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Abstract: StarCraft is a popular real-time strategy game that has been widely used as a research
platform for artificial intelligence. Micromanagement refers to the process of making each unit
perform appropriate actions separately, depending on the current state in the the multi-agent system
comprising all of the units, i.e., the fine-grained control of individual units for common benefit.
Therefore, cooperation between different units is crucially important to improve the joint strategy.
We have selected multi-agent deep reinforcement learning to tackle the problem of micromanagement.
In this paper, we propose a method for learning cooperative strategies in StarCraft based on role-based
montonic value function factorization (RoMIX). RoMIX learns roles based on the potential impact of
each agent on the multi-agent task; it then represents the action value of a role in a mixed way based on
monotonic value function factorization. The final value is calculated by accumulating the action value
of all roles. The role-based learning improves the cooperation between agents on the team, allowing
them to learn the joint strategy more quickly and efficiently. In addition, RoMIX can also reduce
storage resources to a certain extent. Experiments show that RoMIX can not only solve easy tasks, but
it can also learn better cooperation strategies for more complex and difficult tasks.

Keywords: Q-learning; multi-agent reinforcement learning; machine learning; artificial intelligence;
StarCraft multi-agent challenge

1. Introduction

Starcraft is a real-time strategy game released by Blizzard Entertainment. Compared to traditional
games, StarCraft has a large observable space dimension and complex strategy combinations. It not
only attracts a group of professional esports players, it is also regarded as a form of highly valuable
human-machine competition in the current field of artificial intelligence [1]. StarCraft has two main
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gameplay components: macromanagement and micromanagement [2]. Macromanagement requires a
comprehensive consideration of resources, economy, and military capabilities by determining what
combat units to build or produce to win the entire competition. Micromanagement is another
important subproblem in StarCraft, and it mainly considers the fine-grained control of individual
units. Additionally, it focuses on decentralized micromanagement challenges, where each unit makes
corresponding action decisions based on its own partial observation states [3].

In the micromanagement, the task goal is to enhance the combat capabilities of each unit in a team
by seeking ways to join other allies and realize the ultimate team victory [4]. The main difficulty of
micromanagement is determining how to coordinate all units in a team to learn the best joint strategy
based on their current local observation state and determine the welfare based on the best joint strategy.
Therefore, the micromanagement of StarCraft can be considered as a fully cooperative multi-agent
learning problem.

In a fully cooperative problem, all agents collaborate with each other to achieve a specific shared
goal by jointly learning the action strategy. Cooperation is important and widespread, as it is seen as an
important foundation for human evolution [5]. The problem of multi-agent cooperation is also widely
present in practical applications, such as unmanned aerial vehicles [6], wireless communications [7],
load frequency control [8], urban traffic light control [9], and so on.

Multi-agent reinforcement learning (MARL) has achieved great success as a tool to solve
cooperative decision-making problems with multiple agents [10, 11]. It is worth considering that, for
the micromanagement task of StarCraft, the cooperative strategy is difficult to learn due to the
problems caused by the partial observability, communication constraints, and non-stationary learning
process of the agents. Therefore, the MARL method based on the framework of centralized training
with decentralized execution (CTDE) is widely used [12–15]. CTDE combines the advantages of
centralized learning [16] and independent learning [17] paradigms, allowing agents to fully utilize
global information during learning and only use local information during decision-making. CTDE
frameworks include two training methods: on-policy and off-policy learning. In contrast to on-policy
learning, off-policy learning can store the generated experience data in the replay buffer and be
utilized multiple times, making it sample-efficient [18]. However, on-policy learning allows the
generated experience data to be used only once during training, making it sample-inefficient.
Actor–critic based methods such as counterfactual multi-agent (COMA) policy gradients [12] and
multi-agent proximal policy optimization [13] require on-policy learning, which can be
sample-inefficient. In addition, as the number of agents increases, it is impractical to train the fully
centralized critic. The value function factorization [14] methods that combine deep Q-networks
(DQNs) [18] and actor–critic methodology require off-policy learning, thus avoiding the previously
mentioned problems. Furthermore, QMIX [15] violates the linear constraint and utilizes additional
state information to further enhance learning. Although the QMIX algorithm can already solve most
cooperative multi-agent problems, it also has a limitation: all agents learn equally during the training
process, which makes QMIX inefficient on some complex tasks. Particularly, when the task is hard, it
is difficult to learn feasible and effective joint strategies.

