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Abstract: With the widespread application of metaheuristic algorithms in engineering and scientific
research, finding algorithms with efficient global search capabilities and precise local search performance
has become a hot topic in research. The osprey optimization algorithm (OOA) was first proposed in 2023,
characterized by its simple structure and strong optimization capability. However, practical tests have
revealed that the OOA algorithm inevitably encounters common issues faced by metaheuristic algorithms,
such as the tendency to fall into local optima and reduced population diversity in the later stages of the
algorithm’s iterations. To address these issues, a multi-strategy fusion improved osprey optimization
algorithm is proposed (IOOA). First, the characteristics of various chaotic mappings were thoroughly
explored, and the adoption of Circle chaotic mapping to replace pseudo-random numbers for population
initialization improvement was proposed, increasing initial population diversity and improving the
quality of initial solutions. Second, a dynamically adjustable elite guidance mechanism was proposed
to dynamically adjust the position updating method according to different stages of the algorithm’s
iteration, ensuring the algorithm maintains good global search capabilities while significantly increasing
the convergence speed of the algorithm. Lastly, a dynamic chaotic weight factor was designed and
applied in the development stage of the original algorithm to enhance the algorithm’s local search
capability and improve the convergence accuracy of the algorithm. To fully verify the effectiveness
and practical engineering applicability of the IOOA algorithm, simulation experiments were conducted
using 21 benchmark test functions and the CEC-2022 benchmark functions, and the IOOA algorithm was
applied to the LSTM power load forecasting problem as well as two engineering design problems. The
experimental results show that the IOOA algorithm possesses outstanding global optimization performance
in handling complex optimization problems and broad applicability in practical engineering applications.

Keywords: osprey optimization algorithm; Circle chaotic mapping; dynamic elite guidance mechanism;
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1. Introduction

Global optimization problems are a crucial class of challenges in the fields of mathematics and
computing, persisting in engineering, economics, natural sciences, and computing [1]. Traditional
optimization methods often struggle to meet the solving demands when facing complex, multimodal,
and discontinuous global optimization problems [2]. Metaheuristic algorithms, as flexible methods that
disregard gradient information, demonstrate significant advantages in addressing these problems [3, 4].

The field of metaheuristic algorithm research is continuously evolving to cope with increasingly
complex global optimization problems and practical application requirements. Based on the “no free
lunch” theory [5], no single algorithm exists that can exhibit optimal performance on all problems
in optimization and search. Consequently, strategic improvements to metaheuristic algorithms have
become a focus of research for many scholars to enhance the overall performance of these algorithms.

Reference [6] proposes an improved prairie dog optimization algorithm (IPDOA), utilizing Tent
chaotic mapping to initialize populations and enhance population diversity, along with a lens opposition-
based learning strategy to enhance the algorithm’s global search capabilities. Simulation results
demonstrate that the improved prairie dog optimization algorithm offers superior optimization perfor-
mance. Reference [7] proposes a modified beluga whale optimizer (OGGBWO) based on a random
opposition-based learning strategy, adaptive Gauss variational operator, and elitist group genetic strategy,
applied to 3D UAV path planning problems. Reference [8] presents an enhanced particle swarm opti-
mization (PSO) algorithm designed for orderly electric vehicle charging strategy modeling, addressing
the low optimization accuracy and slow convergence rate of the basic PSO algorithm through adjust-
ments in the inertia weight index and learning factor. Reference [9] proposes a hybrid optimization
algorithm that merges the hydrozoan algorithm (HA) with the sea turtle foraging algorithm (STFA) to
tackle continuous optimization problems. Finally, reference [10] introduces a chaotic sparrow search
algorithm (CSSA) for optimizing stochastic configuration network models. Employing logistic mapping,
self-adaptive hyper-parameters, and a mutation operator to improve upon the basic SSA algorithm,
simulation experiments showed that the CSSA algorithm exhibits a more robust global optimization
capability compared to the basic SSA algorithm.

Various strategies for improving metaheuristic algorithms focus on several aspects: (a) Improved
population initialization methods: Basic metaheuristic algorithms often generate initial populations
randomly [11], leading to uneven initial population distribution and low individual quality. Scholars
have proposed strategies such as chaotic mapping [12, 13] and Levy flights for population initialization
improvement [14, 15], which can enhance initial population diversity and improve the quality of initial
solutions. (b) Improved individual position update methods: Metaheuristic algorithms, when dealing
with complex optimization problems with many local optima, are prone to getting stuck in local optima,
causing search stagnation. Introducing strategies such as mutation [16, 17], disturbance, and adaptive
adjustments [18, 19] during individual position updates can somewhat improve the algorithm’s ability to
escape local optima. (c) Strategies for combining two algorithms [20] aim to enhance the optimization
capability by combining the advantages of two different algorithms. (d) Adding a weighting factor [21]:
Inspired by PSO algorithms, numerous studies have shown that adding an inertia weight factor to the
algorithm iteration process is beneficial in increasing the balance between exploration and exploitation.

The osprey optimization algorithm (OOA) was first proposed in 2023 [22], inspired by the hunting
behavior of ospreys in nature. Its overall structure includes population initialization, global exploration,
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and local development, offering advantages such as a simple structure and strong optimization capability.
However, practical testing revealed that the random position update strategy during the exploration phase
can increase ineffective search instances, affecting the algorithm’s convergence speed. Additionally,
during the development stage, calculating a new random position to guide individuals in finding the
current optimal solution can enhance the algorithm’s utilization in local search but may somewhat impact
its optimization accuracy. To address these issues, this study proposes a multi-strategy fusion IOOA:

1) Adopt Circle chaotic mapping for population initialization improvement, which improves the
initial population diversity and increases the robustness of the algorithm;

2) A dynamic elite guidance mechanism with adjustable ratio is proposed, which is applied to the
exploration stage of the algorithm to dynamically adjust the individual position updating method for
different stages of the algorithm iteration to improve the global convergence speed of the algorithm;

3) A dynamic chaotic weight factor is proposed, which is applied in the development stage of the
algorithm to enhance the local search ability of the algorithm, avoid the algorithm from falling into the
local optimum, and improve the algorithm’s optimization accuracy.

The main structure of this paper is as follows. Section 2 introduces the mathematical model of the
OOA algorithm, Section 3 describes in detail the IOOA algorithm proposed in this paper, Section 4
shows the simulation experiments and algorithm performance analysis, and Section 5 summarizes the
work of this paper and the outlook of future research.

2. OOA

OOA is a population-based intelligent optimization algorithm inspired by the hunting behavior of
osprey in nature. Similar to other intelligent optimization algorithms, it performs a random initialization
population operation in the search space with the population initialization formula:

xi, j = lb j + r ·
(
ub j − lb j

)
, (1)

where xi, j is the individual, lb j is the lower bound of the search, ub j is the upper bound of the search,
and r is a random number between [0, 1].

The first phase of the OOA is an exploratory phase, which is modeled by simulating the behavior
of osprey locating and catching fish in nature. During the design process of the OOA algorithm, each
individual in the population will consider other individuals with better positions as a school of fish, and
the mathematical model of the target school of fish for each individual is as follows:

FPi = {Xk | k ∈ {1, 2, . . . ,N} ∧ Fk < Fi} ∪ {Xbest } , (2)

where FPi is the set of fish for the ith eagle and Xbest is the location of the best eagle.
Ospreys prey based on a stochastic detection mechanism, and by modeling the behavior of ospreys

attacking fish (predation), the algorithm individual position update formula is as follows:

xNEW
i, j = xi, j + ri, j ·

(
S Fi, j − Ii, j · xi, j

)
, (3)

where S F is the target fish selected by the individual, r is a random number between [0, 1], and the
value of I is one of {1, 2}.
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Boundary checking is performed for individuals with completed positional updating with the follow-
ing equation:

xNEW
i, j =


xNEW

i, j , lb j ≤ xNEW
i, j ≤ ub j

lb j, xNEW
i, j < lb j

ub j, xNEW
i, j > ub j.

