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Abstract: Using the complex method, Guogiang Dang and Qiyou Liu [Guogiang Dang, Qiyou Liu,
Electron. Res. Arch., 31 (2023), 1303-1322] have found some exact solutions of the conformable
Huxley equation. In this comment, we first demonstrate that the elliptic function solutions and rational
function solutions do not satisfy the complex conformable Huxley equation. Finally, all exact solutions
of the conformable Huxley equation are given by us.
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1. Main mistakes and conclusions

In [1] , Dang and Liu used the complex method [2-8] to search for exact solutions of the
conformable Huxley equation [9]
o% 82
u(x, 1) — —u(x, 1) = Bux, (1 — ulx, 0))(wu(x, 1) —y), (1.1)
or® ox?

where a € (0, 1], B is a non-zero constant, and y € (0, 1).
Using the transformation u(x, t) = u(z), z = Kx — % to Eq (1.1) [1; Eq (3.1)], where a € (0,1], K
and A are non-zero constants, it follows that

K*W + A = Byu+ B +y)u? —pu’ =0, (1.2)

where 3 is a non-zero constant, and y € (0, 1).
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We rewrite Eq (1.2) [1; Eq (3.3)] into the following form [1; Eq (3.23)]:

u’ + %u’ - %u(u - Du-vy)=0, (1.3)
where K, A, and S are non-zero constants, and y € (0, 1).

Dang and Liu [1] obtained main results as below.

Conclusion 1. Eq (1.2) [1; Eq (3.3)] has the solutions (3.10) and (3.11).

Remark 1.1 The constraints on Eq (1.2) [1; Eq (3.3)] on page 1306 are 8 be a non-zero constant,
and y € (0, 1). The proof provided in lines 4-8 on page 1307 and lines 12—-18 on page 1308 does not
satisfy the above limitations. So, the solutions (3.10) and (3.11) also do not meet these constraints.

Conclusion 2. All meromorphic solutions of Eq (1.2) [1; Eq (3.3)] belong to the class W. The author
discusses on the second line of page 1308 in the article: Eq (1.2) [1; Eq (3.3)] has two integer Fuchs
indexes, —1, 4. From Eq (3.6) [1], the coefficient c; is an arbitrary constant, and the other coeflicients
¢4, Cs, - -+ can be represented using c3. Then, Eq (1.2) [1; Eq (3.3)] satisfies the {p, g) condition, and Eq
(1.2) [1; Eq (3.3)] is integrable. Therefore, all meromorphic solutions of Eq (1.2) [1; Eq (3.3)] belong
to the class W.

Remark 1.2 We know that the coeflicient c¢; is an arbitrary constant, indicating that there exists
infinite Laurent expansions, which means that p is infinite. Then, Eq (1.2) [1; Eq (3.3)] does not
satisfy the (p, g) condition. Therefore, it does not follow that all meromorphic solutions of Eq (1.2) [1;
Eq (3.3)] belong to the class W. In fact, in Section 2 of this comment, we will give some meromorphic
solutions that do not belong to the class W for Eq (1.2) [1; Eq (3.3)].

Conclusion 3. Eq (1.2) [1; Eq (3.3)] has the rational function solution and elliptic function solution.
In Case 1 on page 1039 of the article, the authors provide rational function solution (3.21) for Eq (1.2)
[1; Eq (3.3)], in the following form:

2
w(z) = — 2K- ! + A (1.4)

VB -2 \2BKZ

1428

where B(1 +y) = —7.,By = %
They provide the elliptic function solution (3.22) for Eq (1.2) [1; Eq (3.3)] on page 1310 of the
article, in the following:

"(z—20.82.83) + B A
W) = — 9'( 0,825 83) 1 , (15)
V-2D 9(z — 20,82, 83) — A1 \[28K>
A28 20,1232 200, 1233 . .
where B(1 +7) = _K_\/Z_’Al = 1;;(4 - %’Bl =0,8 = (ZKlg(s_M »83 = (2121[21(—1/21) , and zg is arbitrary.

Remark 1.3 Eq (1.2) [1; Eq (3.3)] does not have elliptic function and rational function solutions.
For detailed proofs, please refer to Remarks 2.2 and 2.3 in Section 2.

Conclusion 4. Eq (1.2) [1; Eq (3.3)] has new exact solutions. In this paper, a great deal of space is
devoted to finding new exact solutions to Eq (1.2) [1; Eq (3.3)], and all the new solutions are given in
Subsection 4.1 on page 1320.
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Remark 1.4 We can notice that some solutions do not satisfy Eq (1.2) [1; Eq (3.3)], such as solutions
(3.12), (3.13), (3.21), and (3.22). Some solutions are merely different in their representation, for
example, (3.51) and (3.52), (3.55) and (3.56), (3.59) and (3.60), (3.63) and (3.64), (3.67) and (3.68),
(3.71) and (3.72), (3.80) and (3.81), (3.84) and (3.85), (3.88) and (3.89), (3.92) and (3.93), (3.96) and
(3.97), and (3.100) and (3.101). Some solutions are identical, such as (3.88) and (3.96) and (3.92) and
(3.100), and some solutions differ by a constant, such as (3.51) and (3.84), (3.55) and (3.80), (3.59)
and (3.92), (3.63) and (3.88), (3.67) and (3.100), and (3.71) and (3.96).

2. All exact solutions of the complex conformable Huxley equation

In [10], Conte et al. used the Loewy factorizable method to look for meromorphic solutions for the
nonlinear second-order algebraic ordinary differential equation

2
W’ +ew' - L?(W —q)W = q)(w—g3) =0, 2.1)

where u(# 0), ¢, q1,q>, and g3 are complex constants.
They proved Theorem A as follows below.
Theorem A. Eq (2.1) has nonconstant meromorphic solutions if and only if ¢ satisfies

¢ r[(cu +qi+q; = 2q)(=cpu + qi +q; = 2q1) = 0, (22)
where (i j k) is any permutation of (1 2 3) and, for ¢ # O satisfying Eq (2.2), Eq (2.1) has two class
nonconstant meromorphic solutions. The first class solution is

—q,

_ i~k
C]i—Clke_%Z@/(e L Z_{o;gz,o)

wi(2) = gk — 5 =TS : (2.3)
ple * “=20:82,0)
where (), g, are arbitrary, if ¢ = zq[_z-’ “ — 29270k The other class solution is
9j(z=20) q(z=z0)
_gje " —qe ™
WZ(Z) - qj(z,_zo) qk(Z*ZO) (2"4)
e W —e =

where z is arbitrary, if ¢ = zq"_f—/f_q". For q; = gy, solution (2.4) degenerates to

wi(z) = —— + ¢, (2.5)

where z is arbitrary.

For ¢ # 0, all the meromorphic solutions of Eq (2.1) are given by (2.3)—(2.5) and the solution (2.3)
is the general solution.

According to Theorem A, it can be inferred that:

Remark 2.1 When ¢ = 0, Conte et al. [10] and Yuan et al. [11] obtained all nonconstant
meromorphic solutions of Eq (2.1).

By comparing Eqs (1.3) and (2.1), we can set ¢ = % # 0and y? = 27152 Here ¢ = 0,9, = 1,
g3 =7y € (0,1). By Theorem A, we obtain main results as below:
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Theorem 1. Lety € (0, 1), 8, K and A be non-zero constants.
1) If and only if K? = %i; and y = %, Eq (1.3) has the genaral meromorphic solutions

3
1 1 3 4 TRt — 5 ) 0
(@) = 5 % Ze-%zw (e _ £0:82.0) (2.6)
P(e™31° — £o;£2,0)
where (), g» are arbitrary, 1 # 0, 5, 1 € R.
2) All simply periodic solutions of Eq (1.3) are the following three forms:
() If 22 = B K28 then
e_(lﬂ;;)/j(z_z(]) _ ’ye_y(lztlw/j(z_a))
s = 5 2.7
u I(Z) e—%(g—zo) _ e_ Y(l;ly)'g(z—zo) ( )
where z; is arbitrary.
2
(i) If 22 = K28, then
yQ2-y)B (z-20)
ye 2
0(z) = ——, 2.8
us2(2) eyaz;&ﬁ(z—zo) -1 28)
where z is arbitrary.
2
(iii) If A% = 22 K28, then
eW(z—zo) 29
0= ey 22

where z is arbitrary.

Remark 2.2 It is easy to know that ¢ in u,,(z) is the Weierstrass elliptic function, and the growth
order of ¢ is p(9) = 2. Thus, p(u,(z)) = +oo. Therefore, Eq (1.3) has no elliptic function solutions
and u,(z) ¢ W

Remark 2.3 Since ¢g; = 0,9, = 1, and g3 = y € (0, 1) are not equal to each other, it is known by
Theorem A that Eq (1.3) does not have rational solutions.

Proof of Theorem 1.

Lety € (0,1), B8, K and A be non-zero constants. For Eq (1.3) we discuss its solutions in the
following two scenarios:

1) By comparing the coefficients of Eqs (1.3) and (2.1) and combining the conditions from (2.3),

we have % = zqi_zj_qk = _qi+fzj_q" and ;% = % which leads to
g =100 p BITUTO gy (2.10)

where (i j k) is any permutation of (1 2 3).

Considering the different values of g;, g;, and g, we will discuss the following cases.

Case 1. When g; = 0,g9; = 1, and ¢, = 7, from (2.10) we can obtain y = % €(0,1),K* = %. By
(2.3), Eq (1.3) has the genaral meromorphic solution

_3B
_w.pr(e ;"Z — {05 &2 O),
P(e31° = Lo £2,0)

I 1
+ 1€ (2.11)

uml(Z) = 5
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where (), g» are arbitrary, S1 # 0, and 5, 1 € R.