In current research, there is an increasing number of large-scale data analysis or complex
multi-agent decision-making tasks, such as gesture recognition based on multiple sensor signals [19],
wearable systems based on multimodal data [20], and large-scale collaborative control [21]. For these
tasks, role-based strategies can divide the agents based on their different attributes, and then learn
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local decisions or subtask strategies in each role set. Unlike integrated multi-agent tasks, it potentially
decomposes tasks and reduces difficulty. Role-based learning is an effective means to solve
large-scale or difficult multi-agent tasks.

Therefore, to solve complex and difficult domain-specific problems, especially hard or superhard
maps in the micromanagement of StarCraft, we propose a novel method to learn cooperative
strategies based on role-based monotonic value function factorization (RoMIX). RoMIX decomposes
tasks through the implementation of role mechanisms to reduce learning difficulty, with the aim of
efficiently learning complex problems. More specifically, RoMIX is a two-stage learning method. In
the first stage, a set of roles is created based on the different concerns of the agents regarding the task;
this stage serves to indirectly decompose the task based on the role mechanism. In the second stage,
the action values of all agents in each role subset are monotonically mixed. The monotonic mixing
method restricts the non-negative correlation between each individual value and the total mixed value.
And, the value obtained via this monotonic mixing method represents the role value of the
corresponding subtask. Finally, the value of the task is represented by role values.

In addition, we believe that RoMIX has satisfactory decision-making ability for difficult tasks, and
it is meaningful to integrate it into specific multi-agent learning fields such as multi-robot
collaboration, multi-sensor systems, drone swarm combat, etc. RoMIX can improve decision-making
efficiency and ability for hard tasks, as well as facilitate further learning of effective and complex
cooperative strategies. However, the challenges of integrating RoMIX into existing multi-agent
learning cannot be ignored, such as adaptability and security issues. RoMIX has been designed for
collaborative, complex task-type problems, and the natural gap between it and practical multi-agent
learning systems is security. Therefore, integrating RoMIX into multi-agent learning systems is both
an opportunity and a challenge.

We evaluate RoMIX on StarCraft decentralized micromanagement tasks and use the StarCraft
Multi-Agent Challenge (SMAC) [2] environment as the testbed, which has become a common-used
benchmark for evaluating state-of-the-art MARL approaches. We selected nine maps from three
different levels of difficulty for experiments, and we verified that the RoMIX can learn effective joint
strategies on fully cooperative multi-agent tasks, especially for complex and difficult task scenarios.
Moreover, it can also reduce storage resources to a certain extent.

2. Related work

For cooperative multi-agent tasks, most classic algorithms are based on Q-learning methods,
which extend Q-learning to multi-agent environments. Wang and De Silva [22] proposed the team
Q-learning algorithm for multi-agent cooperative tasks and theoretically proved its convergence to the
optimal strategy. Galindo-Serrano and Giupponi [23] proposed a real-time MARL distributed
Q-learning method to manage the interference generated by agents by directly interacting with the
surrounding environment through distributed means. In addition, Wang and Sandholm [24] proposed
the optimal adaptive learning (OAL) based on biased action selection and incomplete historical
sampling, and they demonstrated that this method converges to the optimal Nash equilibrium in team
games with multiple Nash equilibria. Furthermore, Arslan and Yüksel [25] proposed a decentralized
Q-learning algorithm for stochastic games based on OAL, supplementing the proof that the algorithm
converges stably to the optimal Nash equilibrium in a large number of stochastic games.
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StarCraft is a real-time game that is renowned for its complexity, intricate strategy combinations,
and vast observation space. In the StarCraft environment, agents interact with the game by observing
states, receiving events, and executing actions. There are many factors to consider for this complex
game task, such as strategy diversity, team composition and quantity, macro and micro-management,
communication and collaboration between agents, large-scale spatial processing, robustness,
adaptability, and training efficiency. Therefore, there are many studies on StarCraft
environmental tasks.

Value decomposition is a research focus for MARL, and it is widely applied for the baseline tasks
of Starcraft. Its essence is an extension of Q-learning. Value-decomposition networks (VDNs) [14]
constitute the first attempt of value decomposition in Starcraft. It assumes that the value function can be
decomposed, requiring the joint action value to be the linear sum of the action values of each individual
agent. But, the premise of the linear assumption also causes VDNs to have many shortcomings. One is
that the constraint on the value function is too hard, which harmfully limits the complex representation
of action values between the total and decentralized individuals, and it is only applicable to some small-
scale scenarios. Another shortcoming is that during training, any additional information available
is completely ignored and the best strategy can only be learned in some simple environments. To
improve the representation of value functions and fully utilize the global information during training,
Rashid et al. [15] proposed QMIX, which trains decentralized strategies in an end-to-end way. Due to
the inability of VDNs to represent complex association between individuals and the total, QMIX uses
neural networks with strong approximation capabilities for representation. In addition, QMIX utilizes
additional global state information when approximating the total action value, taking fully advantage
of centralized training.

