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Abstract: This study presented a glioma growth model that accounts for drug-sensitive and drug-
resistant cells in response to chemotherapy and anti-angiogenic therapy. Chemotherapy induces mu-
tations in drug-sensitive cells, leading to the emergence of drug-resistant cells and highlighting the
benefits of combined therapy. Anti-angiogenic therapy can mitigate mutations by inducing angiogenic
dormancy. We have identified two reproduction numbers associated with the non-cell and disease-free
states. Numerical sensitivity analysis has highlighted influential parameters that control glioma growth
dynamics, emphasizing the interactions between drug-sensitive and drug-resistant cells. To reduce
glioma endemicity among sensitive cases, it was recommended to decrease chemotherapy expendi-
ture, increase angiogenic dormancy, and adjust chemotherapy infusion rates. In addition, to combat
resistance to glioma endemicity, enhancing angiogenic dormancy is crucial.
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1. Introduction

Gliomas represents the most prevalent category of primary brain tumors, encompassing their ex-
ceptionally aggressive variant known as glioblastoma multiforme (GBM). This subtype constitutes
approximately 15% of all brain tumors [1]. Malignant gliomas are aggressive brain tumors known
for their rapid development of blood vessels (angiogenesis), which is essential for their growth in the
brain. These tumors exhibit a high level of proliferation of endothelial cells, a key feature in their clas-
sification according to the World Health Organization (WHO) classification system. This process of
angiogenesis, which involves complex interactions between tumor cells and blood vessel cells, plays a
critical role in the behavior of these tumors and the prognosis of patients [2].

Chemotherapy remains a potential approach for treating cancer despite these advances. Failures in
chemotherapy are associated with drug resistance. Drug resistance is now a major problem in the field
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of cancer. The long-term efficacy of drugs aimed at cancer patients is frequently inevitably constrained
by drug resistance. Thousands of efforts have been put toward reducing drug resistance and increasing
patient survival [3].

Chemotherapy combinations often include antiangiogenic treatment. Antiangiogenic treatment is
a technique used to treat cancer to obstruct the ability of blood vessels to carry nutrients and oxygen
to tumor cells while also halting the growth of new blood vessels. Vascular endothelial growth fac-
tor (VEGF), which is considered a primary promoter of angiogenesis, is the target of the majority of
licensed antiangiogenic drugs used to treat cancer [4, 5]. Because VEGF also exhibits immunosup-
pressive properties, which emphasizes a potential target for antiangiogenic therapy, these medications
can improve immunotherapy in addition to reducing angiogenesis. Given the high rate of endothelial
proliferation, increased vascular permeability, and the production of proangiogenic growth factors [6],
targeting blood vessels in brain tumors has become a very attractive method.

A relatively recent concept in cancer research is the idea of cancer dormancy, which is an additional
characteristic hallmark of cancer. Angiogenic and immunogenic dormancy processes are well known;
there is also a form of cellular dormancy that occurs within the tumor at the individual cell level. Before
angiogenesis undergoes changes, increased cell growth leads to a decrease in oxygen and nutrient levels
in areas far from blood vessels. This, in turn, causes cell death and establishes a balance between cancer
cell growth and cell death [7, 8]. Dormant tumor cells are quite common in the general population [9],
and those that persist after primary tumor treatment or removal often exhibit resistance to chemotherapy
[10, 11]. Predictions in the case of mathematical modeling are helpful to understand the extent of the
disease population, the effects of widespread disease, and how long the disease will last. The author
also performed a sensitivity analysis of the model to identify which parameters had an impact and to
interpret their biological significance. By analyzing the effect and extent of the spread of the disease
through a mathematical model, accurate predictions can be made regarding how the infection will
spread so that preventive and treatment measures can be taken against the spread of the disease in a
population.

2. Model description and analysis

This model is based on previous research by [12], incorporating two types of disease cells: Those
sensitive to drugs and those resistant to drugs. It is important to note that in this model, we considered
antiangiogenic therapy as a form of continuous treatment. Within this model, we also account for dor-
mancy occurring within cells, called angiogenic dormancy. This factor influences the balance between
cell proliferation and cell death.

These types include cells affected by the disease, namely the concentration of glioma-sensitive cells
(g2) and glioma-resistant cells (g3), with healthy cells among them, such as the concentration of glial
cells (g1), endothelial cells (g4), and neurons (g5), as well as the concentrations of chemotherapy (q)
and antiangiogenic agents (y). The parameters of the non-dimensionalized model used in the model
are shown in Table 1:
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Table 1. Parameter values.

Notation Parameters
p1 Rate of glial cell proliferation
p2 Rate of proliferation of sensitive glioma cells
p3 Rate of proliferation of resistant glioma cells
p4 Rate of endothelial cell proliferation
β1 Rate of competition among glial cells
β2, β3 Rate of competition among sensitive and resistant glioma cells
di0, i = 1, 2, 5 Rate of chemotherapy agent predation on gi without g4 and y
di1, i = 1, 2, 5 Rate of increase in predation on gi by chemotherapy agent per concentration of g4

di2, i = 1, 2, 5 Rate of increase in predation on gi by chemotherapy agent per concentration of y
d4 Rate of predation by anti-angiogenic agent on g4

ai, i = 1, 2, 4, 5 Holling type-II constant
τ Proportion of endothelial cells involved in tumor angiogenesis
u Tumor cell mutation rate
ρ Dormancy rate of angiogenic glioma cells
µ Rate of glioma cell formation caused by endothelial cells
α Rate of neuronal cell loss due to the influence of glial cells
ci, i = 1, 2, 4, 5 Rate of AK and AA combined with gi

ϕ Rate of chemotherapy drug infusion
δ Rate of anti-angiogenic drug infusion
ψ Rate of chemotherapy drug expenditure
γ Rate of anti-angiogenic drug expenditure

As per the reference [12], the non-dimensionalized model can be expressed as follows:

dg1

dt
= p1g1[1 − g1] − β1g1

[
g2 + g3

]
− d1 (g4, y)

g1q
a1 + g1

(2.1)

dg2

dt
= p2g2

[
1 −

g2 + g3

1 + τg4

]
− β2g1g2 − uF (q) g2 − ρF (y) g2 − d2 (g4, y)

g2q
a2 + g2

(2.2)

dg3

dt
= p3g3

[
1 −

g2 + g3

1 + τg4

]
− β3g1g3 + uF(q)g2 − ρF (y) g3 (2.3)

dg4

dt
= µ

[
g2 + g3

]
+ p4g4[1 − g4] − d4

g4y
a4 + g4

(2.4)

dg5

dt
= αġ1F (−ġ1) g5 − d5 (g4, y)

g5q
a5 + g5

(2.5)

dq
dt
= ϕ −

[
ψ + c1

g1

a1 + g1
+ c2

g2

a2 + g2
+ c5

g5

a5 + g5

]
q (2.6)

dy
dt
= δ −

[
γ + c4

g4

a4 + g4

]
y (2.7)

with

di(g4, y) = di0 + di1g4 + di2y, i = 1, 2, 5
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and initial values gi ≥ 0, i = 1, ..., 5 q ≥ 0, y ≥ 0 for t = 0 and F(x) is a function defined as

F(x) =

0, x ≤ 0
1, x > 0.

(2.8)

2.1. Basic reproduction number

In this subsection, we calculate the basic reproduction numbers for a model involving a disease
with drug-sensitive and drug-resistant strains. The basic reproduction number (R0) measures the rate
of spread of a tumor. If R0 is greater than one, it suggests that the number of affected cells, which
encompasses both drug-sensitive and drug-resistant cases, will increase, implying the persistence of
the affected cells. On the other hand, if is less than one, it indicates that, on average, each tumor cell
produces fewer than one new cell and, therefore, therapy (administration of drugs) has the potential
to eradicate the tumor. In this model, at each time step, a tumor cell gives rise to offspring or dies,
serving as a parameter that determines whether the tumor will continue growing or will be suppressed
and eventually eliminated by therapy [13, 14]. In our analysis, we employ the next-generation matrix
technique to estimate the basic reproduction numbers for our system, which encompasses both drug-
sensitive and drug-resistant forms of the disease [15].

The simplified model considers two disease states: Drug-sensitive (g2) and drug-resistant (g3) states,
along with five non-disease states: Glial cell (g1), endothelial cells (g4), and neurons (g5), as well as
chemotherapy agent (q) and antiangiogenic agent (y). According to [12], to determine the glioma-free
equilibrium point, we evaluate the system of Eqs (2.1)–(2.7) when g2 = g3 = 0. The first glioma-free
equilibrium point is E0 = (0, 0, 0, 0, 0, q, y), which represents the non-cell state. Therefore, from Eqs
(2.6) and (2.7), in the absence of glioma, we have q = ϕ

ψ
and y = δ

γ
.

When we linearize the system around this first glioma-free equilibrium, we discover that the Eqs
(2.2) and (2.3) govern the dynamics of and create a closed system, resulting in a linearized sub-model
for the disease dynamics involving both drug-sensitive and drug-resistant strains. Let x represent the
disease compartments and y represent the non-disease compartments, so it can be written as follows,

x =
(

g2(t)
g3(t)

)
and

y =


g1(t)
g4(t)
g5(t)
q(t)
y(t)


so that ẋ = F (x, y) − ν(x, y) where

ẋ =
 p2g2

[
1 − g2+g3

1+τg4

]
− β2g1g2 − uF (q) g2 − ρF(y)g2 − d2 (g4, y) g2q

a2+g2

p3g3

[
1 − g2+g3

1+τg4

]
− β3g1g3 + uF(q)g2 − ρF(y)g3


=

 p2g2

[
1 − g2+g3

1+τg4

]
p3g3

[
1 − g2+g3

1+τg4

]
+ uF(q)g2

 − (
β2g1g2 + uF (q) g2 + ρF(y)g2 + d2 (g4, y) g2q

a2+g2

β3g1g3 + ρF(y)g3

)
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=

(
F1(x, y)
F2(x, y)

)
−

(
ν1(x, y)
ν2(x, y)

)
= F (x, y) − ν(x, y). (2.9)

The matrix F contains the transmission component of x (i.e., the arrival of susceptible individuals
into the disease compartments g2 and g3) and the matrix ν contains transitions between, and out of the
disease states (i.e., mutation, dormancy and death), then ẏ = s(x, y) is as follows:

ẏ =



p1g1[1 − g1] − β1g1
[
g2 + g3

]
− d1 (g4, y) g1q

a1+g1

µ
[
g2 + g3

]
+ p4g4[1 − g4] − d4

g4y
a4+g4

αġ1F (−ġ1) g5 − d5 (g4, y) g5q
a5+g5

ϕ −
[
ψ + c1

g1
a1+g1
+ c2

g2
a2+g2
+ c5

g5
a5+g5

]
q

δ −
[
γ + c4

g4
a4+g4

]
y



=


s1(x, y)
s2(x, y)
s3(x, y)
s4(x, y)
s5(x, y)


= s(x, y). (2.10)

Before calculating the basic reproduction number using the next-generation matrix, several assump-
tions need to be met, as follows:

1) Based on F (x, y) and v(x, y) in Eq (2.9), it is obtained that F (0, y) = 0 and v(0, y) = 0 for every
y ≥ 0.

2) Based on Eq (2.10), the disease-free system ẏ = s(0, y) has a stable asymptotic equilibrium point.
The disease-free population in the system (2.1)–(2.7) is g1, g4, g5, q, and y, so from Eq (2.10), we
have:

s(0, y) =



p1g1[1 − g1] − d1 (g4, y) g1q
a1+g1

p4g4[1 − g4] − d4
g4y

a4+g4

αġ1F (−ġ1) g5 − d5 (g4, y) g5q
a5+g5

ϕ −
[
ψ + c1

g1
a1+g1
+ c5

g5
a5+g5

]
q

δ −
[
γ + c4

g4
a4+g4

]
y


.

The first equilibrium point for glioma from system ẏ = s(0, y) is (0, 0, 0, ϕ
ψ
, δ
γ
). The Jacobian matrix

of the system s(0, y) at the point (0, 0, 0, ϕ
ψ
, δ
γ
) is as follows:

D f (s(0, y)) =



p1 −
(
d12

δ
γ
+ d10

)
ϕ

ψa1
0 0 0 0

0 p4 −
d4δ
γa4

0 0 0
0 0 0 0 0
−

c1ϕ

ψa1
0 −

c5ϕ

a5ψ
−ψ 0

0 −
c4δ
γa4

0 0 −γ


.
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Next, we calculate the eigenvalues of the matrix D f (s(0, y)) as follows:

|D f (s(0, y)) − λI| = 0∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 −
(
d12

δ
γ
+ d10

)
ϕ

ψa1
− λ 0 0 0 0

0 p4 −
d4δ
γa4
− λ 0 0 0

0 0 −λ 0 0
−

c1ϕ

ψa1
0 −

c5ϕ

a5ψ
−ψ − λ 0

0 −
c4δ
γa4

0 0 −γ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The eigenvalues obtained are λ1 = p1 −
(
d12

δ
γ
+ d10

)
ϕ

ψa1
, λ2 = p4 −

d4δ
γa4

, λ3 = 0, λ4 = −ψ, and
λ5 = −γ. Since ψ > 0 and γ > 0, we have λ4 < 0 and λ5 < 0. Furthermore, if ϕ > p1ψa1γ

(d10γ+d12δ)
,

then p1 −
(
d12

δ
γ
+ d10

)
ϕ

ψa1
< 0, and we obtain λ1 < 0. Similarly, if δ > p4γa4δ

d4
, then p4 −

d4
γa4

< 0,
and we obtain λ2 < 0. Therefore, as for all λi < 0 for i = 1, 2, 3, 4, 5, the equilibrium point of the
disease-free system is asymptotically stable.

3) The values of F (x, y) ≥ 0 for every x, y ≥ 0.

4) If x = 0, then v(x, y) ≤ 0.

5) Based on the matrix v(x, y), it is obtained that
2∑

i=1

vi(x, y) = β2g1g2 + uF (q) g2 + ρF(y)g2 + d2 (g4, y)
g2q

a2 + g2
+ β3g1g3 + ρF(y)g3 ≥ 0

so that
∑2

i=1 vi(x, y) ≥ 0 for every x, y ≥ 0.

The system (2.1)–(2.7) satisfies the five assumptions of the next-generation matrix. Therefore, to
calculate the basic reproduction number, the next-generation matrix method can be used. Next, we will
determine the matrix F, which is the Jacobian matrix of the matrix F at the disease-free equilibrium
point, and then the matrix V will be the Jacobian matrix of the matrix v at the first equilibrium point of
glioma. Here is the matrix F and V at the first glioma-free equilibrium point:

F =

(
p2 0
u p3

)
and V =

(
u + ρ + d22δ

γ
+

d20ϕ

ψa2
0

0 ρ

)
.

The next-generation matrix, M, is then given by [15]

M = FV−1 =

 p2γψa2
(a2(u+ρ)ψ+d20ϕ)γ+d22δϕ

0
u
ρ

p3
ρ

 .
The eigenvalues of M obtained are λ1 =

p2γψa2
(a2(u+ρ)ψ+d20ϕ)γ+d22δϕ

and λ2 =
p3
ρ

. The principal eigenvalues of
matrix M serve as the fundamental reproduction rates for both the drug-susceptible and drug-resistant
glioma. They represent the average number of new infections generated by a single infected individual
from each strain. The lower triangular structure of M allows an immediate extraction of the fundamen-
tal reproduction rates for the drug-susceptible and drug-resistant glioma, respectively, as follows:

R0A =
p2γψa2

(a2(u + ρ)ψ + d20ϕ)γ + d22δϕ
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and
R0B =

p3

ρ

so that
R01 = max {R0A,R0B} .

At R01, we choose either R0A or R0B by taking the maximum between them.
Analogously to the steps in the first reproduction number, we obtain the second reproduction num-

ber associated with the disease-free state E1 = (gb
1, 0, 0, g

b
4, 0, q

b, yb). Therefore, we have the second
reproduction number

R0C =
a2 p2

(β2gb
1 + ρ + u)a2 + d2(gb

4, y
b)qb

and R0D =
p3

β3gb
1 + ρ

so that
R02 = max {R0C,R0D} .

At R02, we choose either R0C or R0D by taking the maximum between them. Interestingly we find that
the basic reproduction numbers g2 and g3 are both independent of the amplification rate ρ [16].

2.2. System properties

2.2.1. Existence equilibria

Equations (2.1)–(2.7) indicate the existence of a glioma-free equilibrium, E0, as shown in [12].

E0 = (0, 0, 0, 0, 0,
ϕ

ψ
,
δ

γ
).

It is also clear that there exists a second glioma-free equilibrium, denoted as E1, which is always
present and defined as E1 = (gb

1, 0, 0, g
b
4, 0, q

b, yb).

gb
4 =

(−γa4 + γ + c4) +
√

(γa4 − γ − c4)2
− 4 (γ + c4)

[
δ (d4) /p4 − a4γ

]
2 (γ + c4)

yb =
δ[a4 + gb

4]

a4γ + c4gb
4 + gb

4γ

gb
1 =

(ψ + c1 − ψa1) +
[
(−ψ − c1 + ψa1)

]2
− 4 (ψ + c1)

[
d1

(
gb

4, y
b
)
ϕ/p1 − ψa1

]1/2

2 (ψ + c1)

qb =
p1[1 − gb

1][a1 + gb
1]

d10 + d11gb
4 + d12yb

.

For the existence of the equilibriua E1 note that if δ (d4) < a4γp4, then −γa3+γ+c4 < (γa4 − γ − c4)2
−

4 (γ + c4)
[
δ (d4) /p4 − a4γ

]
. Therefore, if ϕ/ψ < p1a1/(d10 + d11gb

4 + d12yb), gb
1 > 0 always exists, as

well as for qb.
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Furthermore, from Eqs (2.1)–(2.7) we can also derive the existence of a mono-existent endemic
equilibrium, denoted as E2, where the drug-resistant strain persists while the drug-susceptible strain
decreases E2 = (0, 0, gr

3, g
r
42, 0, q

r, yr), where

gr
3 =

(gr
42τ + 1) (R0B − 1)

R0B
(2.11)

qr =
ϕ

ψ

yr =
δ(a4 + gr

42)
γ(a4 + gr

42) + c4gr
42
,

and gr
42 is a real positive solution of the following equation: l1g3

4 + l2g2
4 + l3g4 + l4 = 0, where li, for

i = 1, 2, 3, 4, are defined as follows:

l1 = 1

l2 =
((−µτ + (a4 − 1)p4)p3 + µρτ)

p3 p4

l3 =
(((−a4τ − 1)µ + d4y − a4 p4)p3 + ρµ(a4τ + 1))

p3 p4

l4 =
a4µ(ρ − p3)

p3 p4
.

When we examine Eq (2.11), we can observe that the mono-existence of the endemic equilibrium exists
if and only if R0B ≥ 1, 3l3 < l2

2, q2

4 > − p3

27 , 2l3
2 + 27l4 < 9l2l3 and l2 < 0.

2.3. Stability analysis

In this subsection, the stability of each equilibrium point of the system (2.1)–(2.7) will be analyzed
through linearization. The following results are established:

Lemma 1. If R01 = max[R0A,R0B] < 1, ϕ > p1ψa1γ

(d10+d12δ)
, δ > p4γa4

d4
the non-cell equilibrium E0 =

(0, 0, 0, 0, 0, ϕ
φ
, δ
γ
) is locally asymtotically stable: If, however, R01 = max[R0A,R0B] > 1, at least one

of the eigenvalues has a positive real part, rendering E0 unstable.

Proof. We consider the Jacobian of the system (2.1)–(2.7) at the first glioma-free equilibrium point,
E0, which reduces to which is given by DfE0. By symbolizing each component of the Jacobian matrix
with mi j, where i represents the row index and j represents the column index, we obtain

DfE0 =



m11 0 0 0 0 0 0
0 m22 0 0 0 0 0
0 u m33 0 0 0 0
0 µ µ m44 0 0 0
0 0 0 0 m55 0 0
−

c1ϕ

ψa1
−

c2ϕ

ψa2
0 0 −

c5ϕ

ψa5
m66 0

0 0 0 −
c4δ
γa4

0 0 m77


.
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The structure of DfE0 allows us to immediately read off the seven eigenvalues, λi, as

λ1 = p1 −
(d12δ/γ+d10)ϕ

ψa1
, λ2 =

(a2(u+ρ)ψ+d20ϕ)γ+d22δϕ

γa2ψ
(R0A − 1), λ3 = ρ(R0B − 1),

λ4 = p4 −
d4δ
γa4
, λ5 = −

(d52δ/γ+d50)ϕ
ψa5

, λ6 = −ψ, λ7 = −γ. (2.12)

It can be readily confirmed that for R0A < 1, R0B < 1, ