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Abstract: In this paper, in view of a determinantal formula for higher order derivatives of the ratio of two
differentiable functions, we expand the logarithm of the normalized tail of the power series expansion of
the cosine function into a Maclaurin power series expansion whose coefficients are expressed in terms of
specific Hessenberg determinants, present the decreasing property and concavity of the normalized tail of
the Maclaurin power series expansion of the cosine function, deduce a new determinantal expression of
the Bernoulli numbers, and verify the decreasing property for the ratio of the logarithms of the first two
normalized tails of the Maclaurin power series expansion of the cosine function.
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1. Motivations

In [1, pp. 42 and 55], we find the Maclaurin power series expansions
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for x2 < π
2

4 , where B2k denotes the Bernoulli numbers which can be generated by
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2
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(3)

In the recent paper [2], Li and Qi obtained the following two results:

1. The function F(x) defined by (2) can be expanded into the Maclaurin power series expansion
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for |x| < 2π, where
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B2n−1,2n−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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2. The function R(x) defined by (3) decreasingly maps
[
0, π2

]
onto

[
0, 1

6

]
.

We now introduce several new even functions as follows:

1. The first function is

F0(x) = ln cos x, x ∈
∞⋃

k=0

(
±2kπ −

π

2
,±2kπ +

π

2

)
. (5)

2. The second function is

F1(x) =

ln
2(1 − cos x)

x2 , x ∈ R \ {±2kπ, k = 1, 2, . . . };

0, x = 0.
(6)

It is clear that F1(x) = F(x) on (−2π, 2π).
3. Generally, the third function we are introducing is

Fn(x) =
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for n ≥ 2.
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Since the double inequality

0 < (−1)n

[
cos x −

n−1∑
k=0

(−1)k x2k

(2k)!

]
<

x2n

(2n)!
(8)

is valid for n ≥ 2 and x ∈ R \ {0}, see [3, p. 326], the function Fn(x) is significantly defined for
n ≥ 2 and x ∈ R.
As a stronger version of the double inequality (8), the following positive, nonnegative, decreasing,
and concave properties of the normalized tail

CosRn(x) =


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(9)

for x ∈ (0,∞) and n ≥ 1 were discovered in the paper [4]:

(a) the normalized tail CosR1(x) is nonnegative on (0,∞) and is decreasing on [0, 2π];
(b) the normalized tail CosRn(x) for n ≥ 2 is decreasing and positive on (0,∞);
(c) the normalized tail CosR1(x) is concave on (0, x0), where x0 ∈

(π
2 , π

)
is the first positive zero

of the equation (
x2 − 2

)
sin x + 2x cos x = 0

and the normalized remainder CosRn(x) for n ≥ 2 is concave on (0, π).

Comparing the definition in (9) with those in (6) and (7) leads to the following conclusions:

(a) the function F1(x) is decreasing and negative on (0, 2π), and is concave on (0, x0);
(b) the function Fn(x) for n ≥ 2 is decreasing and negative on (0,∞), and is concave on (0, π).

4. The fourth function Rm,n(x) for n > m ≥ 0 is defined

(a) when n > m = 0, by
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2
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(b) when n > m = 1, by

R1,n(x) =
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6
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(c) when n > m ≥ 2, by
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
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, x , 0;
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(n + 1)(2n + 1)

, x = 0.
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It is easy to see that R0,1(x) = R(x).
We now propose the following three problems:

1. Is the function Fn(x) for n ≥ 0 decreasing and concave?
2. What is the Maclaurin power series expansion of Fn(x) for n ≥ 0 around the origin x = 0?
3. Is the function Rm,n(x) for n > m ≥ 0 decreasing?

The first problem for the case n = 0 is immediate: the even function F0(x) = ln cos x is decreasing and,
by virtue of the series expansion (1), is concave in x ∈

(
0, π2

)
. The first problem for the case n ≥ 1 was

solved in the paper [4], as mentioned above. In a word, the first problem has been thoroughly solved.
The second problem for n = 0 is just the Maclaurin power series expansion (1). The second problem

for n = 1 was solved by the Maclaurin series expansion (4), which was established in [2, Section 3].
The third problem for (m, n) = (0, 1) was solved in [2, Section 4], as mentioned above.
In this paper, we will give a full answer to the second problem for all cases n ≥ 2, solve the first

problem on the interval
(
0, π2

)
once again, and discuss the third problem for the case n ≥ 2.

2. What is the Maclaurin power series expansion of Fn(x)?

In this section, we solve the second problem: what is the Maclaurin power series expansion of Fn(x)
for n ≥ 0 around the origin x = 0?

Theorem 1. For n ≥ 0, let

ei, j(n) =


(−1)i/2 1 + (−1)i

2
1(

2n+i
2n

) , 1 ≤ i ≤ 2m, j = 1

(−1)(i− j+1)/2 1 + (−1)i− j+1

2

(
i−1
j−2

)
(

2n+i− j+1
2n

) , 1 ≤ i ≤ 2m, 2 ≤ j ≤ 2m

and
D2m(n) =

∣∣∣ei, j(n)
∣∣∣
(2m)×(2m)

.

Then the even function Fn(x) for n ≥ 0 can be expanded into

Fn(x) = −
∞∑

m=1

D2m(n)
(2m)!

x2m, |x| <


π

2
, n = 0;

2π, n = 1;
∞, n ≥ 2.

(11)

Proof. Let u(x) and v(x) , 0 be two n-time differentiable functions on an interval I for a given integer
n ≥ 0. Then the nth derivative of the ratio u(x)

v(x) is

dn

dxn

[u(x)
v(x)

]
= (−1)n

∣∣∣W(n+1)×(n+1)(x)
∣∣∣

vn+1(x)
, n ≥ 0, (12)

where the matrix
W(n+1)×(n+1)(x) =

(
U(n+1)×1(x) V(n+1)×n(x)

)
(n+1)×(n+1)

,
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the matrix U(n+1)×1(x) is an (n+1)×1 matrix whose elements satisfy uk,1(x) = u(k−1)(x) for 1 ≤ k ≤ n+1,
the matrix V(n+1)×n(x) is an (n+ 1)× n matrix whose elements are vℓ, j(x) =

(
ℓ−1
j−1

)
v(ℓ− j)(x) for 1 ≤ ℓ ≤ n+ 1

and 1 ≤ j ≤ n, and the notation |W(n+1)×(n+1)(x)| denotes the determinant of the (n + 1) × (n + 1) matrix
W(n+1)×(n+1)(x). This is a slight reformulation of [5, p. 40, Exercise 5].

Let

un(x) =
∞∑

k=0

(−1)k+1(
2k+2n+2

2n

) x2k+1

(2k + 1)!
and vn(x) =

∞∑
k=0

(−1)k(
2k+2n

2n

) x2k

(2k)!
.

Then, straightforward differentiation yields

u(2ℓ+1)
n (0) = lim

x→0

∞∑
k=0

(−1)k+1(
2k+2n+2

2n

)⟨2k + 1⟩2ℓ+1
x2k−2ℓ

(2k + 1)!
=

(−1)ℓ+1(
2ℓ+2n+2

2n

) ,
v(2ℓ)

n (0) = lim
x→0

∞∑
k=0

(−1)k(
2k+2n

2n

)⟨2k⟩2ℓ
x2k−2ℓ

(2k)!
=

(−1)ℓ(
2ℓ+2n

2n

) ,
u(2ℓ)

n (0) = 0, v(2ℓ+1)
n (0) = 0

for ℓ ≥ 0. Considering Expression (14) and applying the derivative formula (12) for the ratio of two
differentiable functions, we acquire

F(2m)
n (0) = lim

x→0


∞∑

k=0

(−1)k+1

(2k+2n+2
2n )
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(2k+1)!
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(−1)k
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2n )

x2k

(2k)!


(2m−1)

= lim
x→0

[un(x)
vn(x)

](2m−1)

=
(−1)2m−1

v2m
n (0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un(0) vn(0) 0 · · · 0
u′n(0) v′n(0)

(
1
1

)
vn(0) · · · 0

u′′n (0) v′′n (0)
(

2
1

)
v′n(0) · · · 0

u(3)
n (0) v(3)

n (0)
(

3
1

)
v′′n (0) · · · 0

u(4)
n (0) v(4)

n (0)
(

4
1

)
v(3)

n (0) · · · 0
...