The QTRAN [26] algorithm further combines the advantages of VDNs and QMIX. QTRAN
requires the assumption that directly using neural networks to approximate joint functions is relatively
difficult, so it entails a two-step approximation: first, the VDN method is used to obtain the added
joint value function as an approximation of the joint value function; then, it fits the difference between
the added joint value function and the joint value function. Mahajan et al. [27] proposed a new
hierarchical learning algorithm, multi-agent variational exploration, based on the QMIX framework to
improve the efficiency of multi-agent exploration. Yang et al. [28] proposed a value function mixture
based on the multi-head attention mechanism to approximate joint value functions without
introducing additional assumptions and constraints. Furthermore, Khan et al. [29] proposed TransMix
by combining Fastformer [30] attention to effectively decompose value functions. In addition,
weighted QMIX (WQMIX) [31] enhances the importance of the optimal joint action by weighting the
loss function of QMIX with centrally-weighted and optimistically-weighted QMIX, thereby
promoting the convergence of the optimal joint strategy. Duplex dueling multi-agent Q-learning
(QPLEX) [32] guarantees compliance to the principle of monotonicity by introducing an advanced
based function that is realized with a duplex dueling architecture [33].

There are also some algorithms based on the actor–critic framework that have been proposed.
Foerster et al. [12] proposed COMA policy gradients based on the counterfactual baseline by using a
completely centralized learning approach. Iqbal and Sha [34] proposed the
multi–actor–attention–critic methodology based on the CTDE framework, combined with an attention
mechanism and the counterfactual baseline of COMA, to further improve the reliability allocation
problem. Zhang et al. [35] proposed the CollaQ for the dynamic allocation of rewards through the
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application of Taylor expansion, with the aim of allowing agents to automatically adapt to changes in
the environment and other agents without retraining. In addition, task decomposition is also an
effective method. Liu et al. [36] modeled the relationships between agents based on graph neural
networks and proposed a two-stage attention network (G2ANet) to decompose the graph into a set of
sub-graphs for learning, thereby accelerating strategy learning. And, the RODE [37] algorithm
decomposes complex multi-agent tasks into simpler subtasks by learning different roles to improve
learning efficiency. Although neither Zhao and Lv [38] nor Wang et al. [39] are studying the StarCraft
environment, their respective studies on the robustness of complex multi-agent systems and
heterogeneous multi-agent systems provide great inspiration.

3. Proposed method

In this section, we introduce our cooperative strategy learning methodology based on role-based
monotonic value function factorization, i.e., ROMIX. We consider that fully cooperative MARL tasks
in the SMAC are typically modeled as a decentralized partially observable Markov decision
process [40], described by the tuple G =< N, S ,U, P, r,Ω,O, n, γ >. Here, N is the finite set of n
agents, and S describes the true or global state in the environment. For every time step, each agent
i ∈ N ≡ {1, ..., n} selects an action ui ∈ U, giving rise to a joint action vector u ∈ U ∈ Un. When the
joint action u is executed, it leads to a transition to the next state s′ according to the transition function
P(s′|s,u) : S × U × S → [0, 1]. Each agent shares the same joint reward function r(s,u) : S × U→ R
with the discount factor γ ∈ [0, 1). For a partially observable process, each agent i receives an
individual local observation oi ∈ Ω based on the observation function O(oi|s, ui). The action
observation history of agent i is denoted by τi ∈ T ≡ (Ω × U)∗, on which it conditions its
decentralized stochastic policy πi(ui|τi) : T × U → [0, 1].

RoMIX learns cooperative strategies by decomposing multi-agent cooperative tasks into a set of
subtasks. Different subtasks are matched with different roles, and agents in the same role share their
learning to jointly learn the role strategy of the subtask. RoMIX learns cooperative strategies by
implementing an end-to-end model in two stages, as shown in Figure 1.

Figure 1. Role-based monotonic value function factorization.

In the first stage, for a cooperative multi-agent task G =< N, S ,U, P, r,Ω,O, n, γ >, a set of roles
Φ is created based on the different concerns of the agents regarding the task G. Each role ρ j ∈ Φ is
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associated with the corresponding subtask g j, where the subtask g j :=< N j, S ,U, P, r,Ω j,O, γ >∈ G,
with N j ⊂ N, ∪ jN j = N, and N j ∩ Nk = ∅, j , k. After completing the first stage, each agent only
belongs to a specific role set.

In the second stage, the expected global return QΦ of task G is maximized by learning an optimal
set of Φ⋆:

QΦ(st,ut) = Est+1:∞,ut+1:∞

[ ∞∑
i=0

γirt+i|st,ut,Φ

]
(3.1)

where QΦ is composed of Qρ j , and Qρ j is a mixed representation of the individual action values of each
agent in ρ j based on monotonic value function factorization. The following sections will provide a
detailed introduction to the two stages.

3.1. Action representation learning and role set creation

Learning how to come up with a set of roles to effectively decompose a task is an important stage.
Instead of traditional methods based on prior knowledge, we were inspired by RODE [37] to
decompose a task based on action representation. Specifically, we consider that each agent’s focus on
a task is associated with its own action attributes, which allows each role to focus on a set of actions.
Learning roles in this way has better generalization, as the decomposition of a task is not limited by
changes in the number of agents. For example, for homogeneous and symmetrical SMAC task
scenarios, the set of learned roles still has strong usability when the numbers of enemies and allies
changes equally. Therefore, it is a practicable and effective way to decompose a task based on the
actions of agents in cooperative multi-agent problems.

Both supervised learning and unsupervised learning are used in the role-learning stage. Supervised
learning encodes action representations, while unsupervised learning classifies action representation
encoding, as shown in Figure 2.

Figure 2. The architecture for action representation learning and character set creation.
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For the supervised learning shown in the left part of Figure 2, a feed forward neural network is used
for prediction, with the aim of encoding the actions of agent i. Specifically, the local observation oi

and action ui of agent i are used as inputs to predict the local observation õ′ of agent i at the (next) t + 1
time step as well as the global reward r̃t at the (current) t time step. In addition, to avoid non-stationary
effects caused by the actions of other agents on the prediction, it is necessary to input the action vector
u−i of other agents. For agent i, the action-encoder module maps a one-hot action ui with dimension
R|U | to a representation encoding eui of the action with dimension Rd, where d is the network output
dimension of the action-encoder module.

The loss function of the supervised learning prediction model is given by

L(θe, ξp) = E(o,u,r,o′)∼D

[∑
i

||po(eui , oi,u−i) − o′i ||
2
2 + λp

∑
i

(pr(eui , oi,u−i) − r)2
]

(3.2)

where po and pr denote the observation predictor and reward predictor of agent i, respectively, and
both are parameterized by ξp. λp is a hyperparameter that is used to adjust the scale of the predictors,
andD is the replay buffer.

For the unsupervised learning shown in the right part of Figure 2, we use k-means clustering to
cluster a set of roles Φ based on Euclidean distance for actions with dimension R|d|, where the total
number of roles is K, i.e., ρ j ∈ Φ, j = 1, ...,K. Finally, each agent i is assigned a unique and
deterministic role representation ρ j based on the action representation. In practice, K is a
hyperparameter that is applied to set micromanagement tasks in StarCraft, representing the
dimensional size of the role set.

3.2. Mixing action values by role-based monotonic value function factorization

In a multi-agent task, we perform a mixed representation of individual Qi values and the overall
Qtot value at two levels: intra-role set value mixing and inter-role set value mixing. The complete
architecture of RoMIX is shown in Figure 3, where (a) is the role-based mixing architecture, (b) is
the overall architecture of RoMIX, and (c) is the network structure of a single agent. Inspired by
QMIX [15], we propose RoMIX, which implicitly decomposes a task by combining role mechanisms,
with the aim of representing Q values more effectively. And, then, we will provide a detailed illustration
of our RoMIX.

We use the deep recurrent Q-networks (DRQN) [41] based on gate recurrent unit (GRU) to represent
each agent i, which evaluates individual Qi(τi, ui) by using the observation oi

t ∈ Ω at time step t and the
action ui

t−1 ∈ U at time t − 1 as inputs, as shown in Figure 3(c). In practice, the first layer in the agent
network is a fully connected layer with 64 neurons. After learning in the GRU network, the output
dimension of the second fully connected network layer is R|U |. It is worth noting that agent i selects
actions by following the ε-greedy policy in the next time step, and the minimum ε is 0.02.

