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1. Introduction

Einstein metrics are pivotal in numerous domains of mathematical physics and differential geome-
try. They are also of interest in pure mathematics, particularly in the fields of geometric analysis and
algebraic geometry. An Einstein metric can be regarded as a fixed solution (up to diffeomorphism and
scaling) of the Hamilton Ricci flow equation. On a Riemannian manifold (M, g), a Ricci soliton is said
to exist when there is a smooth vector field X and a constant A in the reals that satisfy the condition
stated below:

1
R;; + E(LXg)ij = Agijs

where R;; is the Ricci curvature tensor, and Lxg stands for the Lie derivative of g with respect to the
vector field X. This concept was introduced by Hamilton in [1], and later utilized by Perelman in his
proof of the long-standing Poincare conjecture [2]. Lauret further generalized the notion of Einstein
metrics to algebraic Ricci solitons in the Riemannian context, introducing them as a natural exten-
sion in [3]. Subsequently, Onda and Batat applied this framework to pseudo-Riemannian Lie groups,
achieving a complete classification of algebraic Ricci solitons in three-dimensional Lorentzian Lie
groups in [4]. Additionally, they proved that within the framework of pseudo-Riemannian manifolds,
there is algebraic Ricci solitons that are not of the conventional Ricci soliton type.

In [5], Etayo and Santamaria explored the concept of distinguished connections on (J? = +1)-metric
manifolds. This sparked interest among mathematicians in studying Ricci solitons linked to various
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affine connections, which can be found in [6—8]. The Bott connection was introduced in earlier works
(see [9—11]). In [12], the authors developed a theory on geodesic variations under metric changes in a
geodesic foliation, with the Bott connection serving as the primary natural connection respecting the
foliation’s structure. In [13], Wu and Wang studied affine Ricci solitons and quasi-statistical structures
on three-dimensional Lorentzian Lie groups associated with the Bott connection. Furthermore, in
[14, 15], the authors examined the algebraic schouten solitons and affine Ricci solitons concerning
various affine connections.

Inspired by Lauret’s work, Wears introduced algebraic T-solitons, linking them to T-solitons in [16].
Later, in [7], Azami introduced Schouten solitons, as a new type of generalized Ricci soliton. In this
paper, I focus on algebraic Schouten solitons concerning the Bott connection with three distributions,
aiming to classify and describe them on three-dimensional Lorentzian Lie groups.

In Section 2, I introduce the fundamental notions associated with three-dimensional Lie groups and
algebraic Schouten soliton. In Sections 3-5, I discuss and present algebraic Schouten solitons concern-
ing the Bott connection on three-dimensional Lorentzian Lie groups, each focusing on a different type
of distribution.

2. Preliminaries

In [17], Milnor conducted a survey of both classical and recent findings on left-invariant Riemannian
metrics on Lie groups, particularly on three-dimensional unimodular Lie groups. Furthermore, in
[18], Rahmani classified three-dimensional unimodular Lie groups in the Lorentzian context. The
non-unimodular cases were handled in [19,20]. Throughout this paper, I use {G;}/_, for connected,
simply connected three-dimensional Lie groups equipped with a left-invariant Lorentzian metric g.
Their corresponding Lie algebras are denoted by {g;}’_,, and each possess a pseudo-orthonormal basis
{e1, e, €3} (with e5 timelike, see [4]). Let VE€ and REC denote the Levi-Civita connection and curvature
tensor of G;, respectively, then

RX,NZ = ViV Z - VVEZ - Vi, Z.
The Ricci tensor of (G}, g) is defined as follows:
PHX,Y) = —g(R (X, en)Y, e1) — g(R™(X, e2)Y, e2) + g(R" (X, e3)Y, €3).
Moreover, I have the expression for the Ricci operator RictC:
pHX,Y) = g(Ric"“(X), V).

Next, recall the Bott connection, denoted by V5. Consider a smooth manifold (M, g) that is equipped
with the Levi-Civita connection V, and let T M represent its tangent bundle, spanned by {e;, 5, e3}. |
introduce a distribution D spanned by {e, e;} and its orthogonal complement D+, which is spanned by
{e3}. The Bott connection V2 associated with distribution D is then defined as follows:

mp(V¥Y), XY eT™(D),

mp([X,Y]), XeI®(D"Y), YeTI*D),

gy - | X YD (0 ) o
mp([X, Y], X eIl™(D), Y eI™(D"),
mpu(VACY), X, Y e T™(DY),
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where 7 (respectively, mp.) denotes the projection onto D (respectively, D*). For a more detailed
discussion, refer to [9-11,21]. I denote the curvature tensor of the Bott connection V2 by RZ, which is
defined as follows:

R(X,Y)Z = VYVZ — ViVRZ = Vi /Z. (2.2)

The Ricci tensor p? associated to the connection V2 is defined as:

B(X,Y) + B(Y, X)

Bx,vy) = ,
P (X, Y) 5

where
B(X,Y) = —g(R®(X, e1)Y, e1) — g(R°(X, e2)Y, €2) + g(R*(X, €3)Y, €3).

Using the Ricci tensor p®, the Ricci operator Ric? is given by:
PP(X,Y) = gRic®(X), Y). (2.3)

Then, I have the definition of the Schouten tensor as follows:

B
s
SBei,e;) = pPleie)) - Zg(eia ej),

where s® represents the scalar curvature. Moreover, I generalized the Schouten tensor to:
Seie)) = pPleie)) — s"Aogleis e)),
where A is a real number. By [22], I obtain the expression of s? as
s" = pller,e1) + pilez, e2) = pPles, e3).

Definition 1. A manifold (G;, g) is called an algebraic Schouten soliton with associated to the connec-
tion V8 if it satisfies:
Ric® = (s" + o)Id + D",

where c is a constant, and D? is a derivation of g;, i.e.,

D”[X,X,] = [D"X1, X5] + [X1, DPX], Sfor X1, X, € g;. (2.4)
3. Algebraic Schouten soliton concerning connection V2

In this section, I derive the algebraic criterion for the three-dimensional Lorentzian Lie group to
exhibit an algebraic Schouten soliton related to the connection V2. Moreover, I indicate that G4 and G
do not have such solitons.

