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Abstract: Using the complex method, Guoqiang Dang and Qiyou Liu [Guoqiang Dang, Qiyou Liu,
Electron. Res. Arch., 31 (2023), 1303–1322] have found some exact solutions of the conformable
Huxley equation. In this comment, we first demonstrate that the elliptic function solutions and rational
function solutions do not satisfy the complex conformable Huxley equation. Finally, all exact solutions
of the conformable Huxley equation are given by us.
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1. Main mistakes and conclusions

In [1] , Dang and Liu used the complex method [2–8] to search for exact solutions of the
conformable Huxley equation [9]

∂α

∂tα
u(x, t) −

∂2

∂x2 u(x, t) = βu(x, t)(1 − u(x, t))(u(x, t) − γ), (1.1)

where α ∈ (0, 1], β is a non-zero constant, and γ ∈ (0, 1).
Using the transformation u(x, t) = u(z), z = Kx − λt

α

α
to Eq (1.1) [1; Eq (3.1)], where α ∈ (0, 1],K

and λ are non-zero constants, it follows that

K2u′′ + λu′ − βγu + β(1 + γ)u2 − βu3 = 0, (1.2)

where β is a non-zero constant, and γ ∈ (0, 1).
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We rewrite Eq (1.2) [1; Eq (3.3)] into the following form [1; Eq (3.23)]:

u′′ +
λ

K2 u′ −
β

K2 u(u − 1)(u − γ) = 0, (1.3)

where K, λ, and β are non-zero constants, and γ ∈ (0, 1).
Dang and Liu [1] obtained main results as below.
Conclusion 1. Eq (1.2) [1; Eq (3.3)] has the solutions (3.10) and (3.11).
Remark 1.1 The constraints on Eq (1.2) [1; Eq (3.3)] on page 1306 are β be a non-zero constant,

and γ ∈ (0, 1). The proof provided in lines 4–8 on page 1307 and lines 12–18 on page 1308 does not
satisfy the above limitations. So, the solutions (3.10) and (3.11) also do not meet these constraints.

Conclusion 2. All meromorphic solutions of Eq (1.2) [1; Eq (3.3)] belong to the class W. The author
discusses on the second line of page 1308 in the article: Eq (1.2) [1; Eq (3.3)] has two integer Fuchs
indexes, −1, 4. From Eq (3.6) [1], the coefficient c3 is an arbitrary constant, and the other coefficients
c4, c5, · · · can be represented using c3. Then, Eq (1.2) [1; Eq (3.3)] satisfies the ⟨p, q⟩ condition, and Eq
(1.2) [1; Eq (3.3)] is integrable. Therefore, all meromorphic solutions of Eq (1.2) [1; Eq (3.3)] belong
to the class W.

Remark 1.2 We know that the coefficient c3 is an arbitrary constant, indicating that there exists
infinite Laurent expansions, which means that p is infinite. Then, Eq (1.2) [1; Eq (3.3)] does not
satisfy the ⟨p, q⟩ condition. Therefore, it does not follow that all meromorphic solutions of Eq (1.2) [1;
Eq (3.3)] belong to the class W. In fact, in Section 2 of this comment, we will give some meromorphic
solutions that do not belong to the class W for Eq (1.2) [1; Eq (3.3)].

Conclusion 3. Eq (1.2) [1; Eq (3.3)] has the rational function solution and elliptic function solution.
In Case 1 on page 1039 of the article, the authors provide rational function solution (3.21) for Eq (1.2)
[1; Eq (3.3)], in the following form:

w(z) = −

√
2K2

√
β
·

1
z − z0

+
λ√

2βK2
, (1.4)

where β(1 + γ) =
λ
√

2β
K2 , βγ =

λ2

2K2 .
They provide the elliptic function solution (3.22) for Eq (1.2) [1; Eq (3.3)] on page 1310 of the

article, in the following:

W(z) = −
1
√
−2D

℘′(z − z0, g2, g3) + B1

℘(z − z0, g2, g3) − A1
−

λ√
2βK2

, (1.5)

where β(1 + γ) = −
λ
√

2β
K2 , A1 =

λ2

12K4 −
βγ

6K2 , B1 = 0, g2 =
(2K2βγ−λ2)2

12K8 , g3 =
(2K2βγ−λ2)3

216K12 , and z0 is arbitrary.
Remark 1.3 Eq (1.2) [1; Eq (3.3)] does not have elliptic function and rational function solutions.