As shown in the Element-wise role matching module in Figure 3(a), the action values of each agent
are divided into corresponding role sets by this module. Specifically, we design action-value masks
based on the action sets of each role set. For the action-value vector Q1(τ1, u1

t ), ...,QN(τN , uN
t ) of all

agents, we filter it element-wise by multiplying the action-value vector with the masks corresponding
to each role, retaining the action values of the agents required in the action-value vector.
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Figure 3. Complete architecture of RoMIX.

For all agents in the role set ρ j, we mix their Qi by applying monotonic value function factorization
to represent Qρ j . Specifically, Qρ j represents the total utility Qi of all agents in ρ j. To ensure consistency
and monotonicity between Qρ j and Qi of each agent, the individual global max (IGM) principle has
been incorporated; it restrictively ensures that the global argmax operation performed on Qρ j produces
the same result as the argmax operation performed on each Qi:

arg max
uρ j

Qρ j(τ
ρ j ,uρ j) =


arg maxu1 Q1(τ1, u1)

...

arg maxu|ρ j | Q|ρ j |(τ
|ρ j |, u|ρ j |)

 ,∀ j ∈ {1, 2, ...,K} (3.3)

where |ρ j| is a scalar representing the total number of all agents in the role set ρ j; K is also a scalar
representing the total number of role sets. The vectors τρ j and uρ j represent the joint action observation
history and joint action of all agents in the role set ρ j, respectively.

The IGM allows each agent i to perform decentralized execution only by selecting a greedy action
related to its own Qi. Furthermore, the following intuitive and sufficient but unnecessary constraint can
further generalize Eq (3.3) to more general Qρ j and each Qi monotonicity:

∂Qρ j

∂Qi
≥ 0,∀i ∈ {1, 2, ..., |ρ j|} (3.4)

Therefore, in the role set ρ j, we learn the non-negative correlation between the joint action value
Qρ j and the individual action value Qi by combining the role-based mixing structure ρ j-mixing, and
incorporate global state information during the training process, as shown in Figure 3(a). Unlike
linear addition, ρ j-mixing uses a neural network to integrate the action values of each individual. By
following the monotonicity constraint in Eq (3.4), the joint Qρ j is maximized when the individual Qi is
maximized, that is, the optimal joint action selection and optimal joint strategy are equivalent.
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In practice, we perform a mixed representation of individual Qi and the final total joint action value
Qtot at two levels: intra-role set Qi mixing and inter role set Qρ j mixing. For the intra-role set mixing,
we use extra hypernetworks to learn the non-negative weights and biases of a ρ j-mixing network based
on the global state S to represent the Qρ j in a mixed way and consequently follow the monotonicity of
the Qρ j and the Qi of each agent i. Specifically, each ρ j-mixing network is a fully connected network
containing a hidden layer with a number of neurons H (such as H = 32), whose input and output are
a joint action-value vector Q ∈ R|N| and a scalar Qρ j , respectively. Therefore, the ρ j-mixing network
contains two sets of weights and biases: w1 ∈ R

N×H and b1, and w2 ∈ R
|H| and b2. We use hypernetworks

with the global state S as inputs to produce these two sets of weights and biases, which are followed by
an absolute activation function to ensure consistency in monotonicity. K ρ j-mixing networks are used
to mix the action values of agents in K role sets. We use the role-selector layer to solve the problem
of variable ρ j-mixing input. Specifically, in the role-selector layer, the role-matching mask vector
is element-wise multiplied with the joint action value vector, where the length of the role-matching
mask vector is R|N |. Subsequently, for the inter-role set mixing, we refer to the linear sum method in
the VDN [14] to calculate the total value. We also accumulate each Qρ j obtained from ρ j-mixing to
calculate the final total joint action value Qtot:

Qtot(τ,u) =
K∑

j=1

Qρ j(τ
ρ j ,uρ j; ξρ j) (3.5)

where ξρ j represents the ρ j-mixing network parameters corresponding to ρ j.
In addition, during the training process, RoMIX updates by referring to the standard DQN [18] loss

to minimize TD loss, as follows:

L(θ, ξ) =
b∑

i=1

(ytot
i − Qtot(τ,u, s; θ, ξ)) (3.6)

where θ denotes the parameters of all agent networks, ξ denotes the parameters of all ρ-mixing
networks, b is the batch size of transitions sampled from the replay buffer D,
ytot = r + γmaxu′ Qtot(τ′,u′, s′; θ−, ξ−), and both θ− and ξ− are the parameters of the target network, as
in the DQN.

4. Experiments

We chose to evaluate RoMIX on the StarCraft II decentralized micromanagement tasks. And, in
this experimental section, we clarify the settings and present sufficient validation and detailed analysis
for task scenarios at three difficulty levels.

4.1. Experimental settings

We chose to use the SMAC environment as the testbed, as it has become a common-used
benchmark for evaluating cooperative MARL methods. In SMAC tasks, allied units learn
decentralized cooperative strategies through algorithms. The strategies of enemy units are manually
coded by human experts, with a total of 10 difficulties. In our experiment, we chose the default
difficulty of 7 (sc pb.VeryHard). For example, Figure 4 shows two scenarios: (a) eight Marine allies
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are fighting against eight Marine enemies. The name of this map is 8m, which is a homogeneous and
symmetric easy scenario. (b) It is a heterogeneous and asymmetric superhard scenario where six
Zealot allies engage 24 Zergling enemies.

Figure 4. Decentralized unit micromanagement in StarCraft.

Table 1. Nine maps with three difficulty level scenarios.
Map Ally unit Enemy unit Type Difficulty level
8m 8 Marines 8 Marines homogeneous symmetric easy
2s3z 2 Stalkers, 3 Zealots 2 Stalkers, 3 Zealots heterogeneous symmetric easy
2s vs 1sc 2 Stalkers 1 Spine Crawler heterogeneous asymmetric easy
5m vs 6m 5 Marines 6 Marines homogeneous asymmetric hard
3s vs 5z 3 Stalkers 5 Zealots heterogeneous asymmetric hard
2c vs 64zg 2 Colossi 64 Zerglings heterogeneous asymmetric hard
3s5z vs 3s6z 3 Stalkers, 5 Zealots 3 Stalkers, 6 Zealots heterogeneous asymmetric superhard
6h vs 8z 6 Hydralisks 8 Zealots heterogeneous asymmetric superhard
corridor 6 Zealots 24 Zerglings heterogeneous asymmetric superhard

To fully validate our method, we selected nine maps for the experiment, with three difficulty level
scenarios. The specific settings and detailed descriptions of the maps are shown in Table 1. And, from
the table, it can be seen that homogeneity, symmetry, and the scale of the agents collectively affect the
difficulty of the task.

The proposed method was trained by using a PC configured with i7-10700, GeForce GTX 1080Ti
11GB, 32GB RAM, 250GB SSD, and 2TB HDD. Our training time ranged from about 8 hours to 72
hours on these maps, as based on the number of agents, map features, and total training setps of each
map. For some easy scenarios, the number of total training steps was set as 1.5 million or 2 million in
our experiment. However, for some difficult scenarios, the number of total steps was set as 4 million
or 5 million, as shorter steps cannot be fully trained. And, we evaluated the model every 5 × 103 steps.
Generally, the size of the replay buffer D was applied as 5 × 103. Due to the hardware conditions,
for some large-scale scenarios, the size in all our experiments and comparative experiments was set to
3 × 103 or 2.5 × 103. In addition, for the other hyperparameters, the settings were as follows: batch
size = 8, learning rate of 5 × 10−4 with the RMSprop optimization, the number of role sets K = 2, and
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λp = 10. We applied the ϵ-greedy policy for exploration. The starting exploration rate was set to 1,
and the end exploration rate was 0.02.

4.2. Validation

4.2.1. Easy scenarios

For easy task scenarios, we chose three scenarios: 8m, 2s vs 1sc, and 2s3z. Because the total
number of multi-agent tasks was not large and the task difficulty was relatively easy, we set the training
steps to 1.5 million. In addition, we chose VDN, QTRAN, G2ANet, and QMIX as the comparative
methods for all experiments. The above comparative experiments are all based on the CTDE learning
paradigm. We evaluated the mean test win rate across 32 runs per 5000 steps for each method on
selected maps, and we independently ran each method three times to obtain the experimental results.
The experimental results are shown in Figure 5.

Figure 5. Win rates for easy map scenarios.

For a clearer comparison, we shall provide the corresponding statistical test results. Specifically, in
each task scenario, we applied the median winning rate of the last 50 × 5000 steps as the evaluation
metric. The winning percentages for easy scenarios are shown in Table 2. The 8m scenario was
a homogeneous and symmetrical task, so the learning speeds were similar for all algorithms. The
winning rate for the G2ANet algorithm dropped sharply to 61.67% in the end, while the VDN, QMIX,
and RoMIX algorithms all achieved high winning rates of no less than 95%. However, it is worth noting
that the QTRAN method did not perform well enough, which also proves that the QTRAN method is
excellent in theory but less effective in practice. For the asymmetric and heterogeneous small-scale
task of the 2s vs 1sc scenario, with the exception of G2ANet, the accuracy and learning speeds of all
value function decomposition algorithms were similar.

