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Abstract: The incidence of hypertension has increased dramatically in both elderly and young 

populations. The incidence of hypertension also increased with the outbreak of the COVID-19 

pandemic. To enhance hypertension detection accuracy, we proposed a multivariate outlier removal 

method based on the deep autoencoder (DAE) technique. The method was applied to the Korean 

National Health and Nutrition Examination Survey (KNHANES) database. Several studies have 

identified various risk factors for chronic hypertension. Chronic diseases are often multifactorial rather 

than isolated and have been associated with COVID-19. Therefore, it is necessary to study disease 

detection by considering complex factors. This study was divided into two main parts. The first module, 

data preprocessing, integrated external features for COVID-19 patients merged by region, age, and 

gender for the KHNANE-2020 and Kaggle datasets. We then performed multicollinearity (MC)-based 

feature selection for the KNHANES and integrated datasets. Notably, our MC analysis revealed that 

the “COVID-19 statement” feature, with a variance inflation factor (VIF) of 1.023 and a p-value < 

0.01, is significant in predicting hypertension, underscoring the interrelation between COVID-19 and 

hypertension risk. The next module used a predictive analysis step to detect and predict hypertension 

based on an ordinal encoder (OE) transformation and multivariate outlier removal using a DAE from 

the KNHANES data. We compared each classification model's accuracy, F1 score, and area under the 

curve (AUC). The experimental results showed that the proposed XGBoost model achieved the best 

results, with an accuracy rate of 87.78% (86.49%–88.1%, 95% CI), an F1 score of 89.95%, and an 
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AUC of 92.28% for the COVID-19 cases, and an accuracy rate of 87.72% (85.86%–89.69%, 95% CI), 

an F1 score of 89.94%, and an AUC of 92.23% for the non-COVID-19 cases with the DAE_OE model. 

We improved the prediction performance of the classifiers used in all experiments by developing a 

high-quality training dataset implementing the DAE and OE in our method. Moreover, we 

experimentally demonstrated how the steps of the proposed method improved performance. Our 

approach has potential applications beyond hypertension detection, including other diseases such as 

stroke and cardiovascular disease. 

Keywords: COVID-19; KNHANES; hypertension; deep autoencoder; outlier; machine-learning 

 

1. Introduction  

Hypertension is a chronic disease that can lead to serious conditions in the heart, brain, or 

kidney [1,2]. Hypertension, which occurs due to high blood pressure, is a condition in which blood 

vessels have constantly increased pressure, making it difficult for the human heart to pump blood. It is 

a major cause of early death worldwide, affecting up to one in four men and one in five women, and 

occurring in over a billion people worldwide [3]. In 2019, the coronavirus disease (COVID-19) 

threatened the world. Many studies have been conducted on COVID-19, and the use of machine 

learning methods to diagnose the causes of hypertension has increased in recent years. In this study, 

we aim to infer the association between COVID-19 and hypertension using machine learning (ML) 

methods, to identify hypertension based on the characteristics of COVID-19. Machine learning is a 

process that starts with observations or data, such as cases, real-world experiences, or instructions, to 

look for patterns in the data and make better decisions based on the examples that we supply. ML helps 

to make decisions automatically using models learned from data without subjectivity. These can also 

be used to diagnose various diseases. In a previous study [4], we proposed a multivariate outlier 

detection Mahalanobis-distance-based XGBoost model to predict hypertension complications. The 

accuracy, F1 score, and area under the curve (AUC) for the Korean National Health and Nutrition 

Examination Survey (KNHANES) dataset were 99.51%, 99.58%, and 99.65%, respectively. Liao et 

al. [5] compared several algorithms on electronic medical record (EMR) datasets to determine the 

main cause of hypertension and hyperlipidemia, effectively enhancing the interpretability of the model. 

Based on the KNHANES dataset [6], it is recommended that those who are susceptible to the pandemic 

pay special attention to COVID-19 protection and maintain suitable nutritional status to promote 

outstanding immune function. Kim et al. [7] studied how Korean adults perceived their health, 

happiness, and life satisfaction with different forms of relaxation activities during the COVID-19 

pandemic. The authors of [8] studied changes in physical activity and energy consumption in Korean 

adult males before and after COVID-19 in relation to abdominal obesity. The increase in hypertension 

among children and adolescents in Korea during the COVID-19 outbreak was investigated using data 

from the KNHANES 2018–2020 [9,10]. Nguyen et al. [11] examined the association between berry 

rice consumption and cardiovascular disease, type 2 diabetes, arthritis, and depression among 18-year-

old adolescents using NHANES data. In [12–14], the authors suggested that early diagnosis, 

monitoring, and treatment for high-risk COVID-19 could be identified using hierarchical clustering-

based outlier detection with a deep-stacked autoencoder model. Some researchers have employed 

stacked autoencoder–based feature selection techniques for data mining and pattern detection in the 

education sector [15] to enhance data quality.  
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In this study, we propose a multivariate outlier removal–based hypertension prediction method 

using a deep autoencoder neural network. The proposed method improves the performance of machine 

learning–based classifiers by performing deep autoencoder (DAE) and ordinal encoder (OE) 

transformations on the training dataset. We evaluated the proposed method using two datasets from 

2015 to 2019 and 2020. Given that COVID-19 began in 2019, Dataset II was created by combining 

2020 health data with different COVID-19 features. 

Contributions of this research include: 

• Statistical and machine learning methods were used to determine whether the characteristics 

of COVID-19 influence hypertension. 

• The performance of machine learning algorithms was improved by preparing training datasets 

using multivariate outlier removal based on DAE and OE transformations. 

• The proposed method was evaluated by conducting experiments on an open dataset. 

• The KNHANES dataset and COVID-19 features from Kaggle were integrated using feature 

matching. 

The remainder of this study is structured as follows: Section 2 reviews the recent literature, 

encompassing a survey of related works in the field. In Section 3, we delineate the proposed 

methodology. Section 4 is dedicated to the experimental study, which includes an in-depth exploration 

of the dataset, the procedures employed for comparative analysis, the evaluation metrics utilized, and 

a comprehensive presentation of the comparative results. Finally, Section 5 concludes the research and 

offers a detailed examination of correlation, multicollinearity, and descriptive analyses pertinent to 

Datasets I and II. 

2. Related works  

Recent studies on hypertension have contributed to the field's evolving understanding and 

methodological advances. Fang et al. examined hypertension prevalence and management challenges, 

particularly in lower-income countries, and introduced a predictive model combining KNN and 

LightGBM based on individualized risk factors [16]. Conversely, [17] applied a novel approach 

utilizing machine learning techniques, including XGBoost and ensemble methods, juxtaposed with 

traditional logistic regression, using Japanese health checkup data to forecast the onset of hypertension. 

AlKaabi et al. conducted a cross-sectional analysis in Qatar, employing a spectrum of machine learning 

algorithms—decision tree, random forest, and logistic regression—rigorously evaluated against 

multiple performance metrics for hypertension prediction [18].  

In [19], the focus shifted to leveraging artificial neural networks, aiming to estimate hypertension 

risk based on demographic and health-related variables, thus highlighting their potential in health 

management and patient categorization. Further, Zhang et al. delved into applying retinal fundus 

photography combined with neural network models for hypertension prediction in rural Chinese 

settings, showcasing the method’s efficacy in detecting chronic disease [20]. In [21], deep learning 

algorithms analyzing ECG data were explored, providing insights into the early detection and subtype 

differentiation of pulmonary hypertension.  