(4)

If the updated individual position is better than the previous position, the previous position is replaced
by the new position. The equation is as follows:

Xi =

{
XNEW

i , FNEW
i < Fi

Xi, else .
(5)

Here XNEW
i is the updated position, and FNEW

i is the updated fitness value.
After catching a fish in nature, the osprey takes the fish to a safe location to feed and the development

phase of the algorithm is modeled based on the above behavior. Each individual in the population calculates
a new random location as a feeding area and the mathematical model of this behavior is as follows:

xNEW2
i, j = xi, j +

lb j + r ·
(
ub j − lb j

)
t

. (6)

Boundary checking for all individuals using the position update phase of the following equation:

xNEW2
i, j =


xNEW2

i, j , lb j ≤ xNEW2
i, j ≤ ub j

lb j, x
NEW2
i, j < lb j

ub j, x
NEW2
i, j > ub j.

(7)

Compare the quality of the updated individual with that of the original individual, and if the new
position is superior, the new position is used to replace the original position.

Xi =

{
XNEW2

i , FNEW2
i < Fi

Xi, else .
(8)

Here, xNEW2
i, j is the new position of the ith individual, and FNEW2

i is the updated individual fitness value.
The pseudo-code of the OOA algorithm is shown in Algorithm 1.
After analyzing the mathematical model of the OOA algorithm, it has been found that it possesses a

simple structure and a reasonable mechanism, offering certain advantages. However, the actual testing
process revealed that during the iterative process, the OOA algorithm updates individual positions
randomly, which can lead to the detection of sub-optimal targets and result in invalid searches, impacting
the algorithm’s convergence speed. In the later stages of iteration, although individuals adopt a random
perturbation strategy to enhance the algorithm’s ability to escape local optima, this approach can result
in less precise local searches and reduce the accuracy of finding the optimum.

Based on the above analysis, the OOA algorithm’s optimization performance has significant room
for improvement. Implementing a multi-strategy fusion approach to enhance the OOA algorithm can
greatly improve its optimization performance, which has considerable research significance.
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Algorithm 1 Osprey optimization algorithm
Input: population size: N, the maximum number of iterations: T , Dimension of the objective function:

Dim, The boundary conditions of the variables: Ub and Lb.

Output: The optimal fitness value and the optimal position: Fb and Xb.

1: Define the initial population i⇐ 1, 2, ...,N and its related parameters

2: Population initialization by Eq (1)

3: while t ≤ T do
4: for int i = 1 to N do
5: Calculate individual fitness values

6: Specify the target fish population for each individual from Eq (2)

7: if Phase 1: Discovery Phase then
8: Update the individual position using Eq (3)

9: Checking the boundary conditions using Eq (4)

10: Positional substitution according to Eq (5)

11: end if
12: if Phase 2: Development phase then
13: Update the individual position using Eq (6)

14: Checking the boundary conditions using Eq (7)

15: Positional substitution according to Eq (8)

16: end if
17: end for
18: Update the population optimal fitness value Fb and optimal position Xb

19: t = t + 1

20: end while
21: return Fb and Xb

3. IOOA

Aiming at the above problems, in order to fully improve the performance of the OOA algorithm for
optimization, this paper proposes a multi-strategy fusion IOOA on the basis of previous research, and
the specific strategies are as follows:

1) Initialization: The IOOA algorithm adopts Circle chaotic mapping for the initialization of the
algorithm population, which enhances the diversity of the initial individuals and improves the quality of
the initial solution through the chaotic characteristics of Circle chaotic mapping.

2) Exploration phase: The IOOA algorithm carries out individual position updating through the
dynamic elite guidance mechanism. In the early iterations of the algorithm, the elite guidance mechanism
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occupies a relatively small proportion, and the algorithm adopts the position updating strategy of
randomly detecting targets by individuals to fully traverse the solution space. In the late iteration of the
algorithm, the elite guidance mechanism occupies a larger proportion, the individual position update
method is changed to the elite guidance mechanism, and the individuals in the population follow the
optimal individual position update, which reduces the number of ineffective searches of the algorithm
and improves the algorithm’s convergence speed.

3) Development phase: In the development phase of the IOOA algorithm, a dynamic chaotic weight
factor strategy is added, in which the weight factor is defined by the Cubic chaotic mapping, and the
weight coefficients are dynamically adjusted according to the changes in the number of iterations. This
strategy can enhance the algorithm’s local search ability and improve the optimization accuracy.

3.1. Circle chaos map

The traditional OOA algorithm uses pseudo-random numbers to initialize the population position
in the population initialization stage, and this strategy leads to a certain degree to the low quality of
the initial population individuals and insufficient traversal of the solution space, which in turn affects
the algorithm’s search quality. A large number of studies have shown that replacing pseudo-random
numbers with chaotic sequences for population initialization improvement can increase the initial
population diversity and improve the initial solution quality [23]. Meanwhile, chaotic mapping helps
to reduce the randomness fluctuation of population initialization, which can increase the robustness of
the algorithm [24].

Circle chaotic mapping is a typical representative of chaotic mapping, which has a simple mathematical
structure with traversal and randomness. This study proposes to use Circle chaotic mapping for population
initialization improvement and the mathematical expression of Circle chaotic mapping is as follows:

xi+1 = mod
(
xi + 0.2 −

(
0.5
2π

)
sin (2πxi) , 1

)
. (9)

This study analyzes the chaotic characteristics of five types of chaos mappings commonly used for
population initialization improvements in metaheuristic algorithms. The sample distribution of various
chaos mappings within the solution space is shown in Figure 1.

As can be seen from Figure 1, the sample distribution of Circle chaotic mapping is more ergodic
and homogeneous, and compared with the random number generator, the chaotic mapping has a certain
degree of randomness while, at the same time, it has a certain degree of certainty. Randomness helps to
improve the initial population diversity and avoid the algorithm falling into local optima. Determinism
helps to improve the repeatability of the improved algorithm, which is very important for comparing the
optimization performance of different algorithms.

Electronic Research Archive Volume 32, Issue 3, 2033–2074.



2039

(a) Random (b) Circle Map

(c) Logistic Map (d) Tent Map

(e) Iterative Map (f) Intermittency Map

Figure 1. Sample distribution for 1000 iterations of each chaotic mapping.
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3.2. Dynamic elite guidance mechanism with adjustable ratio

In the exploration phase of the OOA algorithm, the individual adopts random detection of attack
targets for position updating, and the purpose of this strategy is to increase the individual’s exploration
of the search space and avoid the algorithm from falling into a local optimum at the beginning of the
iteration. However, under the random search strategy, the target randomly selected by the individual
may not be a better solution. Meanwhile, as the number of iterations increases, the random search
strategy leads to an increase in the number of invalid searches of the algorithm to some extent. Based
on the above analysis, this study proposes a dynamic elite guidance mechanism with adjustable ratio,
which is applied to the exploration phase of the algorithm, and the position update formula is as follows:

xNEW
i, j = xi, j + α · ri, j ·

(
Xbest

i, j − Xi, j

)
+ (1 − α) · ri, j ·

(
S Fi, j − Ii, j · xi, j

)
, α =

t
T
. (10)

Among them, Xbest
i, j is the position of the individual with the optimal fitness value in the population.

α is a dynamic adjustment factor to control the ratio between the elite bootstrapping mechanism and
randomized exploration, and α increases linearly from 0 to 1 with the number of iterations.