...
...

. . .
...

u(2m−1)
n (0) v(2m−1)

n (0)
(

2m−1
1

)
v(2m−2)

n (0) · · ·
(

2m−1
2m−2

)
v′n(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
(

0
0

)
0 0 0

−1
(2n+2

2n ) 0
(

1
1

)
0 0

0 −(2
0)

(2n+2
2n ) 0

(
2
2

)
0

1
(2n+4

2n ) 0 −(3
1)

(2n+2
2n ) 0

(
3
3

)
0 (4

0)
(2n+4

2n ) 0 −(4
2)

(2n+2
2n ) 0

...
...

...
...

...
(−1)m−1

(2n+2m−2
2n ) 0 (−1)m−2(2m−3

1 )
(2n+2m−4

2n ) 0 (−1)m−3(2m−3
3 )

(2n+2m−6
2n )

0 (−1)m−1(2m−2
0 )

(2n+2m−2
2n ) 0 (−1)m−2(2m−2

2 )
(2n+2m−4

2n ) 0
(−1)m

(2n+2m
2n ) 0 (−1)m−1(2m−1

1 )
(2n+2m−2

2n ) 0 (−1)m−2(2m−1
3 )

(2n+2m−4
2n )
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· · · 0 0 0 0 0 0
· · · 0 0 0 0 0 0
· · · 0 0 0 0 0 0
· · · 0 0 0 0 0 0
· · · 0 0 0 0 0 0
. . .

...
...

...
...

...
...

· · ·
(2m−3

2m−7)
(2n+4

2n ) 0 −(2m−3
2m−5)

(2n+2
2n ) 0

(
2m−3
2m−3

)
0

· · · 0 (2m−2
2m−6)

(2n+4
2n ) 0 −(2m−2

2m−4)
(2n+2

2n ) 0
(

2m−2
2m−2

)
· · ·

−(2m−1
2m−7)

(2n+6
2n ) 0 (2m−1

2m−5)
(2n+4

2n ) 0 −(2m−1
2m−3)

(2n+2
2n ) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for m ≥ 1. In other words, for m ≥ 1,

F(2m)
n (0) = −D2m(n) = −

∣∣∣ei, j(n)
∣∣∣
(2m)×(2m)

.

Consequently, the even function Fn(x) can be expanded into

Fn(x) =
∞∑

k=0

F(k)
n

xk

k!
=

∞∑
m=1

F(2m)
n

x2m

(2m)!
= −

∞∑
m=1

D2m(n)
(2m)!

x2m.

The proof of Theorem 1 is completed. □

Remark 1. When n = 0, a direct computation gives

D4(0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
0

(
0
0

)
0 0

−1 0
(

1
1

)
0

0 −
(

2
0

)
0

(
2
2

)
1 0 −

(
3
1

)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2 and D2(0) =

∣∣∣∣∣∣ 0
(

0
0

)
−1 0

∣∣∣∣∣∣ = 1.

Then, the first two terms of the Maclaurin power series expansion of the function ln cos x are

−
D2(0)

2!
x2 −

D4(0)
4!

x4 = −
1
2!

x2 −
2
4!

x4 = −
1
2

x2 −
1
12

x4,

which coincide with the first two terms in the series expansion (1).
When n = 1, straightforward computation shows

D4(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
(

0
0

)
0 0

−1
(4

2)
0

(
1
1

)
0

0 −(2
0)

(4
2)

0
(

2
2

)
1

(6
2)

0 −(3
1)

(4
2)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1
60

and D2(1) =

∣∣∣∣∣∣∣ 0
(

0
0

)
−1
(4

2)
0

∣∣∣∣∣∣∣ = 1
6
.