Regarding congenital heart disease, [22] ventured into detecting pulmonary hypertension using 

phonocardiogram recordings, employing a computer-aided diagnosis system that integrated diverse 

features and utilized an XGBoost classifier. Finally, [23] critically evaluated noninvasive testing 

methods, including the innovative use of the VITRO diagnostic tool, for detecting clinically significant 

portal hypertension in patients with chronic liver diseases, offering a nuanced perspective on diagnostic 

approaches. These studies collectively illuminate the diverse and complex research on hypertension, 
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from predictive modeling and machine learning applications to noninvasive diagnostic methodologies, 

enriching the tapestry of contemporary medical research. 

3. Methodology 

In this section, the components of the proposed prediction method are described. Figure 1 shows 

the proposed framework based on a DAE-based outlier removal method. The proposed framework 

consists of two main modules: data preprocessing and predictive analysis. 
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Figure 1. Deep autoencoder-based hypertension classification framework with 

multivariate outlier detection. 

3.1. Data preprocessing 

The data preprocessing module consists of three main parts: data cleaning, feature selection, and 

feature embedding. This study aims to predict hypertension using the KNHANES dataset. This dataset 

contains a health survey of a variety of diseases, health issues, and nutritional information on the 

Korean population with 1193 attributes. 

3.1.1. Dataset preparation  

The KNHANES dataset was used to build a model to predict hypertension. The KNHANES data 

were collected from the Korean Disease Control and Prevention (KDCA) [24]. It comprises health 
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examinations for various diseases, health interviews, and nutritional surveys of the Korean population. 

We analyzed two datasets: the first dataset from 2015 to 2019 and the second from 2020 for COVID-

19 [25]. We generated a target value for > 19-year-old patients with hypertension. The target 

hypertension group included participants with a history of diabetes, pre-diabetes, heart disease, heart 

attack, or stroke. There were two types of KNHANES datasets: Datasets I and II. The KNHANES 

datasets were released for public use within one year from the end of each survey year. Figure 2 

illustrates the procedure used to create the target dataset. As the number of datasets increased, the 

results of the machine learning algorithm improved, as shown in the experimental results.  

 

Figure 2. Experimental datasets based on the KNHANES and Kaggle. 

 

Figure 3. Tolerance value of the multicollinearity analysis of the selected features on 

experimental datasets. 

The 2015−2019 dataset consisted of 39,758 records with 1192 columns. From this data, after 

removing features not associated with hypertension, we began data analysis in Dataset I, initially with 

39,758 records and 128 attributions. Subsequently, we selected features using multicollinearity 

analysis based on the attribution significance dataset after removing several missing values and 

features unrelated to hypertension. There were 26,128 records and 36 related features with 

hypertension used in our experimental target Dataset I. We removed outliers based on DAE and then 

included 22,772 records and 36 features for Dataset I for the experiment. 

Next, we used an integrated dataset called Dataset II, which was created by combining the 2020 
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COVID-19 datasets with the KNHANES 2020 survey data using a feature alignment approach. The 

categorization of COVID-19 patient statuses is essential for analyzing the progression and impact of 

the disease within a population. The data encompasses 11,468 confirmed cases between January 20 

and May 31, 2020, compiled by the Korean Centers for Disease Control and Prevention. Most patients 

were released from isolation, followed by a smaller percentage in isolation and a small fraction 

resulting in fatalities [2]. Data from 5218 non-overlapping individuals were used. In other words, dead 

people were excluded from the data at the confirmed date. 

From this data, after removing features not associated with hypertension, we began data analysis 

in Dataset II, initially with 7359 records and 128 attributions for 2020 KNHANES and 5218 records 

and 13 attributions for 2020 COVID-19. We removed missing values and several features unrelated to 

hypertension using MC analysis, including 4926 records and 37 features for Dataset II. Then, outliers 

were removed based on the DAE method, leaving 4174 records and 37 features of Dataset II to 

continue testing.  

In COVID-19, statements are as follows: 

1) Isolated: This designation is assigned to individuals diagnosed with COVID-19 who are 

undergoing isolation. The isolation setting could be a hospital, a care facility, or a home, determined 

by the patient’s symptom severity and the prevailing healthcare guidelines in the region. 

2) Released: Patients categorized as “released” have recovered from COVID-19 and are no longer 

infectious. Transitioning to this category typically requires the cessation of symptoms and a negative 

virus test result, indicating successful recovery from the infection. 

3) Deceased: This category accounts for those who have lost their lives due to the virus, and it 

represents the mortality rate associated with COVID-19. 

3.1.2. External feature  

The daily frequency of COVID-19 cases in South Korea between January 20, 2020, and June 30, 

2020, was reported by Kaggle [26,27]. The values of the COVID-19 features ranged from 1–3, 

indicating isolated, released, or deceased patients. By merging the COVID-19 features with the 2020 

KNHANES dataset, we matched the location, age, and sex of the Kaggle and KNHANES datasets. 

This dataset is called Dataset II. The tolerance value of Dataset II is shown in Figure 3. Columns 1–36 

of Dataset I and II are identical and distinct from the column COVID-19. The target feature descriptions, 

mean, and standard deviations (Std. Dev) for each dataset (I and II) are listed in Table 1. 

3.1.3. Feature selection based on multicollinearity analysis 

The feature selection module was performed using multicollinearity analysis (MC). Therefore, 

we selected important features to develop a simple and accurate model. We verified the collinearity 

between selected features of health examination, nutrition, basic information, and hypertension using 

MC in the regression analysis. MC is a statistical term used when the values of two or more input 

attributes are extremely correlated [28]. If highly correlated variables are present, the attributes should 

be removed. The tolerance results and variance inflation factor (VIF) were examined using the MC 

analysis. If the VIF value is greater than 10 and the tolerance is less than 0.10, then an MC problem 

occurs. At the end of this analysis, 36 features were used as inputs for subsequent analysis of the two 

sets of data. Figure 3 shows the tolerance values for the selected features. In our study, we conducted 

an MC analysis on two distinct datasets to draw comparative insights. The results, including p-values, 

tolerance, and VIF scores are detailed in Tables 2 and 3. Notably, the highest VIF scores were observed 



3208 

Electronic Research Archive  Volume 32, Issue 5, 3202-3229. 

 

for three variables: “health checkup status in adults” (4.435), “influenza vaccination status” (4.118), 

and “number of walking days per week” (4.016). This last finding was particularly unexpected, as 

frequent walking is often linked with hypertension management, as illustrated in Table 2. Other 

significant predictors, such as “waist circumference” and “age” showed VIF scores of 3.233 and 3.167, 

respectively. The VIF range of 1–5 for these predictors suggests a lack of correlation, affirming their 

suitability for inclusion in the hypertension prediction model. 

Table 1. Feature descriptions of Dataset I and II. 