3.1. Algebraic Schouten soliton of G,

According to [4], I have the expression for g;:
ler, e2] = aer — Bes,  [e1,e3] = —ae; —Per, e, e3] = Ber + wer + aes,

where a # 0. From this, I derive the following theorem.
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Theorem 2. If (G, g) constitutes an algebraic Schouten soliton concerning connection V2, then, it
fulfills the conditions: B = 0 and ¢ = —1a* + 2(a? + ).

Proof. From [23], the expression for Ric? is as follows:

e —(a* + %) aff %a el
Ric® [62] = [ af —(a® + %) %az] {ez].

e —1aB 1a? 0 )\es
The scalar curvature is s% = —=2(a? + 82). Now, I can express D? as follows:

Q
DBe, = —(a2 +ﬁ2 + sy + c)ey + afe; + 7'8e3,
o2
DBe, = afe; — (0/2 +,82 + sdg + c)es — 763,
af a?

DBe;y = —Set et Q2(e* + BH A — C)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V2 on (G, g), if
and only if the following condition satisfies:

%azﬁ +28° 228> + B +¢B =0,

3
% + 208 — 20020 + B2) + ca = 0,

a/z,B =0,
20°B + 7 — 4B(a* + B7) + 2¢B = 0,
@ 3 5 2 @2
> +§a/ﬁ —2a(a” + )+ ca =0.
Since @ # 0, T have 8 = 0 and ¢ = —307 + 2(a? + %) A,. O

3.2. Algebraic Schouten soliton of G,

According to [4], | have the expression for g;:
le, e2] = yes — Bes, [e1,e3] = —Bex —yes, [ez, €3] = aey,

where v # 0. From this, I derive the following theorem.

Theorem 3. If (G, g) constitutes an algebraic Schouten soliton concerning the connection V5, then it
fulfills the conditions: a = 0 and ¢ = —5*> — y* + (8% + 2y?)A,.

Proof. From [23], the expression for Ric? is as follows:

e —(8* +v?) 0 0)(e:
RicBle, | = 0 -V +aB) Flle|.
€3 0 —% 0 €3
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The scalar curvature is s = —(82 + 2y* + a8). Now, I can express D? as follows:

DPe; = —(B> +¥* — (B> + 2y* + aB) Ay + C)ey,
DPe, = —(7* + aff — (B + 2% + aB) o + C)ey + %yeg,
DBe; = —%/ez + ((,82 + 2y2 + aff) Ay — c)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V5 on (G», g), if
and only if the following condition satisfies:

Y’ B+ o+ B +2y* +aB)Bly—cB =0,

YB +y +aB— (B +2y +aB)dy+¢) =0,

ay’ =B’ =28y’ — o’ + (B + 2y’ + aB)BAo - B = 0,
(=B +af — (B> +2y* + af)dy +¢) = 0.

Suppose that @ = 0, then ¢ = =2 — y* + (8% + 2y*)Ay. If @ # 0, I have
BB +v* = (B +2y* +af)y +¢) =0,

,82+72+0/ﬁ—(,82+272+aﬂ)/10+c:0,
~B+af - (B +2y" +af)ly+c=0.

Since y # 0, solving the equations of the above system gives 2% +y? = 0, which is a contradiction. O

3.3. Algebraic Schouten soliton of G3

According to [4], I have the expression for g3:

ler,ex] = —yes, [e,e3] = —Per, [er,e3] = aey.
From this, I derive the following theorem.

Theorem 4. If (Gs, g) is an algebraic Schouten soliton concerning connection V8; then, one of the
following cases holds:

i.a=B=y=0,forallc;

ii. a#0,=y=0,c=0;

iii. a=y=0,+#0,¢c=0;

wv.a+ 0,+0,y=0c¢c=0;
va==0v#0,c=0;

vii a#20,8=0,v#0, c=—-ay+ aydy

vii. a=0,8#0,y#0, c=-By+Bylo.
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Proof. From [23], the expression for Ric? is as follows:

€l By 0 0
el= 0 —-ay O

e3 0 0 O

Ric®

€]
ér|l.
€3

The scalar curvature is s% = —y(« + ). Now, I can express D? as follows:

DPe; = —(By — y(a + B)Ao + ey,
DPe; = —(ay — y(a + B + 0)ez,
DPe; = (y(@ + B)Ao — O)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V2 on (G3, g), if
and only if the following condition satisfies:

By +ay’ =y @+ By +cy =0,
B>y = By(a + By + B =0, 3.1)
azy —afy —ay(a+ )y + ca =0.

Assuming that y = 0. In this case, (3.1) becomes:

{ﬂ c=0, 32)

ac =0.

If B = 0, for Cases i and ii, system (3.1) holds. If 8 # 0, for Cases iii and iv, system (3.1) holds. Then,
I assume that y # 0. Thus, system (3.1) becomes:

+ay —vy(a+ B +c,
{ﬁ7 Y =@ +B) 43
aB =0.
If 8 = 0, I have Cases v and vi. If 8 # 0, for Case vii, system (3.1) holds O

3.4. Algebraic Schouten soliton of G4
According to [4], g4 takes the following form:
ler,e2] = —e2 + (2 — Ples,  [er,e3]1 = e3 —Pes, [ea, €3] = ey,
where n = 1 or — 1. From this, I derive the following theorem.