Then, the first two terms of the Maclaurin power series expansion of the function F(x) defined by (2) are

−
D2(1)

2!
x2 −

D4(1)
4!

x4 = −
1
12

x2 −
1

1440
x4,

which coincide with the first two terms in the series expansion (4).
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Remark 2. Comparing the Maclaurin series expansions (1) and (4) with the series expansion (11) reveals

|B2m| =
m

22m−1(22m − 1)
D2m(0) and E2m = D2m(1) (13)

for m ≥ 1. The first formula in (13) is a new determinantal expression for the Bernoulli numbers B2m

with m ≥ 1.
Additionally, we point out that, in the papers [2, 6–10], there have been many related results, but

different from and more complicated than the first one in (13), and plenty of closely-related references
on closed-form formulas and determinantal expressions for the Bernoulli numbers and polynomials B2m

and Bm(x) with m ∈ N.

3. Is the function Fn(x) for n ≥ 0 decreasing and concave on
(
0, π2

)
?

In this section, we give an alternative and united proof of a modification of the first problem: is the
function Fn(x) for n ≥ 0 decreasing and concave on

(
0, π2

)
?

Theorem 2. For n = 0 and n ≥ 2, the even function Fn(x) defined by (5) and (7) is decreasing and
concave on

(
0, π2

)
. The even function F1(x) defined in (6) is decreasing on (0, 2π) and (xk, 2(k + 1)π) for

k ∈ N, while it is increasing on (2kπ, xk) for k ∈ N, where xk ∈ (2kπ, 2(k + 1)π) for k ∈ N is the zero of
the equation tan x

2 =
x
2 on (0,∞).

Proof. In the first section of this paper, it has been immediately verified that the function F0(x) = ln cos x
is decreasing and concave on

(
0, π2

)
.

The derivative of F1(x) can be written as

F′1(x) =
1

tan x
2

−
1
x
2

, x , ±2kπ, k ∈ N.

Therefore, the derivative F′1(x) is negative on (0, 2π), is positive on (2kπ, xk), and is negative on
(xk, 2(k + 1)π) for k ∈ N, where xk ∈ (2kπ, 2(k + 1)π) for k ∈ N is the zero of the equation tan x

2 =
x
2 on

(0,∞). Accordingly, the function F1(x) is decreasing on (0, 2π) and (xk, 2(k + 1)π), while it is increasing
on (2kπ, xk) for k ∈ N.

On the interval
(
0, π2

)
and for n ≥ 2, the function Fn(x) can be written as

Fn(x) = ln
∞∑

k=n

(−1)k−n (2n)!
(2k)!

x2k−2n = ln
∞∑

k=0

(−1)k(
2k+2n

2n

) x2k

(2k)!
.

Its first derivative is

F′n(x) =

∑∞
k=0

(−1)k+1

(2k+2n+2
2n )

x2k+1

(2k+1)!∑∞
k=0

(−1)k

(2k+2n
2n )

x2k

(2k)!

. (14)

By virtue of [11, Theorem 7.6], or in view of the results at the site https://math.stackexchange.com/a/
477549 (accessed on 18 January 2024), we derive the integral representation

cos x −
n−1∑
k=0

(−1)k x2k

(2k)!
= (−1)nx2n

∞∑
k=0

(−1)k

(2n + 2k)!
x2k =

(−1)n

(2n − 2)!

∫ x

0
(x − t)2n−2 sin t d t (15)
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for n ≥ 1 and x ∈ R. From the integral representation (15), it follows that

(−1)n (2n)!
x2n

[
cos x −

n−1∑
k=0

(−1)k

(2k)!
x2k

]
=

∞∑
k=0

(−1)k(
2k+2n

2n

) x2k

(2k)!

=
2n(2n − 1)

x2n

∫ x

0
(x − t)2n−2 sin t d t

= 2n(2n − 1)
∫ 1

0
(1 − u)2n−2 sin(ux)

x
d u

> 0, 0 < x < π

(16)

and [ ∞∑
k=0

(−1)k(
2k+2n

2n

) x2k

(2k)!

]′
=

∞∑
k=0

(−1)k+1(
2k+2n+2

2n

) x2k+1

(2k + 1)!