Features Descriptions 
Dataset I Dataset II  

Mean Std. Dev. Mean Std. Dev. 

region Region 7.39 4.940 7.61 4.989 

sex Gender 1.55 .497 1.54 0.498 

age Age 51.41 16.526 51.21 16.847 

incm Income quartile (individual) 2.52 1.115 2.53 1.112 

marri_1 Marital status 1.17 .374 1.21 0.405 

Graduate Education level 1.75 1.773 1.57 1.295 

DI2_ag When to diagnose dyslipidemia 735.94 321.547 705.23 344.66 

BH9_11 Influenza (flu) vaccination status 1.70 1.113 1.53 0.510 

BH1 Health check-up status 1.45 1.127 1.29 0.466 

LQ_5EQL EuroQoL: anxiety/depression 1.25 1.109 1.10 0.316 

EC_wht_0 Employment (full-time or not) 5.27 3.234 5.17 3.237 

BO2_1 Weight control for 1 year 2.38 1.395 2.26 1.292 

BD2_32 Frequency of female binge drinking 5.85 2.978 5.95 2.920 

BD7_5 Counseling for drinking problems for 1 year 2.15 .985 2.00 .059 

BE3_31 Number of walking days per week 6.77 13.685 4.90 3.490 

HE_rPLS Pulse regularity 1.01 .109 1.01 .098 

HE_nARM Blood pressure measuring arm 1.01 .101 1.00 .065 

HE_sbp End systolic blood pressure 119.22 16.721 119.08 16.209 

HE_dbp Final diastolic blood pressure 75.55 10.011 75.94 9.781 

HE_wc Waist circumference 82.84 10.174 84.672 10.630 

HE_obe_BMI Prevalence of obesity 2.71 .934 3.04 1.065 

HE_DM Prevalence of diabetes  1.54 .711 1.73 .718 

HE_chol Total cholesterol 192.28 37.427 189.90 38.721 

HE_HDL_st2 HDL cholesterol 51.35 12.776 51.56 12.523 

HE_TG Triglycerides 134.51 107.119 130.57 107.287 

HE_ast GOT 23.51 13.878 25.06 16.744 

HE_alt GPT 22.50 18.440 23.87 19.873 

HE_BUN Blood urea nitrogen 14.92 4.759 15.05 4.833 

HE_crea Blood creatinine 1.00 .209 .808 .241 

HE_WBC Leukocyte 6.25 1.785 6.178 1.699 

HE_RBC Red blood cells 4.60 .587 4.545 .489 

HE_Bplt Platelets 258.36 64.117 254.07 59.729 

HE_Uph Uric acid 5.97 .881 5.850 .7414 

HE_UNa Sodium urinary 113.49 48.130 111.28 47.776 

COVID_state COVID-19 statement - - 1.44 0.528 
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Table 2. Multivariate logistic regression analysis results of risk for hypertension of 

KNHANES 2015−2019, Dataset I. 

Features p-value Tolerance VIF 

Health check-up status 0.284 0.225 4.435 

Influenza (flu) vaccination status < 0.0001 0.243 4.118 

Number of walking days per week 0.815 0.249 4.016 

Waist circumference < 0.0001 0.309 3.233 

Age < 0.0001 0.316 3.167 

Prevalence of obesity  < 0.0001 0.374 2.674 

ALT(SGPT) 0.694 0.380 2.630 

Gender 0.067 0.395 2.534 

End systolic blood pressure < 0.0001 0.425 2.355 

AST (SGOT) 0.116 0.426 2.345 

Final diastolic blood pressure < .0001 0.483 2.068 

Frequency of (adult) female binge drinking 0.118 0.518 1.929 

Marital status < 0.0001 0.577 1.734 

Education level: graduation < 0.0001 0.608 1.645 

Red blood cells < 0.0001 0.631 1.584 

HDL cholesterol < 0.0001 0.642 1.559 

Triglycerides < 0.0001 0.665 1.503 

Blood urea nitrogen < 0.0001 0.701 1.426 

Prevalence of diabetes (including glycated hemoglobin) < 0.0001 0.727 1.376 

Total cholesterol < 0.0001 0.735 1.361 

Survey year < 0.0001 0.762 1.312 

Leukocyte < 0.001 0.792 1.262 

Employment (full-time or not) .323 0.828 1.208 

Platelets < 0.0001 0.829 1.206 

When to diagnose dyslipidemia < 0.0001 0.831 1.204 

Weight control for 1 year 0.221 0.833 1.201 

Counseling for drinking problems for 1 year 0.714 0.858 1.165 

Blood creatinine 0.613 0.864 1.157 

Uric acid 0.034 0.926 1.080 

Sodium urinary < 0.0001 0.929 1.076 

Income quartile (individual) 0.626 0.955 1.047 

Region 0.561 0.966 1.035 

Pulse regularity < 0.012 0.981 1.020 

Blood pressure measuring arm 0.664 0.993 1.007 

Table 3 lists the results of the multivariate logistic regression analysis for the risk of hypertension 

according to COVID-19 with an adjustment for significant variables, VIF, and tolerance. The highest 

VIF was waist circumference (4.978), which is surprising because it is one of the most common 

symptoms of hypertension. Predictors such as the prevalence of obesity, age, and sex had the next 

highest VIF with scores of 3.968, 3.775, and 3.074, respectively. Additionally, with the COVID-19 

status VIF at 1.023, the p-value was < 0.011, indicating that the predictors were not correlated and 

could be considered when building the hypertension prediction model.  
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Table 3. Multivariate logistic regression analysis results of risk for hypertension of 

integrated Dataset II of KNHANES 2020 and COVID-19. 

Features p-value Tolerance VIF 

Waist circumference < 0.010 0.201 4.978 

Prevalence of obesity (19 years of age or older) < 0.008 0.252 3.968 

Age < 0.0001 0.265 3.775 

Gender < 0.018 0.325 3.074 

End systolic blood pressure < 0.0001 0.402 2.488 

ALT(SGPT) 0.297 0.430 2.324 

Final diastolic blood pressure < 0.0001 0.439 2.276 

Marital status < 0.0001 0.490 2.042 

Red blood cells < 0.0001 0.499 2.004 

AST (SGOT) 0.751 0.510 1.961 

Frequency of (adult) female binge drinking 0.902 0.544 1.838 

Blood creatinine < 0.050 0.545 1.834 

Blood urea nitrogen < 0.012 0.601 1.664 

HDL cholesterol 0.268 0.626 1.598 

Prevalence of diabetes (including glycated hemoglobin) < 0.0001 0.661 1.512 

Triglycerides 0.161 0.703 1.423 

Total cholesterol < 0.0001 0.719 1.391 

Leukocyte 0.126 0.758 1.320 

When to diagnose dyslipidemia < 0.0001 0.771 1.296 

Platelets < 0.042 0.809 1.236 

Influenza (flu) vaccination status 0.362 0.839 1.191 

Employment (full-time or not) 0.851 0.862 1.161 

Weight control for 1 year 0.168 0.863 1.159 

Health check-up status 0.063 0.882 1.134 

Sodium urinary 0.097 0.890 1.124 

Education level: graduation < 0.0001 0.910 1.099 

Uric acid 0.557 0.925 1.082 

Income quartile (individual) 0.576 0.940 1.064 

Region 0.544 0.952 1.051 

EuroQoL: anxiety/depression 0.324 0.968 1.033 

Counseling for drinking problems for 1 year 0.927 0.973 1.028 

Number of walking days per week 0.864 0.974 1.027 

COVID-19 statement < 0.011 0.978 1.023 

Pulse regularity 0.411 0.984 1.016 

Blood pressure measuring arm 0.751 0.991 1.009 

3.2. Predictive analysis 

3.2.1. Outlier detection based on DAE 

The DAE was used to clean the data. The AE is an unsupervised artificial neural network that 

learns how to efficiently compress and encode data and then reconstructs the data from the reduced 
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encoded representation to a representation as close to the original input as possible [29]. The AE structure 

consists of encoder and decoder components. The encoder compresses the input data by reducing the 

data dimensions, whereas the decoder constructs the compressed data as the output. The reconstruction 

error of the autoencoder is the difference between the input and reconstructed outputs [30,31]. 

 

Figure 4. Architecture of DAE neural network used in the proposed method. 