For detailed proofs, please refer to Remarks 2.2 and 2.3 in Section 2.
Conclusion 4. Eq (1.2) [1; Eq (3.3)] has new exact solutions. In this paper, a great deal of space is

devoted to finding new exact solutions to Eq (1.2) [1; Eq (3.3)], and all the new solutions are given in
Subsection 4.1 on page 1320.
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Remark 1.4 We can notice that some solutions do not satisfy Eq (1.2) [1; Eq (3.3)], such as solutions
(3.12), (3.13), (3.21), and (3.22). Some solutions are merely different in their representation, for
example, (3.51) and (3.52), (3.55) and (3.56), (3.59) and (3.60), (3.63) and (3.64), (3.67) and (3.68),
(3.71) and (3.72), (3.80) and (3.81), (3.84) and (3.85), (3.88) and (3.89), (3.92) and (3.93), (3.96) and
(3.97), and (3.100) and (3.101). Some solutions are identical, such as (3.88) and (3.96) and (3.92) and
(3.100), and some solutions differ by a constant, such as (3.51) and (3.84), (3.55) and (3.80), (3.59)
and (3.92), (3.63) and (3.88), (3.67) and (3.100), and (3.71) and (3.96).

2. All exact solutions of the complex conformable Huxley equation

In [10], Conte et al. used the Loewy factorizable method to look for meromorphic solutions for the
nonlinear second-order algebraic ordinary differential equation

w′′ + cw′ −
2
µ2 (w − q1)(w − q2)(w − q3) = 0, (2.1)

where µ(, 0), c, q1, q2, and q3 are complex constants.
They proved Theorem A as follows below.
Theorem A. Eq (2.1) has nonconstant meromorphic solutions if and only if c satisfies

c
∏

(cµ + qi + q j − 2qk)(−cµ + qi + q j − 2qk) = 0, (2.2)

where (i j k) is any permutation of (1 2 3) and, for c , 0 satisfying Eq (2.2), Eq (2.1) has two class
nonconstant meromorphic solutions. The first class solution is

w1(z) = qk −
qi − qk

2
e−

qi−qk
µ z℘′(e

−
qi−qk
µ z
− ζ0; g2, 0)

℘(e−
qi−qk
µ z
− ζ0; g2, 0)

, (2.3)

where ζ0, g2 are arbitrary, if c = 2qi−q j−qk

µ
=
−qi+2q j−qk

−µ
. The other class solution is

w2(z) =
q je

q j(z−z0)
±µ − qke

qk (z−z0)
±µ

e
q j(z−z0)
±µ − e

qk (z−z0)
±µ

, (2.4)

where z0 is arbitrary, if c = 2qi−q j−qk

±µ
. For q j = qk, solution (2.4) degenerates to

w3(z) =
±µ

z − z0
+ q j, (2.5)

where z0 is arbitrary.
For c , 0, all the meromorphic solutions of Eq (2.1) are given by (2.3)–(2.5) and the solution (2.3)

is the general solution.
According to Theorem A, it can be inferred that:
Remark 2.1 When c = 0, Conte et al. [10] and Yuan et al. [11] obtained all nonconstant

meromorphic solutions of Eq (2.1).
By comparing Eqs (1.3) and (2.1), we can set c = λ

K2 , 0 and µ2 = 2K2

β
. Here q1 = 0, q2 = 1 ,

q3 = γ ∈ (0, 1). By Theorem A, we obtain main results as below:
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Theorem 1. Let γ ∈ (0, 1), β, K and λ be non-zero constants.
1) If and only if K2 = 8λ2

9β and γ = 1
2 , Eq (1.3) has the genaral meromorphic solutions

um(z) =
1
2
±

1
4

e−
3β
8λ z℘′(e

−
3β
8λ z − ζ0; g2, 0)

℘(e−
3β
8λ z − ζ0; g2, 0)

, (2.6)

where ζ0, g2 are arbitrary, βλ , 0, β, λ ∈ R.
2) All simply periodic solutions of Eq (1.3) are the following three forms:
(i) If λ2 =