= 2n(2n − 1)
∫ 1

0
(1 − u)2n−2 d

d x

[sin(ux)
x

]
d u

= 2n(2n − 1)
∫ 1

0
(1 − u)2n−2 cos(ux)

(ux) − tan(ux)
x2 d u

< 0, 0 < x <
π

2

for n ≥ 1, where we used the inequalities cos x > 0 and x − tan x < 0 in x ∈
(
0, π2

)
. This means that

F′n(x) =

∫ 1

0
(1 − u)2n−2 cos(ux) (ux)−tan(ux)

x2 d u∫ 1

0
(1 − u)2n−2 sin(ux)

x d u
< 0, 0 < x <

π

2

for n ≥ 1. In conclusion, the function Fn(x) for n ≥ 1 is decreasing on
(
0, π2

)
.

It is known that
sin x

x
=

∞∑
k=0

(−1)k x2k

(2k + 1)!
, |x| < ∞.

Straightforward differentiating and simplifying give(sin x
x

)′′
=

∞∑
k=0

(−1)k+1 (2k + 2)(2k + 1)
(2k + 3)!

x2k

= −

∞∑
k=0

(4k + 4)(4k + 3)
(4k + 5)!

[ (4k + 1)(4k + 2)(4k + 5)
(4k + 3)

− x2
]
x4k

< 0, x ∈
(
0,

√
10
3

)
⊃

(
0,
π

2

]
.

Therefore, a direct differentiation and simplification yield
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F′′n (x) =
[∫ 1

0
(1 − u)2n−2 d

d x

( sin(ux)
x

)
d u∫ 1

0
(1 − u)2n−2 sin(ux)

x d u

]′
=

−1[∫ 1

0
(1 − u)2n−2 sin(ux)

x d u
]2

[(∫ 1

0
(1 − u)2n−2 d

d x

(sin(ux)
x

)
d u

)2

−

∫ 1

0
(1 − u)2n−2 d2

d x2

(sin(ux)
x

)
d u

∫ 1

0
(1 − u)2n−2 sin(ux)

x
d u

]
=

−1[∫ 1

0
(1 − u)2n−2 sin(ux)

x d u
]2

[(∫ 1

0
u(1 − u)2n−2 d

d x

(sin(ux)
ux

)
d u

)2

−

∫ 1

0
u(1 − u)2n−2 d2

d x2

(sin(ux)
ux

)
d u

∫ 1

0
u(1 − u)2n−2 sin(ux)

ux
d u

]
< 0

on
(
0, π2

)
for n ≥ 1. Accordingly, the function Fn(x) for n ≥ 1 is concave on

(
0, π2

)
. The proof of

Theorem 2 is thus complete. □

Remark 3. We note that a concave function must be a logarithmically concave function, but the converse is
not true. However, a logarithmically convex function must be a convex function, but the converse is not true.

4. Is the function R0,2(x) decreasing?

In [2, Section 4], the function R0,1(x) = R(x) defined by (3) or (10) for n = 1 was proved to be
decreasing on

[
0, π2

]
onto

[
0, 1

6

]
.

Theorem 3. The even function R0,2(x) defined by (10) for the case n = 2 is decreasing on
[
0, π2

]
.

Proof. For n ≥ 2, direct differentiation gives

F′n(x)
F′0(x)

=
[ln CosRn(x)]′

(ln cos x)′
= −

CosR′n(x)
CosRn(x)

cos x
sin x

and [F′n(x)
F′0(x)

]′
= −

[CosR′n(x)
CosRn(x)

cos x
sin x

]′
= −

(
CosRn(x) CosR′′n (x) −

[
CosR′n(x)

]2) cos x sin x − CosRn(x) CosR′n(x)
[CosRn(x) sin x]2 .

Taking n = 2 and simplifying lead to
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[F′2(x)
F′0(x)

]′
= −

72
x10[CosR2(x) sin x]2

[
4x

(
x4 − 6x2 + 12

)
+ 4

(
7x2 − 16

)
x cos x + 16x cos(2x)

− 4x3 cos(3x) +
(
3x4 + 4x2 − 16

)
sin x + 2

(
x4 − 10x2 + 12

)
sin(2x)

−
(
x2 − 2x − 4

)(
x2 + 2x − 4

)
sin(3x) + 4 sin(4x)

]
= −

72
x10[CosR2(x) sin x]2

∞∑
k=6

(−1)kQ(k)
x2k+1

(2k + 1)!