By introducing a dynamic adjustment factor, the algorithm gradually shifts the individual position
update method from random exploration to elite guidance during the exploration process as the number
of iterations increases. At the beginning of the iteration, a smaller value of α makes the algorithm focus
on exploration, increases the randomness of the algorithm to extensively explore the solution space,
and avoids the algorithm from falling into a local optimum. As the number of iterations increases, the
value of α gradually increases, the individual position update method focuses on elite guidance, and the
algorithm can converge to the local optimal solution faster, reduce the number of invalid searches, and
improve the convergence speed of the algorithm.

3.3. Dynamic chaotic weight factor

In the development phase of the OOA algorithm, for each individual that finds a locally optimal
solution, a new randomized position is recalculated so that the individual’s position in the search space
changes slightly. This strategy can enhance the ability of the OOA algorithm to move away from local
optimality to some extent. However, this approach does not fully utilize the position information of
the global optimal solution, and the randomized position computation method is unable to perform
a more adequate and accurate local search. For this reason, this study proposes a dynamic chaotic
weighting factor defined by Cubic chaotic mapping, which is applied to the development stage of the
OOA algorithm, and dynamically adjusts the weight coefficients through the change of iteration number
so as to utilize the traversal nature of Cubic chaotic mapping to enhance the algorithm’s local search
ability. The mathematical expression of the dynamic chaotic weight factor is as follows:

ω(t + 1) =
2.595ω(t)

(
1 − ω(t)2

)
· (T − t)

T
, t = 1, . . . ,T, (11)

where ω(1) takes the value 0.3, t is the current number of iterations, and T is the maximum number
of iterations.

The position of the introduced dynamic chaos weight factor is formulated as
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xNEW2
i, j = ω(t) · xi, j +

lb j + r ·
(
ub j − lb j

)
t

. (12)

The introduction of the dynamic chaotic weight factor enables the individual to carry out a finer
search in the neighborhood of the optimal solution when updating the position. As the number of
iterations increases, the weight factor gradually becomes smaller, and the individual changes from the fine
search at the beginning of the iteration to the rapid convergence to the optimal value. For the optimization
problem with a large number of local optimal values, this strategy can sufficiently improve the algorithm’s
accuracy of searching for the optimal value and the ability to get rid of the local optimal value.

3.4. Overall structure of IOOA

Based on the in-depth analysis of the optimization mechanism of the OOA algorithm, this study
proposes an enhanced OOA algorithm (IOOA) through the fusion of multiple strategies to enhance the
optimization performance of the OOA algorithm, and the overall structure of IOOA is as follows:

Step 1: Parameter settings—number of populations N, number of iterations T, problem dimension D,
boundary conditions lb, ub.

Step 2: Initialization—The chaotic sequence generated by Eq (9) replaces the random numbers in
Eq (1) for population initialization.

Step 3: Record fitness values—Record all individual fitness values in the population, including the
optimal fitness value and its location, and the worst fitness value and its location.

Step 4: Designation of target fish groups—Specify the target population of fish for each individual
according to Eq (2).

Step 5: Exploration phase location update—Individual position update by Eq (10), boundary check-
ing is performed by Eq (4) during the updating process, and positional replacement is performed by
Eq (5) for the updated individual.

Step 6: Development phase location update—Individual position updating is performed by Eq (12),
boundary checking is performed by Eq (7) during position updating, and position replacement is
performed by Eq (8) for position updating completed individuals.

Step 7: Termination conditions—Determine whether the maximum number of iterations is reached,
satisfy the condition, terminate the iteration, and record the optimal solution; otherwise, return to Step 3.

The pseudo-code of the IOOA algorithm is shown in Algorithm 2.
The flowchart of the IOOA algorithm is shown in Figure 2.
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Algorithm 2 Improved osprey optimization algorithm
Input: population size: N, the maximum number of iterations: T , Dimension of the objective function:

Dim, The boundary conditions of the variables: Ub and Lb.
Output: The optimal fitness value and the optimal position: Fb and Xb.

1: Define the initial population i⇐ 1, 2, ...,N and its related parameters
2: Population initialization by Eq (9)
3: while t ≤ T do
4: for int i = 1 to N do
5: Calculate individual fitness values
6: Specify the target fish population for each individual from Eq (2)
7: if Discovery Phase then
8: Update the individual position using Eq (10)
9: Checking the boundary conditions using Eq (4)

10: if FNEW
i <Fi then

11: Xi = XNEW
i

12: else
13: Xi = Xi

14: end if
15: end if
16: if Development phase then
17: Update the individual position using Eq (12)
18: Checking the boundary conditions using Eq (7)
19: if FNEW

i <Fi then
20: Xi = XNEW

i
21: else
22: Xi = Xi

23: end if
24: end if
25: end for
26: Update the population optimal fitness value Fb and optimal position Xb

27: t = t + 1
28: end while
29: return Fb and Xb
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Start

Parameter Setting

Population initialization by Eq.(9)

Record individual fitness values

Designation of Fpi by Eq.(2)

Calculate the new position of the 
individual from Eq.(10) and Eq.(4)

Position update by Eq.(5)

Calculate the new position of the 
individual from Eq.(12) and Eq.(7)

Phase 1

Phase 2

Position update by Eq. (8)

Update the fitness value

Maximum 
Iterations

Record the optimal fitness 
value and optimal position

End

Y

N

Number of 
iterations 

plus 1

Figure 2. Flow chart of IOOA.

3.5. Time complexity analysis

Time complexity is an important index for evaluating the performance of algorithms, and the main
content of this section is to analyze the time complexity of the IOOA algorithm.

Let the size of the population be N, and the dimension of the problem be D. The IOOA algorithm
adopts Circle chaotic mapping for the population initialization operation, so the time complexity of the
IOOA algorithm for assigning initial positions to the individuals of the population in all dimensions is
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O(ND). The number of iterations is T. The IOOA algorithm individual position update is divided into
two parts: the exploration phase and the development phase; and the time complexity of the exploration
phase is O(TND), and the time complexity of the development phase is O(TND), and thus, the overall
time complexity of the IOOA algorithm is O(ND(1+2T)).

The time complexity of the base OOA algorithm to generate the initial population of size N and
dimension D is O(ND), and the time complexity of both the exploration phase and the development
phase is O(TND), and thus the original algorithm time complexity is O(ND(1+2T)).

The mathematical model of the IOOA algorithm does not increase the loop nesting on the basis of
the original algorithm. In summary, the time complexity of the IOOA algorithm is the same as that of
the OOA algorithm and the improvement strategy proposed in this paper does not increase the time
complexity of the algorithm.

4. Simulation experiments and performance analysis

In order to fully verify the optimization performance of the IOOA algorithm, the IOOA algorithm
is tested with seven well-known algorithms on 21 benchmark test functions [25]. The comparison
algorithms include: PSO algorithm [26], GWO algorithm [27], AO algorithm [28], WOA algorithm [29],
GJO algorithm [30], DBO algorithm [31], OOA algorithm. The parameter settings of each algorithm
are shown in Table 1. The test functions are shown in Table 2: F1–F5 are high-dimensional single-peak
functions to test the convergence speed and optimization accuracy of the algorithms, F6–F11 are high-
dimensional multi-peak functions to test the ability of the algorithms to jump out of the local optimum,
and F12–F21 are fixed-dimensional test functions.

Table 1. Each algorithm parameter setting.

Algorithm Parameters
PSO W1 = 0.9; W2 = 0.2; C1,C2 = 2; Vmin = −5,Vmax = 5
GWO α decreases linearly from 2 to 0; r1, r2 ∈ [0, 1]
AO α = 0.1; δ = 0.1; s = 0.01; u, v ∈ [0, 1]
WOA α decreased from 2 to 0; Spiral shape constant b = 1
GJO E decreases linearly from 1.5 to 0
DBO k = 1; λ = 4; b = 0.3; S = 0.5
OOA r ∈ [0, 1]; I ∈ {1, 2}
IOOA r ∈ [0, 1]; I ∈ {1, 2}; α increases linearly from 0 to 1

Experimental platform hardware environment: Windows-11 operating system PC, CPU: i7-8750H,
RAM: 8 GB; software environment: PyCharm 2021.2.3.
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Table 2. Test functions.