Figure 4 shows the structure of the proposed autoencoder model. The proposed autoencoder has 

six hidden layers with 37, 20, 10, 5, 1, 5, 10, 20, and 37 nodes. Moreover, the hidden layers in the 

encoder part use the “ReLU” activation function, and hidden layers in the decoder part use the “tanh” 

activation function. First, we trained the DAE model using the entire dataset. We then calculated the 

reconstruction errors (RE) using the mean of the squared difference between the input and output as 

described in the following equation [32]: 

𝑅𝐸 =
1

𝑛
∑ ‖𝑥𝑖 − 𝑥𝑖

′‖2
2𝑛

𝑖=1                                         (1) 

where n is the number of records, x is the original input, and x is the reconstructed input. First, the RE 

of the training dataset was calculated using the DAE model. The mean and standard deviation of these 

REs were then used to estimate the threshold for splitting the training dataset, which can be described 

as follows [32]. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
1

𝑛
∑ 𝑅𝐸𝑖

𝑛
𝑖=1 + √

1

𝑛
∑ [𝑅𝐸𝑖 −

1

𝑛
∑ 𝑅𝐸𝑖

𝑛
𝑖=1 ]𝑛

𝑖=1 ,                     (2) 

where k is the number of instances in the training dataset, and REi is the reconstruction error of the i-

th training instance. Consequently, two different training datasets were prepared, and the RE-based 

threshold was estimated for further analysis. Subsequently, a threshold was used to select an 

appropriate hypertension-prediction model from the DAE models trained on the two datasets. 
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Figure 5. Process of outlier detection using the DAE. 

Figure 5 shows the outlier detection steps. In this process, the first input data was provided to the 

DAE model, and its RE on DAE was calculated. If the RE exceeded the threshold estimated using Eq (2), 

the outlier threshold value was estimated by summing the average reconstruction error and the standard 

deviation. If the reconstruction error of the data exceeded the threshold value, it was excluded from 

the dataset. For the DAE model, the learning rate was configured to minimize the mean squared error to 

0.001, and the Adamax optimizer was employed [30]. The batch size was set to 32, and the number of 

epochs was specified to 1000. The performance of the DAE model was compared under different 

threshold values for the HP (hypertension) feature in Table 4, which helps to understand how the DAE 

model performs with varying threshold settings. 

Table 4. Comparative results of threshold values for DAE model. 

Statistics Dataset with varying threshold 

Dataset I Dataset II 

Original 

HP 

feature 

High Medium Low Original 

HP 

feature 

High Medium Low 

0.953 0.816 0.544 0.414 0.349 0.237 

N 26128 25662 24352 22772 4925 4364 4214 4174 

Mean 1.89 1.89 1.88 1.87 1.91 1.93 1.89 1.85 

Std. Dev. 0.862 0.862 0.859 0.853 0.852 0.862 0.847 0.839 

Std.E.Mean  0.005 0.005 0.005 0.006 0.12 0.013 0.013 0.013 

t-statistic 355.13 351.587 342.347 330.00 157.07 148.24 144.92 142.12 

p-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

95% CI 1.88−1.91 1.88−1.90 1.87−1.89 1.85−1.88 1.88−1.93 1.91−1.96 1.86−1.92 1.82−1.87 

Table 4 summarizes statistical analyses conducted on the two separate Datasets I and II, across three 

thresholds: High, Medium, and Low regarding an “HP’ feature. This provides information regarding the 

mean values, variability, and statistical significance of the model’s performance. The statistical measures 

provided include the sample size (N), mean, standard deviation (Std. Dev.), standard error of the mean 

(Std.E.Mean), t-statistic, p-value, and 95% confidence interval (95% CI). For Dataset I, the original HP 

feature value threshold has 0.953 for high, 0.816 for medium, and 0.544 for low. Additionally, for dataset 

II, the original HP feature values were 0.414 for high, 0.349 for medium, and 0.237 for low. The sample 

size decreased as the threshold decreased, indicating possible criteria-based selection within the dataset. 

Despite varying thresholds, the mean values were consistent, suggesting a relatively stable central 
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tendency. The standard deviation was also consistent, indicating that the dispersion of the data around 

the mean was similar across the thresholds. The small standard error of the mean provides high precision 

for the mean estimates. The t-statistics were high, and the p-values were extremely low (0.0001). This 

indicates that the means at different thresholds are statistically significantly different from the 

hypothesized population mean, assuming the null hypothesis to be zero or another baseline value. The 

95% CI are narrow and overlap slightly, which provides a precise estimate of where the population's true 

mean is expected to have a 95% confidence level. 

Based on our analysis, we added the mean and standard deviation, which we named “low”, to 

calculate a threshold value for comparison. We calculated the 75th percentile as “high” and the 50th 

percentile as “medium” using this threshold value and compared the results in Table 4. Our findings 

revealed that a lower threshold value of 0.544 and 0.237 led to better outcomes for the selected two 

datasets. 

 

Figure 6. Distribution of COVID-19 features in the original dataset and dataset without outliers. 

Figure 6 shows the data with and without outliers from the dataset using several values based on 

the DAE method. The left violin plot illustrates the distribution of the COVID-19-state feature in the 

original dataset. The width of the plot at various points indicates the density of data points; more 

comprehensive sections mean more data points at that value. Based on the DAE method, the right 

violin plot shows the distribution of the same COVID-19-state feature after removing outliers, 

including outliers. The absence of the broader sections at the extremes suggests that removing outliers 

leads to a more concentrated distribution around the median, with fewer extreme values. 

3.2.2. Ordinal encoder transformation 

The following step in this module involves transforming the data from which outliers have been 

removed. This is achieved by applying the ordinal encoding (OE) transformation technique. In this 

process, categorical variables are encoded as integer arrays. The input for this transformation is 

consistent with either an integer array or a string array, each element of which corresponds to a value 

determined based on the data’s categorical (discrete) attributes. Subsequently, this section is dedicated 
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to converting these features into ordinal integers. This conversion creates a single integer column for each 

element, where the integers range from 0 to n-1, with n representing the total number of categories [32]. 

Among the 37 features analyzed, 16 categorized features were transferred to OE transformation. These 

features include Region, Gender, Age, Marital status, Education level, Influenza (flu) vaccination 

status, EuroQoL: anxiety/depression, Employment (full-time or not), Weight control for one year, 

Frequency of female binge drinking, Counseling for drinking problems for one year, Number of 

walking days per week, Prevalence of obesity, Prevalence of diabetes, COVID-19 statement, and 

Prevalence of hypertension. Figure 7 graphically illustrates the distribution of “marri_1” (marital 

status), showcasing the data both with and without the application of OE, categorized by the number 

of classes. 

  

Figure 7. OE-based transformation on the marital status feature in the without-outlier dataset. 

3.2.3. Classifiers 

To improve the performance of the predictive analysis, we focused on a training dataset. That is, 

instead of directly training the classifiers, outliers were removed from the training dataset using the 

DAE-OE method. Subsequently, the RF, KNN, XGBoost, DT, and NB algorithms were applied to the 

prepared training datasets [33,34].  

NB: Naïve Bayes is a probability-based classification algorithm. It calculates the probability of 

each class label and selects the class label with the highest probability. It calculates the probability by 

considering each feature separately; this is called conditional independence. 

KNN: The k-nearest neighbor algorithm was used for classification. First, the user defines the 

value of parameter k, which is the number of nearest samples used for prediction. Then, all distances 

between the test data and training dataset are calculated and sorted in descending order. Finally, the 

top k instances from the ordered dataset are used to predict the class labels. A majority-voted class 

label is assigned to the output label. 