Theorem 5. (G, g) is not an algebraic Schouten soliton concerning connection V°,

Proof. According to [23], the expression for Ric® is derived as follows:

€ -(B- 77)2 0 0 €l
Ric®|e,| = 0 2an —af -1 —%af e .
e3 0 1o 0 J\es

2
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The scalar curvature is s = —((8 — n)* + a8 — 2an + 1). Now, I can express D? as follows:

DPe; = —((B-n)° = (B-n)" + aB — 2an + DAy + ey,

DBe, = Qan—-af -1+ (B - n)2 +af —2an+ 1)Ag — c)e; — geg,

a
DBe; = 562 + (B — 77)2 + aff — 2an + 1)Ag — ¢)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V5 on (G, g), if
and only if the following condition satisfies:

~Cn=p(B-n’=2an+af+1-((B-n’+af-2an+ DA +¢) = a,
BB=mn+2an—aBf~1-((B-n’+af-2an+ DA +¢) = a,

) ) (3.4)
B=m" = ((B=m)"+af-2an+ Dy +c = a@-p),
a(B-n)*+2an—af—1+((B-n>+aB—2an+ 1)y —c)=0.
I now analyze the system under different assumptions.
Assuming that @ = 0. Then, system (3.4) becomes:
@0 =BNB=m*+1=((B=n*+Dg+c) =0,
BB = =1=((B~m*+ 1o +c) =0,
B-m>=((B-n+ DA +c=0.
Upon direct calculation, it is evident that (2n — 8) = 8 = 0, which leads to a contradiction.
If @ # 0, we have
2n—=p)an—-1) =a,
3an - 2aB-1) = a,
BQBan =2 - 1) (3.5)

B-n—an-B - ((B-n)*—-2an+af+ DAy +c=0,
a((B-n)?+2an-—aB-1+((B-n)*-2an+aB+1)y—c) =0.

From the last two equations in (3.5), we have (8 — n)> = (1 — an). Substituting into the first two

equations in (3.5) yields @ = 7, which is a contradiction. Therefore, system (3.4) has no solutions.
Then, the theorem is true. O

3.5. Algebraic Schouten soliton of Gs

According to [4], we have the expression for gs:
le1,e2] =0, [er,e3] = aey + Bes, [er,e3] = yer + de,

where @ + ¢ # 0 and ay — 6 = 0. From this, we derive the following theorem.

Theorem 6. If (Gs, g) constitutes an algebraic Schouten soliton concerning connection V8, then ¢ = 0.
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Proof. According to [23], the expression for Ric? is derived as follows:

(4] 0 0O (4]
Ric®le, | =10 0 0l]ea|.
€3 0 0O €3

The scalar curvature is s® = 0. Now, I can express D5 as follows:

DBel = —cey,
DBe, = —ce,,

DBe;y = —ce;.

Hence, by (2.4), I conclude that there is an algebraic Schouten soliton associated with V& on (Gs, g).
Furthermore, for this algebraic Schouten soliton, I have ¢ = 0. O

3.6. Algebraic Schouten soliton of Gg

According to [4], | have the expression for gg:

[e1, ex] = aey + Bes,
[e1, e3] = yes + des,

[e2,e3] = 0,
where @ + ¢ # 0 and @y — $6 = 0. From this, I derive the following theorem.

Theorem 7. If (G, g) constitutes an algebraic Schouten soliton concerning connection V5, then one
of the following cases holds:

La=B=y=0,0#0,¢c=0;
ii.a=B=0,v#0,0#0,c=0;

iii. a/iO,ﬁ:y:é:O,c:—a2+2a/2/10;
v. a#0,=y=0,06#0,c=—-a®+2a%.

Proof. From [23], I have the expression for Ric? as follows:

e —(@®+By?* 0 O0)(e
Ric®|e, | = 0 —a? 0ffes].
€3 0 0 0 és

The scalar curvature is s% = —(2a? + By). Now, I can express D? as follows:

DPe; = —(a” + By — (22° + By)Ao + O)ey,
DBe, = —(a* — 2a* + By)Ay + C)ea, (3.6)
DPe; = (2 + By)Ay — C)es.
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V2 on (Gg, g), if
and only if the following condition satisfies:

BQRa* + By — (2% + By)dy +¢) = 0,
oz(oz2 + By — (2&2 + By)lg+¢) =0,
Y(By — e’ +By)dy +¢) =0,

5(a” + By — (2a® + By)dy + ¢) = 0.

From the first equation above, we have either 8 = 0 or 8 # 0. I now analyze the system under different
assumptions.
Assuming that 8 = 0, I have:
a(@® = 2% +¢) =0,

y(=2a*y +¢) = 0, (3.7)
8(a* = 2%, +¢) = 0.

Given ay — 60 = 0 and a + 6 # 0, assume first that @ = 0. In this case, system (3.7) can be simplified
to:
5820 + ¢ = 0.

Then, I have Cases i and ii. If 8 # 0, system (3.7) becomes:

@+ 52 +c=0. (3.8)

Then, I have Cases iii and iv.
If 8 # 0, system (3.7) becomes:

{ﬁ<2a2 +By — (207 + By)dg +¢) = 0,

cx(af2 + By — (2a2 + By)Ay +¢) =0, 39)

which is a contradiction. O

3.7. Algebraic Schouten soliton of G;

According to [4], I have the expression for g7:

le1, e2] = —ae; — Bey, — Bes,
le1, e3] = aey + Pe; + Pes,
[e2, e3] = ye; + dey + des,

where @ + ¢ # 0 and @d = 0. From this, I derive the following theorem.
Theorem 8. (G-, g) is not an algebraic Schouten soliton concerning connection V°.

Proof. From [23], I have the expression for Ric? as follows:
e —a’ %ﬂ(d —a) —o(a +90) e
Ric®|ey| = |16 — @) —(a®+B*+BS) —6*— 1By +ad)||er].
e Sa+06) &+ By + ad) 0 e3
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The scalar curvature is s = —(2a? + 82 + 36). Now, I can express D? as follows:

DBe; = —(a? — (2a% + B* + B6) Ao + ©)er + 1B(6 — @)er — S(a + O)es,
DPe; = 3B(6 — @)ey — (@ + B + 6 — (202 + 7 + BO) Ay + ¢)ez — (6 + 5(By + ad))es,
DBe; = 6(a + 6)e; + (6% + %(,By +ad))e, + ((2a2 + 52 + BO) Ay — ¢)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V2 on (G, g), if
and only if the following condition satisfies:

a(@® + B2 + Ba + sBA + ¢) + (y + B)o(a + 6) + %,82(6 —a) = a(6® + %(,8)/ + ad)),
Bl + 582+ ¢) + 6*(@ + 6) + 2aB([6 — @) = 0,

BQRa* + B+ Pa + sB + ) + 6(6 — @) (e + 6) = 2B(6* + 1(By + a9)),

a(sBAy + ¢) + a(6* + %(/3)/ + ad)) + %ﬁ(ﬁ —y)(0 —a) +Bo(a+06) =0,

B(=B* = Ba + sPy + ¢) — 3B(6 — @)* + 2B(6* + 3(By + @6)) = 0,

B(@? + 584y + ¢) = ad(a + 6) + 1B6(5 — ),

Y(B* + Ba + 552 + ¢) = 8(a — §)(@ + 6) — 16 - @)?,

6(s820 + ¢) + 6(8* + 3(By + ad)) = Bé(a + 6) + 3B(6 — A)(B—7),

§(a? + B + Ba + By + ¢) — 6(6* + 2By + @d)) = (B +y)5(a + 6) + 352 — a).

Recall that @ + 6 # 0 and @y = 0. I now analyze the system under different assumptions:
Assume first that @ # 0, y = 0. Then, the above system becomes:

a(a? + B* + Ba + sy + ¢) + S(a + 6) + 146 — @) = a(5” + 320),

Bla + sy + ¢) + 6*(a + 6) + 1B — @) = 0,

BRa* + B+ Pa + sdy + ¢) + 6(6 — a)(a + 6) = 2B(6* + 3a0),

a(sdo + ¢) + (5 + 306) + 3B%(6 — @) + o (e + 6) = 0,

B(=B* = Ba + sdo + ¢) — 1B — @)* + 2B(5* + 1) = 0, (3.10)
B(@? + sy + ¢) = ad(a + ) + 1B5(6 — @),

§(a — 8)(a + 6) — 3B(a — 6)* = 0,

Bo(a + 6) + 3546 — @) = 6(sdg + ¢) + 6(6* + 3a0),

Bo(a + 6) + 3546 — @) = 6(a” + B + Pa + sy + ¢) — 8(6* + 1ad).

Next, suppose that 8 = 0, I have:

1
{a(a2 + sAy +¢) — (5 + 5&5) =0, 3.11)

5 (a +6) = 0.

Which is a contradiction.

If g # 0, we further assume that 6 = 0. Under this assumption, the last equation in (3.10) yields
a8 = 0, which leads to a contradiction. If we presume « = ¢, then the equations in (3.10) imply that
ad(a + 8) = —6%(a + 6), which is a contradiction. Additionally, if I assume that 6 # 0 and § # —a, then
from equation system (3.10), I have the following equation:

(6 — @)

2 b
(6 — a)? , ad
(P + =
0t

@+ sy +c =
(3.12)

-p-af= ).
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Substituting (3.12) into the third equation in system (3.10) yields a? = —%(6 — a)?, which is a contra-
diction.

Second, let @ = 0, y # 0. Then, if 8 = 0, the second equation in (3.10) reduces to &> = 0, which
contradicts with @ +¢ # 0. On the other hand, if 8 # 0, I can derive from the second and sixth equations
in system (3.10) that ¢ + %ﬁ = 0. Substituting into the fourth equation in (3.10) yields y = 0, which is
a contradiction. O

4. Algebraic Schouten solitons concerning connection V2

In this section, I formulate the algebraic criterion necessary for a three-dimensional Lorentzian
Lie group to have an algebraic Schouten soliton related to the Bott connection V5. Recall the Bott
connection, denoted by V5!, with the second distribution. Consider a smooth manifold (M, g) that
is equipped with the Levi-Civita connection V, and let T M represent its tangent bundle, spanned by
{e1, e, e3}. T introduce a distribution D; spanned by {e;, 3} and its orthogonal complement D7, which
is spanned by {e;}. The Bott connection Vf associated with the distribution D, is then defined as
follows:
7TD|(V§(CY)’ X’ Y € FDO(D])a
o, ((X. YD, X eI™(D}), Y e (D)),
mp+([X, Y]), X eIl™(Dy), Y e™(Dy),
mp(VEY), X, Y eT(Dy),

where 7p, (respectively, 7p:) denotes the projection onto D (respectively, Dy).

V'Y =

4.1. Algebraic Schouten soliton of G,

Lemma 9. [13] The Ricci tensor p®' concerning connection V? of (G, g) is given by:
-p e -op
o5 (e;, ej) = %a/,B 0 %az . “4.1)
—a/,B %02 ﬁZ _ aZ
From this, I derive the following theorem.

Theorem 10. If (G, g) constitutes an algebraic Schouten soliton concerning connection V5, then it
fulfills the conditions: =0 and c = %az —2a%A,.
Proof. According to (4.1), the expression for Ric?! is derived as follows:
el a? —52 %a’ﬁ of €]
RicP e, | = %a/,B 0 —%012 e .

es - 30 & —p*)\es

—_

The scalar curvature is s%' = 2(a?> — 8%). Now, I can express D?! as follows:

1
DPle; = (&% - B —2(” - A — O)ey + 5aBes + afes,

1 a?
DPe, = Eaﬁel — (2(a? = Ao + C)es — 5

1
DPes = —afe, + 501262 + (? —ﬁ2 -2(a? —,82)/10 —C)es.
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V&t on (G, g), if
and only if the following condition satisfies:

a(2(a? —,82)/10 +c)+ 2Qﬂ2 - %oﬁ =0,
azﬁ =0,
BQR(a* = B Ay +¢) —2a°8 =0,

4.2
a(@® - B - 2a* - f)dg - ) — aff* — %(1/3 _0. (4.2)

B(@® = 2B° = 2(a” = )y — ¢) = 0,

1
a2(@* - BHAy +¢) — Eoﬂ +2a8° = 0.
Since a # 0, the second equation in (4.2) yields 8 = 0. Then, I have ¢ = 1a* — 2a%A,. o

4.2. Algebraic Schouten soliton of G,

Lemma 11. [13] The Ricci tensor pB' concerning the connection V8" of (G, g) is given by:

-B+y) 0 0
o (eie)) = 0 0 —lay |. 4.3)
1 2
0 —say af+y

From this, I derive the following theorem.

Theorem 12. If (G, g) constitutes an algebraic Schouten soliton concerning connection V5 then, it
fulfills the conditions: a = 8 = 0 and ¢ = —y*> + y*A,.

Proof. According to (4.3), the expression for Ric?' is derived as follows:

e —(ﬂz + yz) 0 0 e
Ric®' e, | = 0 0 %ay e .
e 0 —lay —aB-7*)\e;

The scalar curvature is s®' = —(8% + y* + a8). Now, I can express D?' as follows:

DPel = —(B> +9* = (B> + 7> + aB) Ay + O)ey,

1
DP'e, = (B* + 7 + af) Ay — c)es + Saves,

1
DB‘e3 = _50/762 — (o + 72 - (ﬁz + 72 + af) Ay + c)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V2! on (G,, g), if
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and only if the following condition satisfies:

alB+y - (B +y +af)ly+c) + %aﬁy =0,
BB +7* +aP)dy —¢) + ay’ = 0,
,B(ﬁ2+2y2+a,8—(ﬁ2+y2+a,8)/10+c)—a/y2 =0
YB+Y =B+ +ap)lo+c) + %aﬂy =0,
a(aB—B°— (B> +y* +aB)dy+c) =0.

By solving (4.4),Igeta =8 =0, c = —y* + y*A,.

4.3. Algebraic Schouten soliton of G

Lemma 13. [13] The Ricci tensor p?' concerning connection V?' of (Gs, g)
By 0 O
pB'(e,-,ej): 0O 0 0.
0 0 op

From this, I derive the following theorem.

, 4.4)

is given by:

4.5)

Theorem 14. If (Gs, g) constitutes an algebraic Schouten soliton concerning connection V5, then,

one of the following cases holds:
i.a=B=y=0, forallc
ii. a#0,=y=0,c=0;
iii. a=0,6#0,y=0,¢c=0;
wv.a+0,+0 v=0 c=apfly
v.a=8=0,v#0,¢c=0,;
viia#0,6=0,y#0,¢=0;
vii. a=0,8#0,y#0, c ==Ly + By

Proof. According to (4.5), the expression for Ric?! is derived as follows:

el By 0 0 \(e
RicP'le; =1 0 0 0 |les].
e; 0 0 —aB)\e;

The scalar curvature is s%' = —(8y + af). Now, I can express D?' as follows:

DP%e; = —(By — (By + af) Ay + C)ey,
DPe, = (By + af) Ay — C)es,
DPes = —(aff — (By + af) Ay + C)es.
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V&' on (G3, g), if
and only if the following condition satisfies:

YBy —af — By + f)do + ¢) = 0,
BB+ By — By + af)do+¢) =0, (4.6)
a(af =By — (By + af)do +¢) = 0.
Assume first that y = 0; then, (4.6) reduces to:
Blef — ey +¢) =0,
a(af —aBly+c) =0.
Then, I have Cases i—iv.
Now, let y # 0. From the last two equations in (4.6), I obtain ¢y = 0. If 8 = 0, then it follows that

¢ = 0. Therefore, Cases v and vi are valid. If 8 # 0, we deduce ¢ = —fy + ByAy; then, for Case vii,
system (4.6) holds. O

4.4. Algebraic Schouten soliton of G4

Lemma 15. [13] The Ricci tensor p®' concerning connection V5 of (Gy, g) is given by:
-B-mn* 0 0
PB' (ei,e)) = 0 0 %CY
0 %a af +1

4.7)

From this, I derive the following theorem.

Theorem 16. If (G4, g) constitutes an algebraic Schouten soliton concerning connection V5 ; then, it
fulfills the conditions: p=n, «a = = and c = 0.

Proof. According to (4.7), the expression for Ric? is derived as follows:

er) (-B-m* 0 0 el
Ric® |e, | = 0 0 —%a e .
e 0 la —ap-1)\e;

2

The scalar curvature is s%' = —((8 — )> + a8 + 1). Now, I can express D?' as follows:
DPre; = —((B—n)" = ((B—n)* +aB + 1Ay + cey,

1
D%e, = ((B-n) +aB + 1)y — c)e; — Saes,

1
DPey = 5= (@B+1—-(B-n)*+aB+ 1)+ c)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V&' on (Gy, ), if
the following condition satisfies:

B-n—((B-n)+aB+ 1Ay +c—an-p) =0,
Cn-p(B-n"-ap-1-((B-n’+aB+1Ddg+c)+a=0,
BB-n+aB+1-((B-n’+aB+1DAy+c)-a=0,
aaf+1-B-n>-((B-n’+aB+ D +c)=0.

(4.8)
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By solving the above system, I obtain the solutions 5 = 1, @ = = and ¢ = 0. In this case, the theorem
is true. O
4.5. Algebraic Schouten soliton of Gs

Lemma 17. [13] The Ricci tensor p?' concerning connection V®' of (Gs, g) is given by:

a* 0 0
pBl(ei,ej)=[0 0 0 ] (4.9)
0 0 —(By+a?

From this, I derive the following result.

Theorem 18. If (Gs, g) constitutes an algebraic Schouten soliton concerning connection V5'; then,
one of the following cases holds:

i.a=B=y=0,c=0;

ii. a=B=0,y#0,c=0;

iii. a=0,#0,7v#0, c =By + Byl
v.az0,B=0=y=0 c=-a®-2a%A;
i a/;ﬁO,ﬁ:y:O,6¢O,c:a2—2a2/10.

Proof. From (4.9), I have the expression for Ric?' as follows:

€] CYZ 0 0 €1
Rl.CBl é | = 0 O 0 ér.
0 0 By+ad))\es

€3
The scalar curvature is s®' = (2a? + By). Now, I can express D?' as follows:

DB‘el = (cy2 - (2a2 + By)Ay — ¢),
DPe, = —((2a” + By)Ay + C)es
DbBie; = By + a® — (2a2 + By)Ay — ¢)es.

Therefore, based on Eq (2.4), there exists an algebraic Schouten soliton associated to V5! on (Gs, g), if
and only if the following condition satisfies:

a(By + a® - By + 2a2)/lo —-c) =0,
BBy +2a° — (By +2a*) Ay —¢) = 0,

Y(By = By +2a%) — ¢) = 0,
5By + & — (By + 2a*) Ay —¢) = 0.

(4.10)

Assume first that = 0, so I have:
BBy —Bydo—c) =0,
YBy = Bydo—c) =0, 4.11)
6By = Bydo —c¢) = 0.
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Then, for Cases i—iii, system (4.10) holds.
Now, I let @ # 0. The second equation in (4.10) leads to 8 = 0, then system (4.10) reduces to:

a(@? —2a%°1—¢) =0,
y2a* Ay +¢) =0, 4.12)
8@ - 221 —c¢) = 0.

This proves that Cases iv and v hold. O

4.6. Algebraic Schouten soliton of Gg
Lemma 19. [13] The Ricci tensor p®' concerning connection V5 of (G, g) is given by:
—(6*+By) O 0]

PBl(ei,ej) = [ 0 0 0
0 0 ¢

(4.13)

From this, I derive the following result.

Theorem 20. If (Ge, g) constitutes an algebraic Schouten soliton concerning connection V®'; then,
one of the following cases holds:

I)a=B=vy=0,0#0,c=-6%+261;
2)a+#0,=0=y=0,¢c=0;

3) a#0,#0,0=y=0,c=0;

4) a#0,B=y=0,6 %0, c = -6+ 26*y.

Proof. From (4.13), I have the expression for Ric?' as follows:

e —(*+By) 0 0 )(e
RicP e, | = 0 0 O |lel.
(%]

0 0 -6°
The scalar curvature is s%' = —(26% + By). Now, I can express D?' as follows:

€3

DPiey = —(8% + By — (26° + By)do + C)ey,
D" ey = ((26° + By)dy — ©)ea,
DPles = —(6% — (26% + By) Ay + ©).

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V5! on (Gg, g), if
and only if the following condition satisfies:

(6 + By — (26> + By) Ao + ¢) = 0,
BBy — (26 + By)Ao + ¢) = 0,
¥(26° + By — (26" + By)do + ¢) = 0,
8(6% + By — (26> + By) Ay + ¢) = 0.

(4.14)
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Assume first @ = 0. Then, @ + 6 # 0 and ay — 6 = 0 leads to 8 = 0 and 6 # 0. Therefore, system
(4.14) reduces to:

262 -25%Ay+¢) =0,
{7( 0+ ) (4.15)

8(6% —26° 29 +¢) = 0.
Then, for Case 1), system (4.14) holds.
Now, let @ # 0. Suppose 6 = 0, from the equations in (4.14) I can derive that y = 0. Then, I

have ¢ = 0. Consequently, I have Cases 2) and 3). If 6 # 0, the equations in (4.14) imply that y = 0.
Substituting into the second equation in (4.14) leads to 8 = 0. Then, we have 4). O

4.7. Algebraic Schouten soliton of G;

Lemma 21. [13] The Ricci tensor p?' concerning connection V®' of (G, g) is given by:

a? Bla + 6) 1B — )
pB'(e,-,ej) = [ﬁ(a/+6) 0 5+ %(,By+a5)]. (4.16)
BE—a) & +5By+ad) p-ao -y

From this, we derive the following theorem.

Theorem 22. If (G;, g) constitutes an algebraic Schouten soliton concerning connection V5 ; then, it
Sfulfills the conditions: @« =26, =y =0, c = 0‘72 - 202y

Proof. From (4.16), I have the expression for Ric?' as follows:

2 % Bla +6) ~1pG-a) (e
Ric® [62] = [,B(Q/ +0) 0 -6 — %(,87 + cyé)] [62] .
e3 PBO-a) F+iBy+ad) B +P+By Ne

The scalar curvature is s?' = 2a? — 8% + By. Now, I can express D?' as follows:

DPtey = (&% = 207 = B> + By) Ao — ©)er + Bla + 6)es — 3(6 — )es,
DPle; = Bla + 8)er = (207 = B2 + By) Ao + ©)ex = (& + 3(By + ad))es,
DPies = 38(6 — @)ey + (6% + 5(By + ad)es + (@ = B + By — (2a” = B + By) Ay — Oes.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V81 on (G7, g), if
and only if the following condition satisfies:

a(s%1 29 + ¢) = BB+ y)(6 — @) — BA(a + 6) — a(6* + 1(By + ad)) = 0,

B(—a? + P10y + ¢) + 3B6(6 — @) + (@ + 6) = 0,

B(=B*+ By + s 2y + ) + 1B(6 — @)? = 2B(6* + 1(By + @) = 0,

a(@® + By — B — s% 0 — ) + Bly — B)a + 6) - &0 — (& + £1320) =

BRa’ +py — B — 514 — ¢) + B — a)(a + 6) — 28(6* + 25%) = 0, 4.17)
B@? — 5512 — ¢) + Bé(a + 6) + 3aB(6 — @) = 0,

Y(=B* + By — 5510 — ©) + Bla@ — 6)(a + 6) — 1B(a@ — §)* = 0,

5@ - B+ By — B2y — ¢) + BB —y)a + 6) +52<‘;—‘“) — 8(5% + 2220y = 0,

—8(s%1 20 + ) + B + 6) + BB+ ¥)(S — @) + 6(6* + 1(By + ad)) = 0.
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Since ay = 0 and @ + ¢ # 0, I now analyze the system under different assumptions.

First, if @ = 0 and y # 0, from the equations above, and after simple calculation, we have g8 = 0.
Furthermore, the seventh and eighth equations imply that 5> = 0, which leads to a contradiction.

Second, if @ # 0 and y = 0. the seventh equation gives rise to three possible subcases: § = 0,
a =0, ora+ 36 = 0. Initially, let’s assume S = 0. In this case, the equations in system (4.17), imply
that (@ — 20)(a + 0) = 0, leading to @ = 29, and the theorem is true. Next, I consider the subcase
where @ = § and 8 # 0. Then, the fifth and sixth equations result in 4a? + 82 = 0, which leads to a
contradiction. Additionally, I consider that @ + 36 = 0 and 8 # 0. The first and last equations provide
(2a? — B2 + By)dy + ¢ = 0. Substituting this into the third equation derives 8 = 0, which leads to a
contradiction.