Function Interval Dimension Min

F1(x) =
∑n

i=1 x2
i [−100, 100] 30/100 0

F2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| [−10, 10] 30/100 0

F3(x) =
∑n

i=1

(∑i
j=1 χ j

)2
[−100, 100] 30/100 0

F4(x) = maxi {|xi| , 1 ⩽ i ⩽ n} [−100, 100] 30/100 0

F5(x) =
∑n

i=1 ([xi + 0.5])2 [−100, 100] 30/100 0

F6(x) =
∑n

i=1 −
(
xi sin

(√
|xi|

))
[−500, 500] 30/100 −418.9829d

F7(x) =
∑n

i=1

[
x2

i − 10 cos (2πxi) + 10
]

[−5.12, 5.12] 30/100 0

F8(x) = −20 exp

−0.2

√√√
1
D

D∑
i=1

x2
i


− exp

 1
D

D∑
i=1

cos (2πxi)

 + 20 + e

[−32, 32] 30/100 0

F9(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi
√

i

)
+ 1 [−600, 600] 30/100 0

F10(x) =
π

n
{10 sin (πy1) +

n−1∑
i=1

(yi − 1)2

[
1 + 10 sin2 (πyi+1)

]
+ (yn − 1)2} +

n∑
i=1

u (xi, 10, 100, 4)

yi = 1 +
xi + 1

4
; u (xi, a, k,m) =


k (xi − a)m , xi > a

0,−a < xi < a

k (−xi − a)m , xi < −a

[−50, 50] 30/100 0

F11(x) = 0.1{sin2 (3πxi) +
D∑

i=1

(xi − 1)2
[
1 + sin2 (3πxi)

]
+ (xD − 1)2 [1 + sin2 (2πxD)]} +

D∑
i−1

u (xi, 5, 100, 4)

[−50, 50] 30/100 0

F12(x) =

 1
500 +

25∑
j=1

1

j +
∑2

i=1

(
xi − ai j

)6


−1

[−65.5360, 65.5360] 2 0.998004

F13(x) =
∑11

i=1

ai −
x1

(
b2

i + bix2

)
b2

i + bix3 + x4


−1

[−5, 5] 4 0.0003075

F14(x) = 4x2
1 − 2.1x4

1 + 1/3x6
1 + x1x2 − 4x2

2 + x4
2 [−5, 5] 2 −1.03163

Continued on next page
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Function Interval Dimension Min

F15(x) =
(
x2 −

5.1
4π2 x2

1 +
5
π

x1 − 6
)2

+

10
(
1 −

1
8π

)
cos x1 + 10

[−5, 5] 2 0.398

F16(x) = [1 + (x1 + x2 + 1)2(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
]

× [30 + (2x1 − 3x2)2

×
(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)
]

[−5, 5] 2 3

F17(x) = −
∑4

i=1 ci exp
(
−

∑3
j=1 ai j

(
x j − pi j

)2
)

[0, 1] 3 −3.86

F18(x) = −
∑4

i=1 ci exp
(
−

∑6
j=1 ai j

(
x j − pi j

)2
)

[0, 1] 6 −3.32

F19(x) = −
∑5

i=1

[
(X − ai) (X − ai)T + ci

]−1
[0, 10] 4 −10.1532

F20(x) = −
∑7

i=1

[
(X − ai) (X − ai)T + ci

]−1
[0, 10] 4 −10.4029

F21(x) = −
∑10

i=1

[
(X − ai) (X − ai)T + ci

]−1
[0, 10] 4 −10.5364

4.1. Comparison with various well-known algorithms

To minimize random errors, the population size for all algorithms was set to 50, with a maximum
iteration count of 500. Each algorithm ran independently 30 times, and evaluation metrics included
the optimal value, standard deviation, and mean. The test results for each algorithm are presented in
Tables 3–5 (with the optimal values bolded).

From the data in Tables 3 and 4, it can be seen that in the case of 30 dimensions, when facing
high-dimensional unimodal functions F1–F5, IOOA consistently exhibits the highest optimization
accuracy. It can stably locate the theoretical optimal value with optimization accuracy significantly
higher than the compared algorithms, demonstrating a notable advantage. Especially in the case of
function F5, the compared algorithms all experience varying degrees of search stagnation, while the
proposed IOOA algorithm can precisely find the optimal value, fully proving the effectiveness of the
improvement strategy in this paper and the superior performance of the IOOA algorithm. For functions
F1 and F3, the OOA algorithm can also lock onto the optimal solution, demonstrating a certain inherent
advantage of the algorithm. The use of averages to evaluate the algorithm’s optimization robustness
shows that the IOOA algorithm consistently and accurately locks onto the optimal solution, indicating
strong robustness. When the dimension of the objective function increases from 30 to 100, on functions
F2 and F4, the IOOA algorithm’s optimization accuracy slightly decreases. However, compared to other
algorithms, the IOOA algorithm still maintains the highest optimization accuracy and robustness.
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For high-dimensional multimodal functions F6–F11, the IOOA algorithm also demonstrates good
optimization capabilities. In functions F10 and F11, although the IOOA algorithm does not converge to
the theoretical optimal value, it has the highest optimization accuracy, with the compared algorithms
exhibiting varying degrees of optimization error. In functions F7 and F9, both the IOOA algorithm
and OOA algorithms can converge to the theoretical optimal value, proving a certain advantage of the
algorithms. In the case of 30 dimensions, the IOOA algorithm shows good optimization robustness on
all multimodal test functions. When the problem dimension increases from 30 to 100, for functions F10
and F11, the IOOA algorithm’s average optimization value decreases, indicating unstable optimization
performance. However, for other multimodal functions, the IOOA algorithm shows good optimization
accuracy and robustness. A comprehensive analysis of all multimodal function test results demonstrates
that the IOOA algorithm has higher convergence accuracy than other algorithms on all functions. The
test results fully prove the significant advantage of IOOA algorithm in escaping local optima, validating
the effectiveness of the improvement strategy in this paper.

Fixed-dimensional test functions, also referred to as composite functions, comprise a main body
constituted by multiple sub-functions, thereby exhibiting notable continuity. From the data presented
in Table 5, when faced with fixed-dimensional test functions (F12–F21), the IOOA algorithm consis-
tently demonstrates commendable optimization accuracy and robustness across most test functions.
Specifically, in functions F12, F16 and F17, the IOOA algorithm reliably and accurately identifies the
optimal solution across 30 runs, showcasing exceptional optimization robustness. In function F14, the
IOOA algorithm’s optimization performance is slightly lower than that of the GWO, WOA, and DBO
algorithms. It can find the theoretical optimal value in multiple runs but has slightly lower robustness.
For function F15, the IOOA algorithm’s optimization performance is slightly lower than that of the
PSO algorithm. For other test functions, the IOOA algorithm exhibits good optimization accuracy
and robustness. In summary, the IOOA algorithm has a significant advantage over other algorithms in
fixed-dimensional test functions, possessing the strongest overall optimization capability.

In order to show the convergence speed and optimization accuracy of each algorithm more clearly,
the average adaptation convergence curve of the iterative process of each algorithm is plotted as shown
in Figures 3–5, and the performance ranking of each algorithm for optimization is shown in Figure 6.