DT: The decision tree classifier is an interpretable label and a commonly used algorithm. It builds 

a model to predict the target variable using decision rules trained from the data.  

RF: The random forest is an ensemble algorithm. It consists of several decision-tree classifiers 

trained on different subsamples of the entire dataset. For prediction, the majority-voted class label of 

these decision trees was chosen as the output. 

XGBoost: XGBoost uses a method called classification and regression (CART) in which all 
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leaves are related to the final score of a model, unlike a decision-making tree, which only considers 

the result values of leaf nodes. Although a common decision-making tree is interested in how well the 

classification has been performed, CART enables a comparison of the superiority of models that retain 

identical classification results. 

3.3. Evaluation metrics  

To evaluate the performance of our predictive models, we adopt a comprehensive set of metrics: 

accuracy, AUC, F1 score, and mean squared error (MSE) [30]. Each metric offers a unique lens to 

assess the effectiveness of our models, from accuracy in predictions to the balance between precision 

and recall, providing a holistic view of our model’s performance as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 𝑎𝑛𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                      (3) 

Precision and recall are important metrics for evaluating classification models. Precision 

measures the accuracy of positive predictions, while recall measures the model's ability to identify all 

positive instances. These metrics are useful for imbalanced datasets or when the cost of false positives 

and negatives varies. 

The F1 score is the harmonic mean of precision and recall as follows: 

 𝐹1 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
           (4) 

We studied the multiclass case, and the average of the F1 score of each class label with weighting 

depends on the average parameter, as shown in Eq (4). 

Accuracy is a measure of the degree of closeness of the calculated value to its actual value. 

Accuracy is the sum of the true positive fraction and true negative fraction among all the test data, as 

shown in Eq (5). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
          (5) 

The AUC is a crucial metric for multiple classification models as shown in Eq (6). It is calculated 

by finding the area under the ROC (receiver operating characteristic) curve. A higher AUC value 

indicates better model performance, facilitating distinguishing between positive and negative instances. 

It is beneficial for imbalanced datasets or when the cost of false positives and negatives varies. 

𝐴𝑈𝐶 = ∑
(𝐹𝑃𝑅𝑖+𝐹𝑃𝑅𝑖+1)∙(𝑇𝑃𝑅𝑖+1−𝑇𝑃𝑅𝑖)

2

𝑛
𝑖=1             (6) 

In addition, one of our evaluated metrics is the MSE for the predicted leaks relative to actual 

values: 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)]2𝑛−1

𝑖=0
𝑚−1
𝑖=0                           (7) 

with m and n being the number of observations, where m is the number of data points and n is predicting 

diabetes. X and Y are the actual and predicted values for the i, j - th data points, respectively. 
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4. Experimental study 

4.1. Experimental dataset exploration 

In our study, we categorized the target characteristics of the experimental dataset into three 

distinct labels: normal, pre-hypertension, and hypertension. Detailed descriptions of these target 

features are provided in Table 1, with the descriptive statistics outlined in Tables 4 and 5. In this article, 

hypertension is defined for patients exhibiting a systolic blood pressure (SBP) greater than 140 mmHg, 

a diastolic blood pressure (DBP) greater than 90 mmHg, or those under a physician-prescribed 

antihypertensive drug (AHD) regimen. The criteria for the hypertension classification labels were 

established as follows: A label of Normal was assigned for DBP in the range of 0–80 mmHg and SBP 

in the range of 0–120 mmHg. A label of Pre-hypertension was designated for DBP ranging from 80 to 

90 mmHg and SBP from 120 to 140 mmHg. In cases exceeding these ranges, the classification label 

is Hypertension. 

Box plots for the relationship between hypertension, COVID-19, age, sex, and survey year are 

shown in Figure 8(a),(b) for Datasets I and II, respectively. The difference between the datasets is that 

Dataset II included COVID-19 features. Therefore, we present a feature description based on Dataset 

II in Table 1. Cross-tabulation analysis was performed on both datasets for comparison. The normal, 

pre-hypertensive, and hypertensive values for each dataset are listed in Tables 5 and 6. 

 

Figure 8. Correlation of categorical features of the experimental datasets. (a) Dataset I; (b) 

Dataset II. 

  

(a) (b) 
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Table 5. Descriptive statistics for KNHANES (2015−2019). 

Features Hypertension (19 years or older) 

 Normal Pre-hypertension Hypertension Total 

 10021 (44.0%) 5786 (25.4%) 6965 (30.6%) 22772 (100%) 

Gender  

Male 3671 (16.1) 3272 (14.4) 3752 (16.5) 10695 (47.0) 

Female 6350 (27.9) 2514 (11.0) 3213 (14.1) 12077 (53.0) 

Survey year  

2015 1626 (7.1) 802 (3.5) 960 (4.2) 3388 (14.9) 

2016 2027 (8.9) 1151 (5.1) 1483 (6.5) 4661 (20.5) 

2017 2107 (9.3) 1258 (5.5) 1436 (6.3) 4801 (21.1) 

2018 2233 (9.8) 1262 (5.5) 1605 (7.0) 5100 (22.4) 

2019 2028 (8.9) 1313 (5.8) 1481 (6.5) 4822 (21.2) 

Age  

19−29 years old 2151 (9.4) 642 (2.8) 77 (0.3) 2870 (12.6) 

30−39 years old 2481 (10.9) 876 (3.8) 326 (1.4) 3683 (16.2) 

40−49 years old 2433 (10.7) 1197 (5.3) 797 (3.5) 4427 (19.4) 

50−59 years old 1684 (7.4) 1393 (6.1) 1528 (6.7) 4605 (20.2) 

60−69 years old 919 (4.0) 1084 (4.8) 2017 (8.9) 4020 (17.7) 

70−80 years old 353 (1.6) 594 (2.6) 2220 (9.7) 3167 (13.9) 

Marital status  

Married 7357 (32.3) 4794 (21.1) 6630 (29.1) 18781 (82.5) 

Single 2664 (11.7) 992 (4.4) 335 (1.5) 3991 (17.5) 

Influenza (flu) vaccination status  

Yes 3207 (14.1) 2152 (9.5) 4048 (17.8) 9407 (41.3) 

No 6693 (29.4) 3539 (15.5) 2825 (12.4) 13057 (57.3) 

No response 121 (0.5) 95 (0.4) 92 (0.4) 308 (1.4) 

Prevalence of obesity (19 years or older)  

Underweight 601 (2.6) 155 (0.7) 88 (0.4) 844 (3.7) 

Normal 5966 (26.2) 2499 (11.0) 2345 (10.3) 10810 (47.5) 

Pre-obesity stage 2110 (9.3) 1728 (7.6) 2411 (10.6) 6249 (27.4) 

1st stage obesity 1235 (5.4) 1232 (5.4) 1796 (7.9) 4263 (18.7) 

2nd stage obesity 101 (0.4) 164 (0.7) 293 (1.3) 558 (2.5) 

3rd stage obesity 8 (0.0) 8 (0.0) 32 (0.1) 48 (0.2) 

Prevalence of diabetes (19 years of age or older)  

Normal 7863 (34.5) 3435 (15.1) 2580 (11.3) 13878 (60.9) 

Pre-diabetes 1922 (8.4) 1905 (8.4) 2797 (12.3) 6624 (29.1) 

Diabetes 236 (1.0) 446 (2.0) 1588 (7.0) 2270 (10.0) 

Region     

Seoul 2080 (9.1) 1116 (4.9) 1204 (5.3) 4400 (19.3) 

Busan 697 (3.1) 335 (1.5) 417 (1.8) 1449 (6.4) 