As the number and types of agents increase, tasks become increasingly challenging. In the case
of the 2s3z scenario, both VDN and QMIX learned faster and achieved high winning rates of 93.33
and 95.00%, respectively, because simpler methods are faster and more effective for easy and small-
scale task scenarios. It is worth mentioning that, as the training step size increased, our RoMIX method
was able to ultimately achieve the same winning rate of 93.75%, as shown in Figure 6. This is because
the RoMIX network has a larger scale; furthermore, although it may be slower to learn parameters for
easy tasks, the upper performance limit of the model is not low.
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Table 2. Win percentages for easy scenarios.

Scenario VDN QTRAN G2ANet QMIX RoMIX
8m 95.00 80.00 61.67 96.67 95.83
2c vs 1sc 98.33 95.00 17.71 94.17 98.96
2s3z 93.33 63.33 53.33 95.00 59.90

Figure 6. The win rate for 2s3z scenarios with 4 million training steps.

4.2.2. Hard scenarios

For the learning of cooperative strategies on hard tasks, we chose three scenarios: 3s vs 5z,
2c vs 64zg, and 5m vs 6m. The experimental results are shown in Figure 7 and Table 3. By
combining the table and the figure for analysis, we can clearly see that, for the three difficult task
scenarios, due to the G2ANet method based on the actor–critic framework having the lowest-valued
experimental results and almost all winning rates equaling zero, this section of the discussion only
focuses on the four methods based on value function decomposition. First, in the case of the 3s vs 5z
map, RoMIX consistently outperformed other methods and achieved the highest winning rate of
86.88%. And, as the winning rate increased, the variance also rapidly converged, and the experimental
results tended to be stable. According to the results, the difficulty of the 3s vs 5z map is lower than
that of the two other maps. Subsequently, we will analyze the other two task scenarios separately.

Table 3. Win percentages for hard scenarios.

Scenario VDN QTRAN G2ANet QMIX RoMIX
3s vs 5z 53.13 80.00 0.00 72.92 86.88
2c vs 64zg 0.00 0.00 2.10 0.00 11.46
5m vs 6m 26.04 54.17 0.00 34.38 46.88
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Figure 7. Win rates for hard map scenarios.

For the 2c vs 64zg map, we set the replay bufferD size to 2.5× 103. The two main problems of the
2c vs 64zg map are extreme asymmetry and the large number of agents. Due to these two problems,
the agents cannot learn effective cooperative strategies. According to Table 3, with the exception of
RoMIX, the winning rates of all methods were almost zero. For the sake of comparison, we can further
analyze based on the reward of the task, as shown in Figure 8. And, the reward results for VDN,
QTRAN, G2ANet, QMIX, and RoMIX were 13.79, 10.58, 13.27, 11.13, and 17.34, respectively. It is
obvious that RoMIX learns better cooperative strategies than other methods, although it was difficult
for all methods to achieve an ultimate win.

Figure 8. The reward of training on the 2c vs 64zg scenario.

Finally, for the 5m vs 6m scenario, when the training step size was 2 million, the results indicated
that QTRAN performs better than RoMIX. The winning rate in terms of training steps was higher than
that for VDN and QMIX, and the winning rates for VDN and QMIX tended to flatten or decrease.
Then, only considering QTRAN and RoMIX, when we extended the training steps to 4 million, the
winning rates for QTRAN and RoMIX were 56.25 and 68.75%, respectively. The results are shown in
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Figure 9. Therefore, we can clearly see that our RoMIX performs better than QTRAN and can learn
better joint strategies.

Figure 9. The win rate for the 5m vs 6m scenario with 4 million training steps.

4.2.3. Superhard scenarios

For superhard task scenarios, in the cases of the maps 6h vs 8z and 3s5z vs 3s6z, we set the size
of the replay bufferD to 3 × 103. For the Corridors map, we set the size ofD to 2.5 × 103. The above
settings and operations are due to the large number of agents in these three maps, as it was necessary to
consider the limitations of computing resources. To control the influence of variables, we applied the
same settings and operations for the other comparison methods; we obtained the experimental results
as shown in Figure 10 and Table 4.