The average fitness change curves during the iterative process of various algorithms, as depicted
in Figures 3–5, reveal that the IOOA algorithm exhibits the fastest convergence speed and does not
experience search stagnation in functions F1–F5. Particularly, in function F5, the IOOA algorithm
demonstrates an exceptionally rapid convergence speed. Monotonic functions primarily test the con-
vergence speed and optimization accuracy of algorithms, and the experimental results above fully
demonstrate the superiority of the IOOA algorithm in convergence speed.

For the high-dimensional multi-peaked function F6, the IOOA algorithm converged to the neighbor-
hood of the optimal solution at the beginning of the iteration and did not fall into a local optimum. The
IOOA algorithm employs Circle chaos mapping to generate a higher-quality initial population, laying
a solid foundation for subsequent iterative optimization, to some extent reflecting the effectiveness of
the population initialization improvement strategy proposed in this paper. For functions F10 and F11,
the IOOA algorithm exhibits a strong ability to escape local optima, while the convergence curves of
the compared algorithms show varying degrees of being trapped in local optima, resulting in lower
optimization accuracy. The introduction of a dynamic chaotic weight factor during the development
phase of the IOOA algorithm effectively enhances the algorithm’s local search capability. Faced with
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problems with multiple local optimal solutions, it strengthens the algorithm’s ability to escape local
optima, thereby improving the optimization accuracy of the algorithm.

(a) F1 Convergence curve (b) F2 Convergence curve (c) F3 Convergence curve

(d) F4 Convergence curve (e) F5 Convergence curve (f) F6 Convergence curve

(g) F7 Convergence curve (h) F8 Convergence curve (i) F9 Convergence curve

(j) F10 Convergence curve (k) F11 Convergence curve

Figure 3. Convergence curves of all algorithms on 30-dimensional test functions.
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(a) F1 Convergence curve (b) F2 Convergence curve (c) F3 Convergence curve

(d) F4 Convergence curve (e) F5 Convergence curve (f) F6 Convergence curve

(g) F7 Convergence curve (h) F8 Convergence curve (i) F9 Convergence curve

(j) F10 Convergence curve (k) F11 Convergence curve

Figure 4. Convergence curves of all algorithms on 100-dimensional test functions.
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(a) F12 Convergence curve (b) F13 Convergence curve (c) F14 Convergence curve

(d) F15 Convergence curve (e) F16 Convergence curve (f) F17 Convergence curve

(g) F18 Convergence curve (h) F19 Convergence curve (i) F20 Convergence curve

(j) F21 Convergence curve

Figure 5. Convergence curves of all algorithms on fixed-dimensional test functions.

The convergence curves of the average fitness values for fixed-dimensional test functions F12–F21
show that, on most test functions, IOOA has the fastest convergence speed and convergence accuracy.
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In functions F15 and F16, the IOOA algorithm’s convergence speed in the early stages of iteration is
slightly lower than that of the OOA algorithm, but in function F16, the IOOA algorithm’s convergence
accuracy surpasses that of the OOA algorithm. On other functions, IOOA exhibits advantages in
both convergence speed and accuracy. The above results demonstrate that when facing combinatorial
optimization problems, the IOOA algorithm remains highly competitive.

8 8 7 8 7 7 8 8 8 8 6 5 4 5 1 6 7 6 2 3 2

6 5 5 6 5 6 6 5 7 5 5 6 8 1 5 4 4 3 4 2 4

5 4 4 5 2 5 5 3 4 2 2 7 3 8 7 8 2 4 5 4 4

7 6 6 7 6 4 4 6 6 6 7 3 2 3 6 2 5 7 8 8 8

3 3 3 3 8 8 3 4 5 7 8 8 6 6 8 5 6 5 7 7 7

4 7 8 4 4 2 7 7 3 4 4 2 7 2 4 3 1 2 6 6 6

2 2 2 2 3 3 2 2 2 3 3 4 5 7 3 7 8 8 3 5 3

1 1 1 1 1 1 1 1 1 1 1 1 1 4 2 1 3 1 1 1 1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

PSO

GWO

AO

WOA

GJO

DBO

OOA

IOOA
1

2

3

4

5

6

7

8

Figure 6. Comprehensive ranking of all algorithms.

The box plot is used to depict the central tendency and dispersion of a set or multiple sets of
continuous data distributions. When optimizing algorithms for different problems, there is a certain
degree of randomness, so multiple experiments are necessary to eliminate random errors. Drawing box
plots by statistically analyzing the optimal values of each algorithm from multiple runs provides a more
intuitive reflection of the robustness of each algorithm.

Figures 7–9 present box plots of the distribution of optimal values from multiple runs of each
algorithm across all test functions. In both 30-dimensional and 100-dimensional test functions, IOOA
exhibits the highest optimization stability, with almost no differences observed between its multiple runs.
Particularly in the case of function F6, all comparative algorithms show varying degrees of optimization
errors, while IOOA consistently and accurately finds the optimal solution over 30 runs. In the case of
100-dimensional test functions, for function F14 the optimization stability of IOOA is slightly lower
than that of the GWO, WOA, and DBO algorithms. For function F17, the stability of IOOA is slightly
lower than that of the AO and DBO algorithms. However, for other functions, IOOA consistently
demonstrates the highest optimization stability.
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(c) F3 Box Plot
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(d) F4 Box Plot
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(e) F5 Box Plot
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(f) F6 Box Plot
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(g) F7 Box Plot
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(h) F8 Box Plot
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(i) F9 Box Plot
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(j) F10 Box Plot
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(k) F11 Box Plot

Figure 7. Box Plot of all algorithms on 30-dimensional test functions.
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(a) F1 Box Plot
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(b) F2 Box Plot
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(k) F11 Box Plot

Figure 8. Box Plot of all algorithms on 100-dimensional test functions.
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(j) F21 Box Plot

Figure 9. Box Plot of all algorithms on fixed-dimensional test functions.
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The optimization performance evaluation metrics and convergence curves of each algorithm indicate
that the IOOA algorithm exhibits a pronounced advantage in comprehensive optimization performance.
The fusion strategy proposed in this paper significantly enhances the performance of the OOA algorithm.
The utilization of Circle chaos mapping to generate the initial population contributes to an increased
diversity in the initial population, thereby elevating the quality of initial solutions. The introduction of a
dynamic elite guidance mechanism greatly accelerates the algorithm’s convergence speed, preventing
instances of ineffective searches. The dynamic chaotic weight strategy during the developmental phase
enhances the algorithm’s local search capability to a certain extent, avoiding entrapment in local optima
and concurrently improving optimization accuracy. The results of the aforementioned simulation
experiments comprehensively validate the effectiveness of the proposed improvement strategy and
the superior performance of the IOOA algorithm. This robust empirical evidence establishes a solid
theoretical foundation for the practical engineering application of the IOOA algorithm.

4.2. Wilcoxon rank-sum test

The Wilcoxon rank-sum test [32] is employed to validate whether there is a significant difference
between two independent samples. A p-value greater than 0.05 indicates no significant difference
between the compared algorithms, while a p-value less than 0.05 suggests a significant difference. N/A
indicates that the Wilcoxon rank-sum test is not applicable for the two samples.

In this section, statistical analysis of optimization results for each algorithm is conducted using the
Wilcoxon rank-sum test. At a significance level of α = 5%, all algorithms are independently run 30
times, and the Wilcoxon rank-sum test p-values are presented in Table 6.

The statistical results in Table 6 reveal that the IOOA algorithm’s optimization results differ sig-
nificantly from the PSO algorithm across all test functions. For functions F14 and F15, there is no
significant difference between the IOOA algorithm and the GWO and WOA algorithms. Compared to
the AO algorithm, there is no significant difference on function F17. The GJO algorithm converges
to the theoretical optimum on function F7, making the Wilcoxon rank-sum test inapplicable for this
case. When compared to the DBO algorithm, the Wilcoxon rank-sum test is not applicable for function
F9, and there is no significant difference between the IOOA and DBO algorithms on function F15. On
functions F1, F3, and F7–F9, the IOOA algorithm demonstrates the same optimization accuracy as the
OOA algorithm, stabilizing at the theoretical optimum across multiple runs. Therefore, the Wilcoxon
rank-sum test is not applicable for these functions.