Daegu 516 (2.3) 271 (1.2) 335 (1.5) 1122 (4.9) 

Incheon 556 (2.4) 333 (1.5) 419 (1.8) 1308 (5.7) 

Gwangju 389 (1.7) 163 (0.7) 186 (0.8) 738 (3.2) 

Continued on next page 
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Daejeon 365 (1.6) 198 (0.9) 237 (1.0) 800 (3.5) 

Ulsan 215 (0.9) 114 (0.5) 134 (0.6) 463 (2.0) 

Sejong 640 (2.8) 333 (1.5) 384 (1.7) 1357 (6.0) 

Gyeonggi 2196 (9.6) 1308 (5.7) 1499 (6.6) 5003 (22.0) 

Gangwon 241 (1.1) 209 (0.9) 304 (1.3) 754 (3.3) 

Chungbuk 256 (1.1) 179 (0.8) 259 (1.1) 694 (3.0) 

Chungnam 289 (1.3) 185 (0.8) 276 (1.2) 750 (3.3) 

Jeonbuk 284 (1.2) 177 (0.8) 221 (1.0) 682 (3.0) 

Jeonnam 303 (1.3) 203 (0.9) 262 (1.2) 768 (3.4) 

Gyeongbuk 419 (1.8) 286 (1.3) 348 (1.5) 1053 (4.6) 

Gyeongnam 449 (2.0) 292 (1.3) 368 (1.5) 1109 (4.9) 

Jeju 126 (0.6) 84 (0.4) 112 (0.5) 322 (1.4) 

Our study analyzed data from the KNHANES conducted between 2015 and 2019, encompassing 

22,772 participants. The average age of these participants was 51.41 years old, comprising 10,695 

(47%) men and 12,077 (53%) women. Additionally, we included data from the KNHANES 2020 

survey, which involved 4174 participants with a mean age of 51.21 years old, including 2007 men 

(48.1%) and 2167 women (51.9%).  

Table 6. Descriptive statistics for KNHANES 2020 year. 

Features Hypertension (19 years or older)  

 Normal Pre-hypertension Hypertension Total 

 1840 (44.1%) 1136 (27.2%) 1198 (28.7%) 4174 (100%) 

Gender  

Male 883 (21.2) 560 (13.4) 564 (13.5) 2007 (48.1) 

Female 957 (22.9) 576 (13.8) 634 (15.2) 2167 (51.9) 

Age  

19−29 years old 458 (11.0) 171 (4.1) 23 (0.6) 652 (15.6) 

30−39 years old 404 (9.7) 166 (4.0) 54 (1.3) 624 (14.9) 

40−49 years old 422 (10.1) 218 (5.2) 138 (3.3) 778 (18.6) 

50−59 years old 319 (7.6) 235 (5.6) 256 (6.1) 810 (19.4) 

60−69 years old 173 (4.1) 221 (5.3) 375 (9.0) 769 (18.4) 

70−80 years old 64 (1.5) 125 (3.0) 352 (8.4) 541 (13.0) 

Marital status  

Married 1506 (36.1) 967 (23.2) 965 (23.1) 3438 (82.4) 

Single 334 (8.0) 1136 (27.2) 1198 (28.7) 736 (17.6) 

Influenza (flu) vaccination status 

Yes 829 (19.9) 553 (13.2) 557 (13.3) 1939 (46.5) 

No 1011 (24.2) 583 (14.0) 641 (15.4) 2235 (53.5) 

Prevalence of obesity (19 years or older)  

Underweight 138 (3.3) 18 (0.4) 11 (0.3) 167 (4.0) 

Normal 924 (22.1) 349 (8.4) 246 (5.9) 1519 (36.4) 

Pre-obesity stage 391 (9.4) 282 (6.8) 292 (7.0) 965 (23.1) 

Continued on next page 
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1st stage obesity 351 (8.4) 406 (9.7) 544 (13.0) 1301 (31.2) 

2nd stage obesity 35 (0.8) 74 (1.8) 96 (2.3) 205 (4.9) 

3rd stage obesity 1 (0.0) 7 (0.2) 9 (0.2) 17 (0.4) 

Prevalence of diabetes (19 years of age or older)  

Normal 1210 (29.0) 475 (11.4) 253 (6.1) 1938 (46.4) 

Pre-diabetes 578 (13.8) 555 (13.3) 612 (14.7) 1745 (41.8) 

Diabetes 52 (1.2) 106 (2.5) 333 (8.0) 491 (11.8) 

Region     

Seoul 418 (10.0) 240 (5.7) 208 (5.0) 866 (20.7) 

Busan 101 (2.4) 55 (1.3) 58 (1.4) 214 (5.1) 

Daegu 72 (1.7) 23 (0.6) 41 (1.0) 136 (3.3) 

Incheon 76 (1.8) 50 (1.2) 58 (1.4) 184 (4.4) 

Gwangju 67 (1.6) 37 (0.9) 43 (1.0) 147 (3.5) 

Daejeon 47 (1.1) 24 (0.6) 49 (1.2) 120 (2.9) 

Ulsan 40 (1.0) 28 (0.7) 24 (0.6) 92 (2.2) 

Sejong 40 (1.0) 27 (0.6) 22 (0.5) 89 (2.1) 

Gyeonggi 518 (12.4) 290 (6.9) 314 (7.5) 1122 (26.9) 

Gangwon 65 (1.6) 62 (1.5) 57 (1.4) 184 (4.4) 

Chungbuk 57 (1.4) 47 (1.1) 44 (1.1) 148 (3.5) 

Chungnam 56 (1.3) 43 (1.0) 29 (0.7) 128 (3.1) 

Jeonbuk 43 (1.0) 48 (1.1) 52 (1.2) 143 (3.4) 

Jeonnam 47 (1.1) 34 (0.8) 37 (0.9) 118 (2.8) 

Gyeongbuk 75 (1.8) 52 (1.2) 51 (1.2) 178 (4.3) 

Gyeongnam 90 (2.2) 59 (1.4) 85 (2.0) 234 (5.6) 

Jeju 28 (0.7) 17 (0.4) 26 (0.6) 71 (1.7) 

4.2. Chi-square test analysis results  

The chi-square test is a statistical test that is used to determine if there is any relation between 

two categorical variables. For example, in our study, we performed a chi-square test to investigate the 

potential connection between COVID-19 and hypertension, or to determine whether COVID-19 

affects hypertension [35]. The test statistic for the chi-square test of independence is denoted by χ² and 

is computed as 

 Χ2 = ∑ ∑
(𝑜𝑖𝑗−𝑒𝑖𝑗)

2

𝑒𝑖𝑗

𝐶
𝑗=1

𝑅
𝑖=1                                 (8) 

where oij is the observed cell count in the i-th row and j-th column of the table, and eij is the expected 

cell count in the i-th row and j-th column of the table, computed as 

𝑒𝑖𝑗 =
𝑟𝑜𝑤 𝑖 𝑡𝑜𝑡𝑎𝑙 ∙ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑗 𝑡𝑜𝑡𝑎𝑙

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙
                           (9) 

The quantity (oij-eij) is sometimes referred to as the residual of cell (i, j), denoted as rij. The 

calculated Χ2 value was compared with the critical value from the Χ2 distribution table with degrees 

of freedom df = (R-1)(C-1) and the chosen confidence level. If the calculated Χ2 value was greater 
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than the critical Χ2 value, the null hypothesis was rejected. Based on these results, we can state the 

value of the test statistic as Χ2 = 30.742, degrees of freedom df = 4, and p-value of the test statistic p 

< 0.001.  