By combining the table and the figure for analysis, we can clearly see that the winning rates for the
6h vs 8z and Corridor maps were significantly higher, which indicates that RoMIX has a significant
effect on the process of solving complex and difficult problems. In addition, RoMIX has fewer
requirements for the size of the replay buffer than other methods, which also indicates that RoMIX
can save computational resources. QMIX only learned effective strategies for the 6h vs 8z map and
achieved a winning rate of 48.96%, while QTRAN only learned effective strategies for the Corridor
map and achieved a winning rate of 22.40%. However, RoMIX learned effective strategies for both
maps and achieved winning rates of 55.21 and 68.75%, respectively, demonstrating stronger
generalization ability. It was difficult for the simple VDN method to learn effective cooperative
strategies on superhard tasks.

For the 3s5z vs 3s6z scenario, we also analyzed the task rewards because all methods have low
winning rates, as shown in Figure 11. The reward results for VDN, QTRAN, G2ANet, QMIX, and
RoMIX were 10.00, 13.61, 11.11, 13.56, and 15.82. By comparing the reward results, we can know
that, for complex problems, the performance of the simple VDN is similar to that of G2ANet, while
the performance levels of QMIX and QTRAN are similar; moreover, the joint strategies learned by
RoMIX are more effective.
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Table 4. Win percentages for superhard scenarios.

Scenario VDN QTRAN G2ANet QMIX RoMIX
6h vs 8z 1.04 0.00 0.00 48.96 55.21
Corridor 0.00 22.40 0.00 0.00 68.75
3s5z vs 3s6z 0.00 0.00 0.00 0.00 2.08

Figure 10. Win rates for superhard map scenarios.

Figure 11. The reward of training on the 3s5z vs 3s6z scenario.

4.2.4. Ablation study

To investigate whether different role sets will affect strategy learning, we selected one map from
each of the three different difficulty-level scenarios: 8m, 5m vs 6m, and 6h vs 8z. The experimental
settings for each map were the same as before. It is worth noting that the settings of RoMIX-r entailed
randomly selecting role sets, which caused it to be different from RoMIX but have the same number of
sets as RoMIX. In addition, we also included QMIX as a comparative method because QMIX can be
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seen as a special case in RoMIX when the number of sets is 1. The experimental results are shown in
Figure 12.

For the easy task of the 8m map, the winning rates for QMIX, RoMIX-r, and RoMIX were 96.67,
96.88, and 96.33%, respectively. It can be seen that the role selection has no effect on the learning
strategies. However, the impact is gradually amplified as the difficulty of the task increases. For the
superhard task 6h vs 8z, the winning rates were 48.96, 15.10, and 55.21%, respectively. It can be seen
that randomly selecting roles makes it almost impossible to learn effective strategies. In addition, for
the 6h vs 8z map, we suspect that the low winning rate was caused by the random initial set of roles,
as there were almost zero wins in two of the three independent experiments. The ablation study clearly
validates the impact of role integration on learning strategies and further demonstrates the effectiveness
of role selection.

Figure 12. Win rates for the ablation study.

5. Conclusions

This paper presented RoMIX, a MARL method based on value function factorization, which
combines role mechanisms for the end-to-end learning of decentralized policies in a centralized
setting. RoMIX utilizes action representation to indirectly decompose tasks, and it is combined with a
monotonicity constraint to allow for learning role-based joint action-value functions for a subtask. By
aggregating the subtasks of all roles, RoMIX learns a rich and effective joint action-value function.
Our specific domain for the task was StarCraft, and detailed experimental validations were provided
for its decentralized unit micromanagement tasks. The experimental results indicate that RoMIX can
not only solve easy scenarios, they also exhibit excellent performance on more complex and difficult
tasks. Moreover, it can also reduce storage resources to a certain extent.

In future work, we will focus on the current limitations and further research, particularly, automatic
role matching and role scalability problems. For role-based learning, how to match roles is a challenge.
And, to be practical, it is crucial to automatically learn an appropriate set of roles. In addition, the
StarCraft environment poses a serious challenge to adaptability and reliability due to its dynamism
and the diversity and complexity of agents. For our RoMIX, its fixed length mask causes it to lack
good scalability and flexibility. Therefore, future work will focus on seeking adaptive role set learning
methods to automate role construction, as well as combining attention mechanisms with other variable
length masks to further improve scalability. Finally, integrating RoMIX into practical multi-agent
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learning system applications with similar special fields is significant, such as drone swarm combat or
multi-sensor systems, as it will greatly improve the learning ability of cooperative strategies in complex
environments.
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