Finally, if @ = y = 0. The first equation in system (4.17) leads to 8 = 0. Then, using the equations
in (4.17), we have §° = 0, which leads to a contradiction. O

5. Algebraic Schouten solitons concerning connection V5

In this section, I formulate the algebraic criterion necessary for a three-dimensional Lorentzian Lie
group to have an algebraic Schouten soliton related to the given Bott connection V2. Let us recall
the Bott connection with the third distribution, denoted by V5. Consider a smooth manifold (M, g)
that is equipped with the Levi-Civita connection V, and let T M represent its tangent bundle, spanned
by {ej, es, e3}. I introduce a distribution D, spanned by {e;, e3} and its orthogonal complement D,
which is spanned by {e;}. The Bott connection V¥ associated with the distribution D, is then defined
as follows:

1, (ViCY), X, Y € T®(Dy),

p,([X,Y]), XeIl*(Dy), Yel“(D,),

vy = 5.1
=N (X YD, X eT=(Dy), ¥ e T=(D2), G-D
ﬂ-D;'(Vicy)’ Xa Y e I“OO(D;)’
where 7p, (respectively, 7p:) denotes the projection onto D, (respectively, Dy).
5.1. Algebraic Schouten soliton of G,
Lemma 23. [13] The Ricci tensor pB concerning connection V® of (G4, g) is given by:
0 %a[g’ —%a/,B
p%(ee) =] 308 B2 0 |. (5.2)
-3a8 0 B

From this, I derive the following theorem.

Theorem 24. If (G, g) constitutes an algebraic Schouten soliton concerning connection V2, then, it
Sulfills the conditions: @ # 0, B =0and c = 0.

Proof. According to (5.2), the expression for Ric? is derived as follows:

el 0 %a/,B %a,B el
. B
Ric® e, | = %laﬁ —p? O2 e .
es —saB 0 —-B7)\e;
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The scalar curvature is s%2 = —Zﬁz. Now, I can express D52 as follows:

1 1
DB, = (2,82/10 —c)ey + 5&,862 + 50’,363,

1
DPe, = Eaﬁel — (B> =282 + ©)es,

1
DBy = —5&,36’1 - (B2 - 2,82/10 + ¢)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V52 on (G, ), if
and only if the following condition satisfies:

a(B* =282 +c)+aB* =0,

B =0,

53
a(-2B° +c)—af* =0, 63
B(=2B*Ay + ¢) + *B = 0.
By solving (5.3), T have @ # 0, =0 and ¢ = 0. O
5.2. Algebraic Schouten soliton of G,
Lemma 25. [13] The Ricci tensor p? concerning connection V% of (G,, g) is given by:
0 O 0
p%(eie)) =10 —aB —ay|. (54)
0 —ay af

From this, I derive the following theorem.

Theorem 26. If (G,, g) constitutes an algebraic Schouten soliton concerning connection V5, then,
one of the following cases holds:

1) a=0,=0,¢c=0;
2) a=0,#0,c=0.

Proof. From (5.4), I have the expression for Ric?? as follows:

el 0O O 0 (e
Ric®|e, | =0 —aB ay ||e:].
e3 0 —ay —af)\es

The scalar curvature is s5 = —2a. Now, I can express D?2 as follows:

D%e, = 2aB1, — c)ey,
D¢, = —(aB — 2aB1) + c)e; + ayes,
DB, = —aye; — (af — 2af A + c)es.
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Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V52 on (G,, ), if
and only if the following condition satisfies:

Y(=2aB4y + ¢) = 2afy = 0,
B(=2aBAy + c) — 2ay* = 0, (5.5)
aaf - 2afAy +c) = 0.

Since y # 0, I assume first that @ = 0. Under this assumption, the first two equations in (5.5) yield
¢ = 0. Therefore, Cases 1) and 2) hold. Now, let @ # 0, then I have § = 0, and the second equation in
(5.5) becomes 2ay? = 0, which is a contradiction. O

5.3. Algebraic Schouten soliton of G

Lemma 27. [13] The Ricci tensor pB> concerning connection V® of (Gs, g) is given by:

00 0
pBZ(e,-,e,):{o 0 0]. (5.6)
0 0 aB

From this, I derive the following theorem.

Theorem 28. If (G, g) constitutes an algebraic Schouten soliton concerning connection V5; then,
one of the following cases holds:

1) a=B=vy=0, forall c;
2)a=y=0,+#0,¢c=0;
3)a#0,=y=0,c=0;
4) a+#0,+0,y=0,c=—-af + aBy
5)a==0,y#0,c=0.

Proof. According to (5.6), the expression for Ric? is derived as follows:

€1 00 0 €1
Ric®|e, =10 0 0 ||es].
e 0 0 —aB)l\e;

The scalar curvature is s%2 = —a8. Now, I can express D2 as follows:
D%e; = (@A - c)ey,
D% e, = (B - c)es, (5.7)
D3¢y = —(aB — aBAy + c)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V52 on (G3, g), if
and only if the following condition satisfies:

y(—aB — afdy +¢) =0,
BB —aBly+c) =0, (5.8)
a(af —aBly+c)=0.
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Assuming that y = 0, I have

{ﬁ(aﬁ —afly+c) =0, 59)

a(af —aBly+c) =0.

Then, for Cases 1)—4), system (5.8) holds. Now, let y # 0, then we have @ = 8 = 0. Then, the Case 5)
is true. O

5.4. Algebraic Schouten soliton of G4

Lemma 29. [13] The Ricci tensor p concerning connection V% of (Gy, g) is given by:

0 0 0
P (e;, ej) = [O an-p) « ] (5.10)
0 a aff

From this, I derive the following theorem.