Table 7. Crosstabulations of COVID-19 and hypertension. 

  Prevalence of hypertension (19 years or older) Total 

Normal (%) Pre-hypertension (%) Hypertension (%) 

COVID-19 state Released 1034 (24.8) 631 (15.1) 708 (17.0) 2373 (56.9) 

Isolated 799 (19.1) 504 (12.1) 470 (11.3) 1773 (42.5) 

Deceased 7 (0.2) 1 (0.0) 20 (0.5) 28 (0.7) 

Total 1840 (44.1) 1136 (27.2) 1198 (28.7) 4174 (100) 

Because the p-value is lower than our chosen significance level of α = 0.05, we reject the null 

hypothesis and conclude that there is a significant association between hypertension and the COVID-

19 statement. The cross-tabulations of COVID-19 and hypertension are shown in Table 7.  

4.3. Hyper-parameter results  

To obtain better results, we tuned some XGBoost hyperparameters on a target dataset using the 

grid search infrastructure in scikit-learn [34]. Figure 9(a) presents a plot of each learning rate as a 

series, showing the F1-weighted performance as the number of trees variation. It also shows that the 

best result observed was a learning rate of 0.01 with 400 trees. Clearly, the expected general trend 

holds, where the performance improves as the number of trees increases. Figure 9(b) shows the 

relationship between the number of trees in the model and the depth of each tree. We created a grid of 

nine different n-estimator values (100–500) and six different maximum depth values (2, 4, 6, 8, 10, 

and 12), and each combination was evaluated using a 10-fold cross-validation. A total of 9 × 6 × 10 or 

540 models were trained and evaluated. The best result was achieved with 500 estimators and a 

maximum depth of 10 in an F1-weighted score. 

  

(a)              (b) 

Figure 9. Comparison charts of the datasets. (a) Learning rate and n_estimator, (b) depth and 

n_estimator. 
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4.4. Classifier results 

The data preprocessing and predictive analysis modules were implemented in Python using the 

sklearn library [36]. The data preprocessing module was implemented using SPSS 23.0. First, we 

measured the performances of the baseline models for comparison with the proposed method. We 

trained the baseline models directly on the raw dataset using ML algorithms shown in Figure 1. We 

then trained the baseline OE-based models on a dataset with outliers removed. The model was verified 

using a 10-fold cross-validation, and the results were compared with those of XGB, KNN, DT, RF, 

and NB. Tables 8 and 9 show the baseline models’ and proposed methods’ compared performances, 

where the highest values of evaluation scores are marked in bold. As a result, DAE-based data can 

improve the performance of models trained on experimental datasets. Moreover, the combination of 

DAE-based outlier removal and OE-based data transformation in the proposed methods outperformed 

all compared baselines. 

Table 8. Evaluation comparison of the proposed methods on experimental Dataset I. 

Methods Algorithms Accuracy (%) ROC (%) F1 score (%) 

Baseline models XGB 86.13 90.78 87.60 

KNN 63.60 74.67 68.20 

DT 74.02 87.20 83.00 

RF 85.02 90.37 88.75 

NB 57.26 78.59 66.93 

Outlier removing method DAE_XGB 86.49 91.26 88.18 

DAE _KNN 64.64 75.31 68.94 

DAE _DT 76.59 88.41 84.67 

DAE _RF 86.54 91.26 89.86 

DAE _NB 59.64 79.74 69.08 

Proposed method 

K = 10-fold 

DAE_OE_XGB 87.25 91.64 88.66 

DAE _OE _KNN 64.74 75.38 69.12 

DAE_OE _DT 76.56 88.31 84.46 

DAE_OE _RF 86.63 91.28 89.97 

DAE _OE _NB 50.62 79.97 66.99 

Tables 8 and 9 list the comparative performances of the baseline model and the proposed method. 

Consequently, the OE-based data transformation can improve the performance of the models trained 

on raw datasets, as summarized in Table 8. Furthermore, the combination of DAE-based outlier 

removal and OE-based data transformation in the proposed method outperformed all the compared 

baselines. The accuracy, F1 score, and ROC measurements of the performance results are presented in 

Table 8, with the highest scores in bold. The XGB model exhibited the best accuracy of 86.13%, which 

improved to 87.252% when the OE-based transformation was applied to the baseline model. The 

XGBoost algorithm yielded the best results among all compared models, with an accuracy rate of 

87.252%, F1 score of 88.663, MSE of 0.075, and ROC of 91.64%. The DAE-OE-NB model exhibited 

lower results than the other proposed predictive models in terms of the evaluation metrics. 
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Table 9. Evaluation comparison of the proposed methods on experimental Dataset II. 

Methods Features Accuracy (%) AUC (%) F1 score (%) 

COVID-

19 

No 

COVID 

-19 

Difference 

from 

baseline 

COVID 

-19 

No 

COVID 

-19 

Difference 

from 

baseline 

COVID 

-19 

No 

COVID 

-19 

Difference 

from 

baseline 

Baseline 

models 

XGB 84.49 84.42 0.07 90.15 90.12 0.03 87.05 86.97 0.08 

KNN 59.00 59.00 0 71.64 71.62 0.02 64.71 64.71 0 

DT 73.08 72.44 0.64 86.21 86.05 0.16 81.67 81.45 0.22 

RF 82.21 81.23 0.98 88.88 88.53 0.35 88.28 88.61 −0.33 

NB 58.90 59.99 1.09 78.77 79.08 −0.31 69.18 69.76 −0.58 

Outlier 

removing 

method 

DAE_XGB 85.93 85.93 0 90.64 90.64 0 87.68 87.68 0 

DAE_KNN 47.51 48.55 −1.04 64.17 64.82 −0.65 54.44 55.44 −1 

DAE_DT 74.19 74.35 −0.16 87.21 87.16 0.05 82.98 82.66 0.32 

DAE_RF 82.54 81.97 0.57 89.03 88.92 0.11 88.16 88.96 −0.8 

DAE_NB 45.92 45.85 0.07 77.50 77.49 0.01 66.45 66.41 0.04 

Proposed 

method 

K = 10-

fold 

DAE_OE_XGB 87.78 87.72 0.06 92.28 92.23 0.05 89.95 89.94 0.01 

DAE_OE_KNN 61.80 61.81 −0.01 73.40 73.40 0 66.82 66.82 0 

DAE_OE_DT 78.58 78.53 0.05 89.21 89.32 −0.11 85.57 85.41 0.16 

DAE_OE_RF 86.34 85.58 0.76 91.50 91.05 0.45 90.88 90.58 0.3 

DAE_OE_NB 63.24 63.15 0.09 80.68 80.65 0.03 72.12 72.09 0.03 

In future research, validating these preliminary findings through experiments using targeted 

clinical data supplemented by open data sources is imperative. Table 9 offers a detailed comparative 

analysis of the dataset outcomes, distinguishing between scenarios with and without integrating 

COVID-19 features. When evaluating the accuracy, the proposed method applied to the dataset that 

includes COVID-19 features outperformed XGB, KNN, DT, RF, and NB by margins of 0.06%, -0.01%, 

0.05%, 0.76%, and 0.09%, respectively. In terms of AUC, the method exhibited enhancements of 

0.05%, 0%, −0.11%, 0.45%, and 0.03% when compared with these algorithms. Furthermore, the F1-

score analysis reveals that the proposed method, when applied to the dataset with COVID-19 features, 

achieved superior results over XGB, KNN, DT, RF, and NB, showing improvements of 0.01%, 0%, 

0.16%, 0.3%, and 0.03%, respectively. 