= −
72

x10[CosR2(x) sin x]2

∞∑
k=3

[ Q(2k)
Q(2k + 1)

(4k + 3)!
(4k + 1)!

− x2
]Q(2k + 1)

(4k + 3)!
x4k+1,

where

Q(k) = 42k+2 − 4
(
4k4 − 28k3 + 107k2 + 61k + 324

)
32k−3 +

(
4k4 − 4k3 + 39k2 + 53k + 64

)
22k

+ 4
(
12k4 − 68k3 − 7k2 − 17k − 20

)
, k ≥ 6.

From the facts that

12k4 − 68k3 − 7k2 − 17k − 20 = 12(k − 6)4 + 220(k − 6)3 + 1361(k − 6)2 + 2923(k − 6) + 490
≥ 490, k ≥ 6,

4k4 − 4k3 + 39k2 + 53k + 64 = 4(k − 6)4 + 92(k − 6)3 + 822(k − 6)2 + 3437(k − 6) + 5782
≥ 5782, k ≥ 6,

and, by induction,

42k+2 − 4
(
4k4 − 28k3 + 107k2 + 61k + 324

)
32k−3

= 16 × 32k
[(4

3

)2k

−
4k4 − 28k3 + 107k2 + 61k + 324

108

]
> 0, k ≥ 7,

we conclude, together with Q(6) = 3871296, that Q(k) ≥ 3871296 for k ≥ 6.
Let

Q(k) =
Q(2k)

Q(2k + 1)
(4k + 3)!
(4k + 1)!

, k ≥ 3.

The inequality
Q(k + 1) > Q(k), k ≥ 3

is equivalent to

(2k + 3)(4k + 7)Q(2k + 1)Q(2k + 2) > (2k + 1)(4k + 3)Q(2k)Q(2k + 3)

for k ≥ 3, that is,

Q(k) = 216
[
73728(k − 2)9 + 1508352(k − 2)8 + 13174784(k − 2)7

+ 63787136(k − 2)6 + 185680928(k − 2)5 + 329304964(k − 2)4

+ 345900612(k − 2)3 + 210339955(k − 2)2 + 94117995(k − 2)

Electronic Research Archive Volume 32, Issue 5, 3130–3144.
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+ 42704050
]
+ 27 × 24k{(142293 × 24k+9 + 93239336

)
k5

+ 4
(
228963 × 24k+7 − 315163

)
k4 +

(
1730269 × 24k+5 − 77141534

)
k3

+
(
590587 × 24k+5 − 61162271

)
k2 + 31

(
39633 × 24k+3 − 705961

)
k

+ 72
(
32581 × 16k − 50315

)
+ 4096

(
57 × 24k+3 + 847

)
k8

+ 2048
(
24k+7 − 540k − 1635

)
k9 + 32k6[24k+6(3328k − 3377)

+ 1151464k + 2801469
]}
+ 27 × 212k+7[256k

(
24k+5 − 45k5)

+ 9 × 24k+10 + 12352k5 + 24016k4 + 33804k3 + 78984k2 + 84261k

+ 33915
]
+ 16 × 34k[159784960(k − 4)9 + 2908177408(k − 4)8

+ 31203008512(k − 4)7 + 218332899456(k − 4)6

+ 1039043941024(k − 4)5 + 3394763402820(k − 4)4

+ 7477586709444(k − 4)3 + 10528669786283(k − 4)2

+ 8416641010791(k − 4) + 2806689073644
]
+ 8 × 38k+3(8192k9

+ 9216k8 + 30720k7 + 148608k6 + 179232k5 + 77220k4 + 1027780k3

+ 2247363k2 + 1992375k + 751032
)
+ 64k[107481088(k − 4)9

+ 1948553216(k − 4)8 + 20892092672(k − 4)7 + 146632542496(k − 4)6

+ 702801488840(k − 4)5 + 2321298590084(k − 4)4

+ 5179870312810(k − 4)3 + 7367488384493(k − 4)2

+ 5849176490661(k − 4) + 1817172122508
]
+ 28k+334k[313600(k − 13)6

+ 20524992(k − 13)5 + 540906544(k − 13)4 + 7219464756(k − 13)3

+ 49643220604(k − 13)2 + 151463526603(k − 13) + 98734469508
]

> 0, k ≥ 3.

