei, e j) =


0 0 0
0 α(2η − β) α

0 α αβ

 . (5.10)

From this, I derive the following theorem.

Theorem 30. If (G4, g) constitutes an algebraic Schouten soliton concerning connection ∇B2 , then one
of the following cases holds:

1) α = 0, c = 0;

2) α , 0, β = η, c = 0.

Proof. From (5.10), I have the expression for RicB2 as follows:

RicB2


e1

e2

e3

 =

0 0 0
0 α(2η − β) −α

0 α −αβ



e1

e2

e3

 .
The scalar curvature is sB2 = α(2η − β) − αβ. Now, I can express DB2 as follows:

DB2e1 = −((α(2η − β) − αβ)λ0 + c)e1,

DB2e2 = (α(2η − β) − (α(2η − β) − αβ)λ0 − c)e2 − αe3,

DB2e3 = αe2 − (αβ + (α(2η − β) − αβ)λ0 + c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B2 on (G4, g), if
and only if the following condition satisfies:

2α(η − β) − ((α(2η − β) − αβ)λ0 + c) = 0,
(2η − β)(2αη − (α(2η − β) − αβ)λ0 − c) − 2α = 0,
β(2αη + (α(2η − β) − αβ)λ0 + c) − 2α = 0,
α(α(2η − β) − αβ − (α(2η − β) − αβ)λ0 − c) = 0.

(5.11)

Assume first that α = 0, then system (5.11) holds trivially. Therefore, Case 1) holds. Now, let α , 0 I
have β = η; then, for Case 2), system (5.11) holds. □
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5.5. Algebraic Schouten soliton of G5

Lemma 31. [13] The Ricci tensor ρB2 concerning connection ∇B2 of (G5, g) is given by:

ρB2(ei, e j) =


0 0 0
0 δ2 0
0 0 −(βγ + δ2)

 . (5.12)

From this, I derive the following theorem.

Theorem 32. If (G5, g) constitutes an algebraic Schouten soliton concerning connection ∇B2 , then one
of the following cases holds:

i. α = β = γ = 0, δ , 0, c = δ2 − 2δ2λ0;

ii. α , 0, β = δ = γ = 0, c = 0;

iii. α , 0, β , 0, δ = γ = 0, c = 0;

iv. α , 0, β = γ = 0, δ , 0, c = δ2 − 2δ2λ0.

Proof. From (5.12), I have the expression for RicB2 as follows:

RicB2


e1

e2

e3

 =

0 0 0
0 δ2 0
0 0 βγ + δ2



e1

e2

e3

 .
The scalar curvature is sB2 = βγ + 2δ2. Now, I can express DB2 as follows:

DB2e1 = −((βγ + 2δ2)λ0 + c)e1,

DB2e2 = (δ2 − (βγ + 2δ2)λ0 − c)e2,

DB2e3 = (βγ + δ2 − (βγ + 2δ2)λ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B2 on (G5, g), if
and only if the following condition satisfies:

α(βγ + δ2 − (βγ + 2δ2)λ0 − c) = 0,
β(βγ − (βγ + 2δ2)λ0 − c) = 0,
γ(βγ + 2δ2 − (βγ + 2δ2)λ0 − c) = 0,
δ(βγ + δ2 − (βγ + 2δ2)λ0 − c) = 0.

(5.13)

Let α = 0, then I have β = 0 and δ , 0. In this case, (5.13) reduces to:γ(2δ2 − 2δ2λ0 − c) = 0,
δ(δ2 − 2δ2λ0 − c) = 0.

(5.14)

Therefore, I conclude that γ = 0, and we have Case i.
Next, I consider the case where α , 0. By combining the first and third equations from (5.13), we

obtain γδ2 = 0. If γ = δ = 0, then c = 0. Therefore, Cases ii and iii hold. If γ = 0 and δ , 0, then
β = 0. Therefore, Case iv holds. □
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5.6. Algebraic Schouten soliton of G6

Lemma 33. [13] The Ricci tensor ρB2 concerning connection ∇B2 of (G6, g) is given by:

ρB2(ei, e j) =


0 0 0
0 0 0
0 0 0

 . (5.15)

From this, I derive the following theorem.

Theorem 34. If (G6, g) constitutes an algebraic Schouten soliton concerning connection ∇B2 , then we
have c = 0.

Proof. According to (5.15), the expression for RicB2 is derived as follows:

RicB2


e1

e2

e3

 =

0 0 0
0 0 0
0 0 0



e1

e2

e3

 .
The scalar curvature is sB2 = 0. Now, I can express DB2 as follows:

DB2e1 = −ce1,

DB2e2 = −ce2,

DB2e3 = −ce3.

Hence, by (2.4), I have c = 0. □

5.7. Algebraic Schouten soliton of G7

Lemma 35. [13] The Ricci tensor ρB2 concerning connection ∇B2 of (G7, g) is given by:

ρB2(ei, e j) =


0 0 0
0 −βγ βγ

0 βγ −βγ

 . (5.16)

From this, I derive the following theorem.

Theorem 36. If (G7, g) constitutes an algebraic Schouten soliton concerning connection ∇B2 , then one
of the following cases holds:

1) α = β = 0, γ , 0, c = 0;

2) α , 0, γ = 0, c = 0;

3) α = γ = 0, c = 0.

Proof. From (5.16), I have the expression for RicB2 as follows:

RicB2


e1

e2

e3

 =

0 0 0
0 −βγ −βγ

0 βγ βγ



e1

e2

e3

 .
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The scalar curvature is sB2 = 0. Now, I can express DB2 as follows:
DB2e1 = −(sλ0 + c)e1,

DB2e2 = −(βγ + sλ0 + c)e2 − βγe3,

DB2e3 = βγe2 + (βγ − sλ0 − c)e3.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with ∇B2 on (G7, g), if
and only if the following condition satisfies:

α(βγ + c) − αβγ = 0,
βc = 0,
β(2βγ + c) − 2β2γ = 0,
α(βγ − c) = αβγ,
βc + 2β2γ = 0,
γc = 0,
δ(−βγ + c) + βγδ = 0,
δ(βγ + c) − βγδ = 0.

(5.17)

Since αγ = 0 and α + δ , 0, I now analyze the system under different assumptions.
First, if α = 0 and γ , 0, under this assumption, the fifth and sixth equations of (5.17) jointly imply

that β = c = 0. Therefore, Case 1) holds.
Second, if α , 0 and γ = 0, then the first equation of (5.17) gives c = 0, and for Case 2), system

(5.17) holds.
Finally, if α = γ = 0, then δ , 0, and the last equation of (5.17) gives c = 0. Therefore, Case 3)

holds. □

6. Conclusions

I present algebraic conditions for three-dimensional Lorentzian Lie groups to be an algebraic
Schouten soliton associated with the Bott connection, considering three distributions. The main re-
sult indicates that G4 and G7 do not have such solitons with the first distribution, while the result for
G5 with the first distribution is trivial, and the other cases all possess algebraic Schouten solitons. In
the future, we will explore algebraic Schouten solitons in higher dimensions, as in [24, 25].
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