Electronic Research Archive Volume 32, Issue 3, 2033–2074.



2059

Table 6. Wilcoxon rank-sum test for the test functions.

Function PSO GWO AO WOA GJO DBO OOA

F1 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A

F2 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

F3 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A

F4 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

F5 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

F6 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 4.83E-10 2.87E-11

F7 2.87E-11 2.87E-11 1.26E-10 2.87E-11 N/A 2.87E-11 N/A

F8 2.87E-11 2.87E-11 9.19E-06 2.87E-11 2.87E-11 2.10E-09 N/A

F9 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A N/A

F10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

F11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

F12 5.65E-06 6.80E-08 9.13E-10 3.50E-11 2.87E-11 3.41E-03 5.41E-04

F13 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

F14 2.40E-06 4.33E-01 7.43E-09 7.67E-01 2.95E-08 4.53E-03 2.95E-08

F15 9.67E-09 9.77E-02 3.80E-08 1.43E-01 2.87E-11 2.19E-01 1.54E-06

F16 4.27E-07 2.14E-03 3.17E-11 5.84E-10 5.20E-03 2.12E-09 2.12E-09

F17 4.00E-10 4.24E-03 5.84E-02 1.69E-10 1.12E-09 2.27E-02 9.31E-10

F18 7.76E-11 6.24E-10 7.73E-10 2.87E-11 5.22E-11 2.12E-09 5.22E-11

F19 7.73E-10 1.94E-09 4.00E-10 2.87E-11 2.87E-11 6.37E-11 1.53E-10

F20 2.05E-10 4.27E-07 9.31E-10 2.87E-11 2.87E-11 9.44E-11 4.28E-11

F21 3.31E-10 5.65E-06 1.69E-10 2.87E-11 2.87E-11 5.77E-11 6.81E-09

4.3. Analysis of the effectiveness of the improvement strategy for the IOOA algorithm

In this section, the effectiveness of the improvement strategy of the IOOA algorithm is analyzed
through ablation experiments and comparison to improved versions of several well-known optimization
algorithms. The improved OOA algorithm with only Circle chaotic mapping is named as IOOA1; the
improved OOA algorithm with only dynamic elite guidance mechanism is named as IOOA2; and the
improved OOA algorithm with only dynamic chaotic mapping is named as IOOA3. The improved
optimization algorithms include the IHOOA algorithm [33] and the IGWO algorithm [34]. The
experiment sets the population number to 50, the maximum iteration number to 500, and each algorithm
runs independently 30 times. The test functions are: high-dimensional single-peak function (F5);
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high-dimensional multi-peak functions (F8, F10); fixed-dimensional functions (F13, F18, F21). The
change curve of the average fitness value during the iteration process of each algorithm is shown in
Figure 10.

(a) F5 Convergence curve (b) F8 Convergence curve

(c) F10 Convergence curve (d) F13 Convergence curve

(e) F18 Convergence curve (f) F21 Convergence curve

Figure 10. Experimental results of IOOA algorithm effectiveness analysis.

Electronic Research Archive Volume 32, Issue 3, 2033–2074.



2061

As can be seen from Figure 10, when each improvement strategy acts on the OOA algorithm alone,
the performance of the algorithm is improved to a certain extent. When the three strategies act together
in the OOA algorithm, the algorithm has the fastest convergence speed and the highest optimization
accuracy, which has a significant advantage compared with other algorithms. Compared with the
improved versions of other well-known algorithms, the IOOA algorithm also has a strong performance
advantage. The above experimental results fully prove the effectiveness of the proposed improvement
strategy. The strategy significantly improves the optimization performance of the OOA algorithm.

4.4. IOOA’s performance on CEC-2022 benchmark functions

In order to further verify the optimization seeking performance of the IOOA algorithm, this section
uses the CEC-2022 benchmark functions to test the performance of the IOOA algorithm. The parameter
settings of each algorithm are shown in Table 1. There are 12 single-objective test functions with
boundary constraints in the CEC-2022 benchmark functions, which are: the unimodal function (F1),
multimodal function (F2–F5), hybrid function (F6–F8), and combined function (F9–F12). All the test
functions solve minimization problems. The specific information of the CEC-2022 benchmark functions
is shown in Table 7. The convergence curves of all algorithms on CEC-2022 benchmark functions are
shown in Figure 11.

Table 7. CEC-2022 benchmark functions.

ID Functions Range Optimum

F1 Shifted and full Rotated Zakharov Function [−100, 100] 300

F2 Shifted and full Rotated Rosenbrock’s Function [−100, 100] 400

F3 Shifted and full Rotated Expanded Schaffer’s f6 Function [−100, 100] 600

F4 Shifted and full Rotated Non-Continuous Rastrigin’s Function [−100, 100] 800

F5 Shifted and full Rotated Levy Function [−100, 100] 900

F6 Hybrid Function 1 (N = 3) [−100, 100] 1800

F7 Hybrid Function 2 (N = 6) [−100, 100] 2000

F8 Hybrid Function 3 (N = 5) [−100, 100] 2200

F9 Composition Function 1 (N = 5) [−100, 100] 2300

F10 Composition Function 2 (N = 4) [−100, 100] 2400

F11 Composition Function 3 (N = 5) [−100, 100] 2600

F12 Composition Function 4 (N = 6) [−100, 100] 2700
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(a) CEC2022-F1 (b) CEC2022-F2 (c) CEC2022-F3

(d) CEC2022-F4 (e) CEC2022-F5 (f) CEC2022-F6

(g) CEC2022-F7 (h) CEC2022-F8 (i) CEC2022-F9

(j) CEC2022-F10 (k) CEC2022-F11 (l) CEC2022-F12

Figure 11. Convergence curves of all algorithms on CEC-2022 benchmark functions.
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As can be seen from Figure 11, the IOOA algorithm exhibits the highest comprehensive optimization
performance on all CEC-2022 benchmark functions. On the unimodal function F1, the convergence
speed of the IOOA algorithm is slightly lower than that of the GWO algorithm in the pre-iterative stage,
mainly because the elite guidance mechanism of the IOOA algorithm in the pre-iterative stage accounts
for a smaller proportion of the algorithm, and the algorithm mainly adopts a random search strategy to
extensively explore the solution space. In the late iteration, the search strategy of the IOOA algorithm
is changed to the elite guidance mechanism, which enables the algorithm to converge to the optimal
solution quickly. At the same time, due to the introduction of dynamic chaotic weighting factors, the
IOOA algorithm iteration process did not exhibit search stagnation, proving that the IOOA algorithm
has a good ability to get out of local optima.

For multimodal functions F2–F5, the IOOA algorithm shows the fastest convergence speed with the
highest optimization accuracy. Especially for functions F4 and F5, the addition of dynamic chaotic
weighting factor strategy enables the IOOA algorithm to conduct a finer search near the current optimal
solution, which further improves the algorithm’s optimization accuracy.

For the hybrid functions F6–F8, the IOOA algorithm converges slightly slower than the WOA
algorithm on function F6, but the IOOA algorithm has the highest optimization seeking accuracy. On
functions F7 and F8, the IOOA algorithm shows good comprehensive optimization search performance.

For the combined functions F9–F12, the comparative algorithms all suffer from search stagnation to
varying degrees on function F9, and the IOOA algorithm is able to avoid the influence of local optima
during the iteration process, and so it has the highest optimization accuracy. The IOOA algorithm also
has the strongest comprehensive optimization performance in the remaining combinatorial functions.