Table 10. Statistical significance of the overall mean accuracy, p-values, and CI values for 

hypertension risk prediction using ML algorithms on the target Datasets I and II. 

  Dataset I Dataset II 

Algorithms Accuracy (%) p-value 95% CI Accuracy (%) p-value 95% CI 

XGB 87.25 2.52 × 10−35 86.49~88.01 87.78 1.02 × 10−23 85.86~89.69 

KNN 64.74 2.15 × 10−35 63.49~65.99 61.80 7.98 × 10−24 59.63~63.98 

DT 76.56 1.93 × 10−35 75.28~78.08 78.58 5.86 × 10−24 75.70~80.88 

RF 86.62 3.97 × 10−35 85.63~87.62 86.34 1.98 × 10−34 84.12~88.56 

NB 50.62 2.77 × 10−35 47.89~53.38 63.24 9.88 × 10−24 60.48~66.00 
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Figure 10. ROC curves of compared algorithms on outlier-removed dataset I using DAE with 

OE. (a) XGBoost; (b) KNN; (c) DT; (d) RF; (e) NB; (f) Average ROC curves of compared 

algorithms for DAE with OE (DAE_OE)-based algorithm. 
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Figure 11. Comparative confusion matrices for hypertension risk prediction models. 

Table 10 provides a detailed evaluation of various machine learning algorithms in the context of 

hypertension risk prediction, focusing on COVID-19 features. A key observation is the statistical 

significance of accuracy across all evaluated methods (p < 0.00001), indicating the reliability and 

validity of our model’s performance by established statistical benchmarks [35]. Notably, implementing 

the DAE technique significantly enhances the performance of individual algorithms. Among these, the 

DAE_OE_XGB model (XGBoost augmented by DAE and OE) is the most productive. The XGB 
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algorithm demonstrates a remarkable accuracy of 87.25% (95% CI: 99.43 to 99.71) with Dataset I, and 

87.78% (95% CI: 97.09 to 97.59) with Dataset II, as part of our DAE_OE-based framework, as 

illustrated in Table 9. This investigation further highlights the critical contribution of the COVID-19 

feature in enhancing the predictive accuracy of several machine learning algorithms, particularly XGB. 

Our analysis reveals that XGB, closely followed by RF and DT, significantly benefits from integrating 

the COVID-19 feature. This contrasts with algorithms like KNN and NB, which exhibit minimal or 

marginally decreased accuracy improvements when incorporating these features. Such variations 

underline the distinct influence that the COVID-19 feature exerts on different algorithms, with XGB, 

DT, and RF showing notably favorable responses.  

 

Figure 12. Comparison of hypertension prediction models on dataset II with and without 

COVID-19 feature. 

Figure 10 presents multiclass receiver operating characteristic (ROC) curves for each comparative 

method applied to the integrated Dataset I, validated using 10-fold cross-validation. By partitioning 

the training set into several subsets in the 10-fold cross-validation process, we could calculate the mean 

AUC and observe the variance in the ROC curves. This approach comprehensively evaluated the 

model performance across different data segments. Figure 10(a)–(e) shows the validation using 10-

fold cross-validation as XGB, KNN, DT, RF, and NB for DAE_OE-based algorithms, and Figure 10(f) 

shows the average ROC curves of compared algorithms for DAE_OE-based algorithm. The XGBoost 

model with DAE_OE showed superior performance with a mean AUC score of 91.64, followed closely 

by the RF model with a mean AUC of 91.28. The KNN model exhibited significantly poorer 

performance, with a mean AUC of 75.38. The ROC curves revealed that the DAE_OE_XGB model 

was the most effective classifier among the tested models. Previously, in Table 8, we identified XGB 

as the superior model for predicting outcomes in Dataset I. 

Figure 11 shows the confusion matrices representing the performance of five different machine 

learning models on a classification task to distinguish between Normal, Pre-Hypertension, and 
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Hypertension states, possibly in a health study related to COVID-19. Each matrix corresponds to a 

different model: XGBoost (DAE_OE_XGB), K-Nearest Neighbors (DAE_OE_KNN), Decision Tree 

(DAE_OE_DT), Random Forest (DAE_OE_RF), and Naive Bayes (DAE_OE_NB). The main 

diagonal of each matrix shows the number of correct predictions for each class, while the off-diagonals 

show misclassifications. For example, the DAE_OE_XGB model performs strongly with many true 

positives and fewer misclassifications. In contrast, the DAE_OE_NB model seems to struggle with a 

higher rate of misclassifying Normal instances as Pre-Hypertension or Hypertension. The variance in 

these matrices reflects the differing abilities of each model to accurately predict the classes in the 

dataset. 

Finally, Figure 12 shows how the AUC score of the proposed DAE improved by DAE with the 

OE-based feature. By combining the DAE-OE-based hypertension prediction with the COVID-19 

feature, the AUC of the ML-based XGB, KNN, DT, RF, and NB approaches improved by 2.3%, 9.23%, 

3%, 2.62%, and 3.18%, respectively. 

Our proposed DAE_OE_XGB method, compared with other advanced ML-based techniques for 

hypertension detection, demonstrates superior performance. As detailed in Table 11, this method 

outperforms various state-of-the-art ML-based algorithms in accuracy and AUC metrics. For example, 

DAE_OE_XGB achieved a remarkable accuracy of 87.78% and an AUC of 92.28% on Dataset I, 

exceeding other models like KNN, LightGBM [16], XGBoost, Ensemble [17], RF [18], NN [19], 

hypertension [20], pulmonary hypertension (PH) [21], precapillary PH and Group 3 PH [21], and 

VITRO [23]. This indicates the exceptional efficacy of DAE_OE_XGB in predicting diabetes risk, 

setting a new benchmark in the field. 

Table 11. Comparison of the classification applications of ML models using other methods 

for hypertension risk prediction.  

Algorithms Accuracy (%) AUC (%) 

KNN [16] 83.5 94.6 

LightGBM [16] 86.54 92.9 

XGBoost [17] - 87.7 

Ensemble [17] - 88.1 

RF [18] 82.1  86.9 

NN [19] 73.2 77.0 

Hypertension [20] 68.8 76.6 

Pulmonary hypertension (PH) [21] - 89.0 

Precapillary PH [21] - 88.0 

Group 3 PH [21] - 80.0 

VITRO [23] - 90.9 

XGB with COVID-19 87.78 92.28 

XGB without COVID-19 87.72 92.23 

5. Conclusions 

This study proposed a comprehensive method for predicting hypertension consisting of three key 

modules. The first module focused on data preprocessing, in which we integrated external features for 

COVID-19 patients and performed multicollinearity-based feature selection. The second module 

involved the application of OE transformation and a DAE for multivariate outlier removal, which were 
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used to detect and predict hypertension using the KNHANES data. Our method demonstrated a 

significant relationship between COVID-19 and hypertension, as confirmed by the proposed ML and 

chi-squared multivariate statistics methods. This finding provides a new perspective on the interplay 

between infectious diseases and chronic conditions such as hypertension. Despite these promising 

results, our study has some limitations, including the fact that our method was tested only on two 

datasets and compared using five classifiers. However, our approach showed the potential to improve 

the predictive performance of the classifiers used in all experiments, as demonstrated by the increased 

accuracy of the models trained on the original and outlier-removed datasets. Our study offers a novel 

approach for hypertension prediction, demonstrating the potential of integrating advanced data 

preprocessing techniques and machine learning methods. Future research should further explore this 

approach, potentially extending it to detect other diseases. We experimentally demonstrate how the 

steps of the proposed method improve performance. 
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