By virtue of the above expression for Q(k), we see that the sequence Q(k) is positive for k ≥ 13. On
the other hand, it is straightforward that

Q(3) = 352780960860822574080,
Q(4) = 249398534923066892200578048,
Q(5) = 61305423558540152150473900185600,
Q(6) = 8665426549135034591879376586377676800,
Q(7) = 896760345938903204692495757195177830886400,
Q(8) = 77679040214402381392287613848479095562672133120,
Q(9) = 6092826722565745296376115137707251410869680486780928,
Q(10) = 453017430243005416828735039714559150312936188925226332160,
Q(11) = 32749134150707011053456859834163170645192635726524315359872000,
Q(12) = 2332073744679555396812875864144181190554219273032749874293655526400.

Consequently, the sequence Q(k) is positive for all k ≥ 3. As a result, the sequence Q(k) is increasing in

Electronic Research Archive Volume 32, Issue 5, 3130–3144.



3142

k ≥ 3. It is immediate that Q(3) = 423
115 = 3.678 . . . . Hence, we acquire

Q(k) ≥
423
115
= 3.678 . . . , k ≥ 3.

Accordingly, when

0 < x ≤
π

2
= 1.570 · · · <

√
423
115

= 3.678 · · · ,

the derivative
[F′2(x)

F′0(x)

]′
is negative, and then the derivative ratio F′2(x)

F′0(x) is decreasing in x ∈
(
0, π2

]
.

In [12, pp. 10–11, Theorem 1.25], a monotonicity rule for the ratio of two functions was established
as follows.

For a, b ∈ R with a < b, let p(x) and q(x) be continuous on [a, b], differentiable on (a, b), and
q′(x) , 0 on (a, b). If the ratio p′(x)

q′(x) is increasing on (a, b), then both p(x)−p(a)
q(x)−q(a) and p(x)−p(b)

q(x)−q(b) are
increasing in x ∈ (a, b).

With the help of this monotonicity rule and in view of the decreasing property of the derivative ratio
F′2(x)
F′0(x) in x ∈

(
0, π2

]
, we derive that the ratio F2(x)

F0(x) = R0,2(x) is decreasing in x ∈
(
0, π2

]
. The required proof

of Theorem 3 is completed. □

Remark 4. How to verify the decreasing property of the function R0,n(x) for n ≥ 3 on
(
0, π2

]
, of the

function R1,n(x) on (0, 2π), and of the function Rm,n(x) for n > m ≥ 2 on (0,∞)? The ideas, approaches,
techniques, and methods used in the proof of Theorem 3 should not be valid again, so we need to discover
new ideas, approaches, techniques, and methods for verifying the decreasing property mentioned above.
Remark 5. Let

fα(x) =
∫ 1

0
(1 − u)α cos(ux) du, α ∈ R.

Prove that the function fα(x) is positive in x ∈ (0,∞) if and only if α > 1, while it is decreasing in
x ∈ (0,∞) if and only if α ≥ 2.

This paper and the articles [2, 13, 14] are siblings, because some results in [2] have been generalized
in this paper, and the results in [13, 14] are about the Maclaurin power series expansions of logarithmic
expressions involving normalized tails of the tangent and sine functions.

5. Conclusions

In this paper, we presented the following results.

1. The function Fn(x) for n ≥ 0 was expanded into the Maclaurin power series expansion (11) in
Theorem 1.

2. The function Fn(x) defined by (7) for n ≥ 0 was proved in Theorem 2 to be decreasing and concave
on

(
0, π2

)
.

3. A new determinantal expression (13) of the Bernoulli numbers B2m for m ≥ 1 was derived.
4. The ratio R0,2(x) was proved in Theorem 3 to be decreasing in x ∈

[
0, π2

]
.

In order to verify the decreasing property of the function R0,n(x) for n ≥ 3 on
(
0, π2

)
, of the function

R1,n(x) on (0, 2π), and of the function Rm,n(x) for n > m ≥ 2 on (0,∞), we need new ideas, novel
approaches, creative techniques, and innovative methods.
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