In summary, when facing the complex single-objective test function with boundary constraints, the
unique optimization mechanism of the IOOA algorithm makes it show strong competitiveness. The
dynamic elite guidance mechanism can greatly improve the convergence speed of the algorithm while
ensuring that the algorithm has good global search capability. The dynamic chaotic weight factor
strategy can prevent the algorithm from falling into local optimization and improve the optimization
accuracy of the algorithm. The above simulation experiments fully prove the effectiveness of the
improved strategy in this paper and the performance advantages of the IOOA algorithm.

4.5. IOOA applied to the LSTM power load forecasting problem

Accurate prediction of power load contributes to the development of rational power scheduling
strategies by relevant professionals [35]. Due to the nonlinear characteristics of both the load and the
various factors influencing it, the prediction of power load poses significant challenges. Thanks to
the rapid advancement of artificial intelligence technology, load forecasting models based on recur-
rent neural networks (RNN) have garnered widespread attention. Such methods excel at extracting
nonlinear relationships from historical data and have found extensive application in the field of power
load forecasting [36].

LSTM is a special kind of recurrent neural network, which is characterized by its ability to cope with
the gradient vanishing and gradient explosion problems during long sequence training [37]. Compared
with the traditional recurrent neural network, LSTM adds three gates, which are the input gate, output
gate, and forgetting gate, which makes LSTM able to selectively save the useful data, and it has higher
prediction accuracy for time-dependent problems. The LSTM structure is shown in Figure 12.
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LSTM LSTM

Xt-1 Xt Xt+1

Yt-1 Yt+1

tanhσσ σ

tanh

YtLSTM

Figure 12. LSTM structure.

However, when facing complex time series tasks, it is difficult to achieve good prediction results
when only using the basic LSTM model to deal with the problem, so a large number of researchers have
improved the LSTM model to cope with complex prediction problems. [38] proposed an improved
anti-noise adaptive long short-term memory neural network for robust remaining useful life prediction
of lithium-ion batteries. Compared with other methods, the model has higher prediction accuracy and
provides an effective method for the industrialized application of lithium-ion batteries. Reference [39]
proposed an improved singular filter-Gaussian process regression-long and short-term memory model
for lithium-ion battery remaining capacity estimation. The model was evaluated by multiple evaluation
metrics. Experimental results showed that the method can achieve good prediction performance by
using only a small number of datasets, which lays a theoretical foundation for the estimation of the
remaining capacity of the battery’s full lifecycle at extremely low temperatures.

In addition to the above methods, the performance and generalization ability of the LSTM model are
influenced by hyperparameters, which are usually selected based on experience and have considerable
uncertainty [40]. Metaheuristic algorithms have significant advantages over traditional methods when
dealing with complex, nonlinear problems. Therefore, optimizing LSTM model hyperparameters
through metaheuristic algorithms is an effective approach [41].

LSTM model hyperparameters include the number of neurons in the hidden layer, learning rate,
training iterations, and so on. In this study, the IOOA algorithm is employed to search for LSTM
hyperparameters. The fitness function is defined as the root mean square error between predicted values
and actual values. Through the IOOA algorithm, a set of hyperparameters with the minimum prediction
error is identified. This set of hyperparameters is then utilized to construct an LSTM model for power
load prediction. The accuracy of the model’s predictions is further used to evaluate the optimization

Electronic Research Archive Volume 32, Issue 3, 2033–2074.



2065

performance of the IOOA algorithm and its feasibility in practical engineering applications.
The experimental data consists of power load data for a specific region over a period of ten years, with

a sampling interval of 1 day. The dataset comprises 3645 load samples, each with 3 features and 1 target.
The first 70% of the data is designated as the training set, while the remaining data serves as the test
set. Prior to analysis, the dataset undergoes preprocessing, involving empirical mode decomposition
(EMD) of the original load data to mitigate the non-linear effects. All the algorithms mentioned earlier
are employed for hyperparameter optimization of the LSTM model.

The performance evaluation metrics for the model include mean absolute percentage error (MAPE),
root mean square error (RMSE), mean absolute error (MAE), and R-Squared (R²). The fitting curves of
the predicted values and actual values for each model are illustrated in Figure 13.
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Figure 13. Prediction curves for each algorithm.

Figure 14 shows the prediction error curves for each model, and Table 8 gives the four performance
evaluation metrics for each model.

Electronic Research Archive Volume 32, Issue 3, 2033–2074.



2066

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

- 1 . 5 x 1 0 5

- 1 . 0 x 1 0 5

- 5 . 0 x 1 0 4

0 . 0

5 . 0 x 1 0 4

1 . 0 x 1 0 5
Er

ror

N u m b e r  o f  s a m p l e s

 L S T M  P S O  G W O  A O  W O A  G J O  D B O  O O A  I O O A

Figure 14. Prediction error curves for each model.

Table 8. Evaluation indicators of various model prediction results.

Model MAPE RMSE MAE R²

LSTM 0.0388 32857.95 27036.39 0.9140

PSO-LSTM 0.0354 29912.61 24685.67 0.9291

GWO-LSTM 0.0309 25962.57 20405.28 0.9466

AO-LSTM 0.0227 20859.40 16589.29 0.9656

WOA-LSTM 0.0341 27674.84 23014.15 0.9327

GJO-LSTM 0.0268 23681.01 18450.37 0.9554

DBO-LSTM 0.0235 22869.75 17679.28 0.9640

OOA-LSTM 0.0201 18686.58 14268.64 0.9723

IOOA-LSTM 0.0119 10021.64 8421.41 0.9901

As can be seen from Figure 13, the IOOA-LSTM model prediction curve has the highest fit with
the real load curve, the curve trend is basically the same, and the prediction value of the IOOA-LSTM
model is closer to the real value compared to other models. Figure 14 visualizes the prediction errors of
all models, and among all sample data, the IOOA-LSTM model has the smallest error range interval,
proving that the model has the highest prediction accuracy. As can be seen from the evaluation metrics
of each model in Table 8, the IOOA-LSTM model has an R² of 0.9901, which is higher than all the
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compared models. Compared with the base LSTM model, the prediction accuracy of the IOOA-LSTM
model is improved by 7.61%, which is a significant advantage.

The above experimental results fully prove that the IOOA algorithm can effectively find the hyperpa-
rameters of the LSTM model, and the LSTM model constructed by this set of hyperparameters has the
highest prediction accuracy, which further verifies the effectiveness of the improvement strategy in this
paper and the superior performance of the IOOA algorithm. For the model optimization problem in the
field of machine learning, the IOOA algorithm proposed in this paper is able to find the optimal solution
stably, reflecting its high reliability.

4.6. Engineering design problem

In order to fully verify the comprehensive optimization performance of the IOOA algorithm in
the face of problems with complex constraints, two well-known engineering design problems in the
structural field are used in this section to test the performance of the IOOA algorithm. They are the
tension/compression spring design problem and the three-bar truss design problem, respectively [42,43].
The IOOA algorithm is compared with other 11 famous optimization algorithms, and all algorithms
have the same constraints to ensure the fairness of the experiment.