Theorem 30. If (G4, g) constitutes an algebraic Schouten soliton concerning connection V5, then one
of the following cases holds:

1) a=0,¢c=0;
2)a#0,=n.c=0.
Proof. From (5.10), I have the expression for Ric5 as follows:

el 0 0 0
Ric® [62] = [0 an-pB) -« ]
e3 0 a —af

€]
ér|.
€3

The scalar curvature is s%2 = @(2n — B) — a8. Now, I can express D% as follows:

D%e; = —((@(2n - B) — af)Ao + ey,
D%e, = (a(2n—B) — (a(2n — B) — af)Ay — C)es — aes,
D%e;3 = ae; — (aff + (a2 — B) — aP)dg + c)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V52 on (Gy, ), if
and only if the following condition satisfies:

2a(n - B) — (a(2n - B) —af)do + ¢) =0,

(2n - p)2an — (a(2n - p) — af)dy — ¢) — 2a = 0,
BRan + (@(2n - p) —ap)do +¢) —2a =0,
a(an—p)—af - (a2n—-p) —af)ly—c) = 0.

(5.11)

Assume first that @ = 0, then system (5.11) holds trivially. Therefore, Case 1) holds. Now, let @ # 0 |
have 8 = n; then, for Case 2), system (5.11) holds. m]
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5.5. Algebraic Schouten soliton of Gs

Lemma 31. [13] The Ricci tensor pB> concerning connection V® of (Gs, g) is given by:

0 0 0
p% (e e)) =0 & 0 : (5.12)
0 0 —-By+d?)

From this, I derive the following theorem.

Theorem 32. If (Gs, g) constitutes an algebraic Schouten soliton concerning connection V2, then one
of the following cases holds:

I a:ﬁ:y:0,6¢0,c:62—2(52/lo;
ii.a+0,=0=y=0,c=0;

iii. a#0,6#0,6=y=0,¢c=0;
v.a#0,=y=0,6#0, c=06>—25.

Proof. From (5.12), I have the expression for Ric?? as follows:

€] 0 0 0 €]
é | = 0 (52 0 ér|.
e 0 0 By+6°)\e;

The scalar curvature is s%2 = By + 26%. Now, I can express D?? as follows:

Ric®

D% e; = —((By + 26%) A + O)ey,
D%e; = (6% = (By + 2679 — ©)ea,
D%e; = (By + 6 — (By + 26%) Ay — C)es.
Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V22 on (Gs, g), if
and only if the following condition satisfies:
aBy + 6> — (By + 269y —¢) =0,
BBy = (By +26*)2 — ) =0,

5 5 (5.13)
v(By +26° — (By +26°)4y — ¢) =0,
5By + 6* — (By + 26%)Ay — ¢) = 0.
Let @ = 0, then I have 8 = 0 and 6 # 0. In this case, (5.13) reduces to:
26% —26°y —¢) = 0,
04 ‘ ‘ 0—0) (5.14)
06" =261y —¢) = 0.

Therefore, I conclude that y = 0, and we have Case i.

Next, I consider the case where @ # 0. By combining the first and third equations from (5.13), we
obtain y6*> = 0. If y = § = 0, then ¢ = 0. Therefore, Cases ii and iii hold. If y = 0 and § # 0, then
B = 0. Therefore, Case iv holds. |

Electronic Research Archive Volume 33, Issue 1, 327-352.



349

5.6. Algebraic Schouten soliton of Ge

Lemma 33. [13] The Ricci tensor pB> concerning connection V® of (G, g) is given by:

000
p%(eie)) =10 0 0]. (5.15)
000

From this, I derive the following theorem.

Theorem 34. If (G, g) constitutes an algebraic Schouten soliton concerning connection V5, then we
have ¢ = 0.

Proof. According to (5.15), the expression for Ric?? is derived as follows:

€1 0 00 €1
Ric® e, =10 0 0l]es].
e; 0 0 0)\e;

The scalar curvature is s%2 = 0. Now, I can express D52 as follows:
DBe; = —cey,
DPe, = —ce,,
DBe; = —ces.
Hence, by (2.4), I have ¢ = 0. O

5.7. Algebraic Schouten soliton of G;

Lemma 35. [13] The Ricci tensor p® concerning connection V% of (G, g) is given by:

0 O 0
pP (e e)) = [0 -By By ] (5.16)
0 By By

From this, I derive the following theorem.

Theorem 36. If (G, g) constitutes an algebraic Schouten soliton concerning connection V%, then one
of the following cases holds:

1) a==0,y+#0,¢c=0;
2) a#0,y=0,¢c=0;
3) a=y=0,c=0.

Proof. From (5.16), I have the expression for Ric5? as follows:

€] 0 0 0 €]
Ric® [ez] = [0 -By —ﬁy] {ez].
€3 0 By By)le
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The scalar curvature is s> = 0. Now, I can express D2 as follows:

DPe; = —(sdy + C)ey,
D%e, = —(By + sdy + C)e, — Pyes,
D%e;3 = Byes + (By — sy — O)es.

Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with V52 on (G, g), if
and only if the following condition satisfies:

@By +¢)—apy =0,

Bc =0,

BBy +¢) - 28y =0,

a(By—g) = afy, (5.17)
Bc+2By =0,

ve =0,

0(=By +c)+Byd =0,

6By +c¢)—pBysé =0.

Since ay = 0 and @ + ¢ # 0, I now analyze the system under different assumptions.

First, if @ = 0 and y # 0, under this assumption, the fifth and sixth equations of (5.17) jointly imply
that 8 = ¢ = 0. Therefore, Case 1) holds.

Second, if @ # 0 and y = 0, then the first equation of (5.17) gives ¢ = 0, and for Case 2), system
(5.17) holds.

Finally, if @ = y = 0, then 6 # 0, and the last equation of (5.17) gives ¢ = 0. Therefore, Case 3)

holds. |
6. Conclusions

I present algebraic conditions for three-dimensional Lorentzian Lie groups to be an algebraic
Schouten soliton associated with the Bott connection, considering three distributions. The main re-
sult indicates that G4 and G5 do not have such solitons with the first distribution, while the result for
G5 with the first distribution is trivial, and the other cases all possess algebraic Schouten solitons. In
the future, we will explore algebraic Schouten solitons in higher dimensions, as in [24,25].
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