Case 2. When g; = 0,q; = yv,qx = 1, 0orq; = v,q; = 0,q,x = 1, from (2.10) we can obtain
v =2 ¢ (0, 1). The requirements for the coeflicients of Eq (1.3) are not met, so Eq (1.3) has no solution
in this case.

Case 3. Wheng; = 1,4; =0, and ¢, = v, from (2.10) we can obtain y = % €(0,1),K* = %. By
(2.3), Eq (1.3) has the genaral meromorphic solution

3
1 s pr(e 3 — {o; 82,0)

38 >
P(e™31° = (o, £2,0)

Upp(2) = (2.12)

&~

1
2

where (), g» are arbitrary, 1 # 0, 5, 1 € R.

Case 4. Wheng; = 1,q; =v,qx = 0,0rgi =y,q; = 1,q, = 0, from (2.10) we have y = -1 ¢ (0, 1),
so its result is the same as Case 2.

Therefore, if and only if K? = % andy = %, Eq (1.3) has the genaral meromorphic solutions

_¥ .
+ ie-;ﬁm'(e o G0i82.0) (2.13)

250(6_%Z — {05 &2,0)

where (), g, are arbitrary, f1 # 0, and 5, 1 € R.
2) By comparing the coefficients of Eqs (1.3) and (2.1) and combining the conditions from (2.4),

we have % = M%/j_q" and ;% = % , which deduces
24— 4; - @0
p= L W pr, (2.14)

where (i j k) is any permutation of (1 2 3).
Considering the different values of ¢;,g;, and g, we will discuss the following cases.
Case 1. Wheng; = 0,q; = l1,qx = y,orq; = 0,q; = y,qx = 1, from (2.10) we can obtain
_ U+’
2= +27 - BK>.
By (2.4), Eq (1.3) has the simply periodic solution

1 1
e_( er/lwﬁ(Z_ZO) _ ’ye_y( ;{y>ﬁ(Z—ZO)

Uus(2) = (2.15)

o~ Gw) _ 15 )
where z; is arbitrary.
2
Case 2. Whenq; = 1,q4; = 0,qx = y,orq; = 1,q; = v, qx = 0, from (2.10) we have 2* = @ - BK2.
By (2.4), Eq (1.3) has the simply periodic solution

27—
Pt 2/17)5 (Z_ZO)

(2.16)

@)=
Up(2) = ~ 5
‘ ) _ |

where z is arbitrary.
2
Case 3. When ¢; = y,q; = 0,q; = 1 or ¢; = y,q; = 1, = 0, from (2.10) we have 22 = 2. K2,
By (2.4), Eq (1.3) has the simply periodic solution

e (272*/11 B (Z—ZO)
us(x) = 40—, 2.17
S3( ) 6(272#(2—20) _ 1 ( )
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where z; is arbitrary.

So far, the proof of Theorem 1 is completed. Substituting u(x,?) = u(z),z = Kx —
meromorphic solutions u(z) of Eq (1.3), we have obtained all exact solutions for Eq (1.1).

Theorem 2. Let o € (O 1] v € (0, 1); and B, K, and A be non-zero constants.
1) If and only if K? = and Y = 5, Eq (1.1) has the genaral solutions

Pl
1e ey Gl Bk 50;82,0)

/l t‘Y

(e SA(KX {0’ gZaO)

1
Up(x, 1) = 3 +

where (y, g> is arbitrary, S1 # 0, K, B, 1 € R.
2) All simply periodic solutions of Eq (1.1) are the following three forms:
2
(i) If 22 = B2-K?8, then

(1+47) i (1+7) ” i
e B (Kx—40 Ko+ -2) _ 76—7 OB (K x40 Kxo+-2))
s (X, 1) = U ﬂo y(+y)B e gy
e (Kx—*——Kxo+—-2 )_ o (Kx—="0-—Kxo+—>)
where x( and #, are real constants.
.. 2—v)?
(i) If 2% = %Kzﬁ, then
y2-y)8 ﬂo
( t) —ye ey (Kx— —Kxp+—>)
up(x,t) =
s24% YD (e K 0) ’
e -1
where x( and 7, are real constants.
—1)2
(iii) If A2 = 25-K2B, then
QB (g Mgy +‘o)
(0,0) = —
ug(x,t) =
s3 ’ Qy- l)ﬁ(K KX + 0) ’
e -1

where x( and 7, are real constants.

3. Conclusions and suggestions for Electron. Res. Arch., 31 (2023), 1303-1322

s .
% into all

(2.18)

(2.19)

(2.20)

(2.21)

Starting from raising four questions in this comment, it is clear that Eq (1.3) does not have elliptic
function solutions and rational function solutions. In our research, we have obtained the general
solutions to Eq (1.3) by using Theorem 1. Thereby all exact solutions of Eq (1.1) are obtained. We

hope this comment will be useful to readers.
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