4.6.1. Tension/compression spring design problem

The objective of the tension/compression spring design problem is to minimize the weight of the
spring while satisfying the constraints of minimum deflection, shear stress, vibration frequency, and
ultimate outside diameter. The problem consists of three consecutive decision variables, namely, the
spring coil diameter (x1), the overall spring diameter (x2), and the number of coils wound (x3). The
constraints are minimum deflection (g1(X)), shear stress (g2(X)), vibration frequency (g3(X)), and
limiting outer diameter (g4(X)). The objective function of the problem is as follows:

f (X) = (x3 + 2) x2x2
1,

g1(X) = 1 −
x3

2x3

71785x4
1

≤ 0,

g2(X) =
4x2

2 − x1x2

12566
(
x2x3

1 − x4
1

) + 1
5180x2

1

− 1 ≤ 0,

g3(X) = 1 −
140.45x1

x2
2x3

≤ 0,

g4(X) =
x1 + x2

1.5
− 1 ≤ 0,

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

The results of simulation experiments for the tension/compression spring design problem are shown in
Table 9. The comparison algorithms include the PSO algorithm, GWO algorithm, AO algorithm, WOA
algorithm, GJO algorithm, DBO algorithm, OOA algorithm, HHO algorithm [44], TSA algorithm [45],
SMA algorithm [46], and SABO algorithm [47].
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Table 9. Comparative results for the tension/compression spring problem.

Algorithms x1 x2 x3 f(X)

PSO 0.05828019 0.5352092 5.7625443 0.01411138

GWO 0.05300526 0.38917177 9.62539881 0.01271122

AO 0.05 0.31472432 14.41789636 0.01291778

WOA 0.0523544 0.37222075 10.48502312 0.01273787

GJO 0.05029085 0.32398347 13.50713292 0.01270669

DBO 0.05 0.31736567 14.04027594 0.01272658

OOA 0.05379799 0.40950601 8.75926347 0.0127519

HHO 0.05 0.31740887 14.03034291 0.01272043

TSA 0.05328826 0.39613607 9.48538621 0.01291972

SMA 0.055857 0.464672 7.13884204 0.013255

SABO 0.05301165 0.38778914 9.74747372 0.01280215

IOOA 0.05277867 0.38350141 9.87567011 0.0126865

The simulation experiment results show that the IOOA algorithm has the highest optimization
accuracy in solving the tension/compression spring design problem. Under satisfying the constraints,
the optimization result of the IOOA algorithm is f(X) = 0.0126865, and the optimal solution is X =
[0.05277867, 0.38350141, 9.87567011]. The above experimental results show that the IOOA algorithm
has good optimization performance and is extremely competitive in solving the tension/compression
spring design problem.

4.6.2. Three-bar truss design problem

The three-bar truss is a common structural form widely used in bridges, buildings, and mechanical
equipment. The purpose of the three-bar truss design problem is to minimize the volume of the three-bar
truss by adjusting the cross-sectional area. The three-bar truss is subjected to stress (σ) constraints at
each truss member. The design has three nonlinear continuous inequality constraints (g1(X), g2(X), and
g3(X)) and two continuous decision variables (x1, x2). The objective function of the problem is as follows:

f (X) =
(
2
√

2x1 + x2

)
× L,

g1(X) =

√
2x1 + x2

√
2x2

1 + 2x1x2

P − σ ≤ 0,

g2(X) =
x2

√
2x2

1 + 2x1x2

P − σ ≤ 0,

g3(X) =
1

√
2x2 + s1

P − σ ≤ 0,

0.001 ≤ x1 ≤ 1, 0.001 ≤ x2 ≤ 1,
L = 100 cm, P = 2KN/cm2, σ = 2KN/cm2.
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The results of simulation experiments for the three-bar truss design problem are shown in Table 10.
The comparison algorithms include the GWO algorithm, AO algorithm, WOA algorithm, GJO al-
gorithm, DBO algorithm, OOA algorithm, HHO algorithm, TSA algorithm, SMA algorithm, and
SABO algorithm.

Table 10. Comparative results for the three-bar truss design problem.

Algorithms x1 x2 f(X)

GWO 0.78916735 0.40687817 263.89804951

AO 0.7847076 0.41990285 263.9391

WOA 0.79453367 0.39281604 264.00952075

GJO 0.79180563 0.40157195 264.11364703

DBO 0.79220303 0.39226958 263.9958

OOA 0.78406522 0.42144665 263.91179684

HHO 0.79395286 0.39352164 263.9159446

TSA 0.77405138 0.45448349 264.38313985

SMA 0.79259872 0.39727822 263.9085954

SABO 0.78806251 0.41000207 263.89794479

IOOA 0.787675 0.41108447 263.8965

The optimal fitness value obtained by the IOOA algorithm when faced with the three-bar truss
design problem is f(X) = 263.8965, and the optimal solution is X = [0.787675, 0.41108447]. This
result outperforms the optimality finding results of other compared algorithms. The above results
fully demonstrate that the IOOA algorithm is capable of handling engineering design problems with
complex constraints.

5. Conclusions

This paper proposes a multi-strategy fusion improved osprey optimization algorithm (IOOA). Dif-
ferent from the traditional meta-heuristic algorithm improvement, this study is based on the detailed
analysis of the improvement strategy; while retaining the performance advantages of the original
algorithm, the improvement strategy proposed in this paper significantly improves the algorithm’s
optimization accuracy, convergence speed, and robustness. The algorithm performance is tested by a
variety of performance evaluation indexes, and the following conclusions are drawn:

1) Chaotic mapping has traversal and randomness, and the IOOA algorithm improves the population
initialization by replacing random numbers with Circle chaotic mapping, which reduces the random
fluctuation of population initialization and improves the robustness of the algorithm. Compared with
other algorithms, the initial population individuals of the IOOA algorithm have higher quality, and good
initial individuals lay a solid foundation for algorithm optimization. Simulation experiments further
verify the conclusion.

2) The original algorithm adopts a random position update strategy, which does not take into account
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the position information of the current optimal individual, and this strategy may lead to ineffective
searching in the algorithm to a certain extent. The elite guidance mechanism can utilize the individual
position information of the current optimal solution to guide the population to approach the optimal
individual quickly; however, it is not a good choice to use the elite guidance mechanism at the initial
stage of the algorithm iteration. When the elite individuals fall into the local optimum, the algorithm will
have a stagnant search. The IOOA algorithm has a faster convergence speed, mainly due to the adjustable
ratio dynamic elite guidance mechanism, which makes the algorithm focus more on global exploration
in the early stage of the search, and in the late stage of the search through the elite individuals to guide
the population to converge quickly to avoid ineffective search, so it greatly improves the convergence
speed of the algorithm.

3) In this paper, the traditional inertia weighting strategy is fused with Cubic chaotic mapping, and
dynamic chaotic weighting factors are proposed. The weight factor is dynamically adjusted through the
change of iteration number, and the traversal of Cubic chaotic mapping is utilized to enhance the local
search capability of the algorithm, which greatly improves the optimization accuracy of the algorithm.

4) In terms of algorithm performance testing, the optimization accuracy, convergence speed, and
robustness of the IOOA algorithm are extensively verified through 21 benchmark test functions in both
30-dimensional and 100-dimensional cases. Meanwhile, this paper comprehensively examines the
effectiveness of the IOOA algorithm through CEC-2022 benchmark functions, ablation experiments,
and engineering design problems in a real environment. Simulation experiment results demonstrate that
the fusion strategy proposed in this paper markedly enhances the algorithm’s optimization performance.
Statistical results indicate a significant advantage of the IOOA algorithm over the comparison algorithms.

5) For the LSTM power load forecasting problem, the proposed IOOA-LSTM model has higher
prediction accuracy compared with the traditional model due to the strong global optimization per-
formance of the IOOA algorithm, which is able to accurately find the LSTM model hyperparameters.
Meanwhile, the accurate power load prediction helps to specify the energy scheduling strategy and can
improve the energy utilization rate.The proposed IOOA algorithm provides a proven method for the
model optimization problem in the field of machine learning. For engineering design problems with
complex constraints, the IOOA algorithm also has good optimization accuracy. Compared with other
algorithms, the IOOA algorithm shows strong competitiveness.

Future research endeavors will focus on further improving the optimization performance of the IOOA
algorithm and thoroughly exploring additional applications in the field of global optimization.
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