(1+γ)2

2 K2β, then

us1(z) =
e−

(1+γ)β
2λ (z−z0) − γe−

γ(1+γ)β
2λ (z−z0)

e−
(1+γ)β

2λ (z−z0) − e−
γ(1+γ)β

2λ (z−z0)
, (2.7)

where z0 is arbitrary.
(ii) If λ2 =

(2−γ)2

2 K2β, then

us2(z) =
γe

γ(2−γ)β
2λ (z−z0)

e
γ(2−γ)β

2λ (z−z0) − 1
, (2.8)

where z0 is arbitrary.
(iii) If λ2 =

(2γ−1)2

2 K2β, then

us3(z) =
e

(2γ−1)β
2λ (z−z0)

e
(2γ−1)β

2λ (z−z0) − 1
, (2.9)

where z0 is arbitrary.
Remark 2.2 It is easy to know that ℘ in um(z) is the Weierstrass elliptic function, and the growth

order of ℘ is ρ(℘) = 2. Thus, ρ(um(z)) = +∞. Therefore, Eq (1.3) has no elliptic function solutions
and um(z) < W

Remark 2.3 Since q1 = 0, q2 = 1, and q3 = γ ∈ (0, 1) are not equal to each other, it is known by
Theorem A that Eq (1.3) does not have rational solutions.

Proof of Theorem 1.
Let γ ∈ (0, 1), β, K and λ be non-zero constants. For Eq (1.3) we discuss its solutions in the

following two scenarios:
1) By comparing the coefficients of Eqs (1.3) and (2.1) and combining the conditions from (2.3),

we have λ
K2 =

2qi−q j−qk

µ
=
−qi+2q j−qk

−µ
and 2

µ2 =
β

K2 , which leads to

qk =
qi + q j

2
, λ2 =

(2qi − q j − qk)2

2
· βK2, (2.10)

where (i j k) is any permutation of (1 2 3).
Considering the different values of qi, q j, and qk, we will discuss the following cases.
Case 1. When qi = 0, q j = 1, and qk = γ, from (2.10) we can obtain γ = 1

2 ∈ (0, 1),K2 = 8λ2

9β . By
(2.3), Eq (1.3) has the genaral meromorphic solution

um1(z) =
1
2
+

1
4

e−
3β
8λ z℘′(e

−
3β
8λ z − ζ0; g2, 0)

℘(e−
3β
8λ z − ζ0; g2, 0)

, (2.11)
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where ζ0, g2 are arbitrary, βλ , 0, and β, λ ∈ R.
Case 2. When qi = 0, q j = γ, qk = 1, or qi = γ, q j = 0, qk = 1, from (2.10) we can obtain

γ = 2 < (0, 1). The requirements for the coefficients of Eq (1.3) are not met, so Eq (1.3) has no solution
in this case.

Case 3. When qi = 1, q j = 0, and qk = γ, from (2.10) we can obtain γ = 1
2 ∈ (0, 1),K2 = 8λ2

9β . By
(2.3), Eq (1.3) has the genaral meromorphic solution

um2(z) =
1
2
−

1
4

e−
3β
8λ z℘′(e

−
3β
8λ z − ζ0; g2, 0)

℘(e−
3β
8λ z − ζ0; g2, 0)

, (2.12)

where ζ0, g2 are arbitrary, βλ , 0, β, λ ∈ R.
Case 4. When qi = 1, q j = γ, qk = 0, or qi = γ, q j = 1, qk = 0, from (2.10) we have γ = −1 < (0, 1),

so its result is the same as Case 2.
Therefore, if and only if K2 = 8λ2

9β and γ = 1
2 , Eq (1.3) has the genaral meromorphic solutions

um(z) =
1
2
±

1
4

e−
3β
8λ z℘′(e

−
3β
8λ z − ζ0; g2, 0)

℘(e−
3β
8λ z − ζ0; g2, 0)

, (2.13)

where ζ0, g2 are arbitrary, βλ , 0, and β, λ ∈ R.
2) By comparing the coefficients of Eqs (1.3) and (2.1) and combining the conditions from (2.4),

we have λ
K2 =

2qi−q j−qk

±µ
and 2

µ2 =
β

K2 , which deduces

λ2 =
(2qi − q j − qk)2

2
· βK2, (2.14)

where (i j k) is any permutation of (1 2 3).
Considering the different values of qi, q j, and qk, we will discuss the following cases.
Case 1. When qi = 0, q j = 1, qk = γ, or qi = 0, q j = γ, qk = 1, from (2.10) we can obtain

λ2 =
(1+γ)2

2 · βK2.
By (2.4), Eq (1.3) has the simply periodic solution

us1(z) =
e−

(1+γ)β
2λ (z−z0) − γe−

γ(1+γ)β
2λ (z−z0)

e−
(1+γ)β

2λ (z−z0) − e−
γ(1+γ)β

2λ (z−z0)
, (2.15)

where z0 is arbitrary.
Case 2. When qi = 1, q j = 0, qk = γ, or qi = 1, q j = γ, qk = 0, from (2.10) we have λ2 =

(2−γ)2

2 · βK2.
By (2.4), Eq (1.3) has the simply periodic solution

us2(z) =
γe

γ(2−γ)β
2λ (z−z0)

e
γ(2−γ)β

2λ (z−z0) − 1
, (2.16)

where z0 is arbitrary.
Case 3. When qi = γ, q j = 0, qk = 1 or qi = γ, q j = 1, qk = 0, from (2.10) we have λ2 =

(2γ−1)2

2 · βK2.
By (2.4), Eq (1.3) has the simply periodic solution

us3(z) =
e

(2γ−1)β
2λ (z−z0)

e
(2γ−1)β

2λ (z−z0) − 1
, (2.17)
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where z0 is arbitrary.
So far, the proof of Theorem 1 is completed. Substituting u(x, t) = u(z), z = Kx − λt

α

α
into all

meromorphic solutions u(z) of Eq (1.3), we have obtained all exact solutions for Eq (1.1).
Theorem 2. Let α ∈ (0, 1]; γ ∈ (0, 1); and β, K, and λ be non-zero constants.
1) If and only if K2 = 8λ2

9β and γ = 1
2 , Eq (1.1) has the genaral solutions

um(x, t) =
1
2
±

1
4

e−
3β
8λ (Kx− λt

α

α )℘′(e
−

3β
8λ (Kx− λt

α

α ) − ζ0; g2, 0)

℘(e−
3β
8λ (Kx− λt

α

α ) − ζ0; g2, 0)
, (2.18)

where ζ0, g2 is arbitrary, βλ , 0,K, β, λ ∈ R.
2) All simply periodic solutions of Eq (1.1) are the following three forms:
(i) If λ2 =

(1+γ)2

2 K2β, then

us1(x, t) =
e−

(1+γ)β
2λ (Kx− λt

α

α −Kx0+
λtα0
α ) − γe−

γ(1+γ)β
2λ (Kx− λt

α

α −Kx0+
λtα0
α ))

e−
(1+γ)β

2λ (Kx− λt
α

α −Kx0+
λtα0
α ) − e−

γ(1+γ)β
2λ (Kx− λt

α

α −Kx0+
λtα0
α )
, (2.19)

where x0 and t0 are real constants.
(ii) If λ2 =

(2−γ)2

2 K2β, then

us2(x, t) =
γe

γ(2−γ)β
2λ (Kx− λt

α

α −Kx0+
λtα0
α )

e
γ(2−γ)β

2λ (Kx− λt
α

α −Kx0+
λtα0
α ) − 1

, (2.20)

where x0 and t0 are real constants.
(iii) If λ2 =

(2γ−1)2

2 K2β, then

us3(x, t) =
e

(2γ−1)β
2λ (Kx− λt

α

α −Kx0+
λtα0
α )

e
(2γ−1)β

2λ (Kx− λt
α

α −Kx0+
λtα0
α ) − 1

, (2.21)

where x0 and t0 are real constants.

3. Conclusions and suggestions for Electron. Res. Arch., 31 (2023), 1303–1322

Starting from raising four questions in this comment, it is clear that Eq (1.3) does not have elliptic
function solutions and rational function solutions. In our research, we have obtained the general
solutions to Eq (1.3) by using Theorem 1. Thereby all exact solutions of Eq (1.1) are obtained. We
hope this comment will be useful to readers.
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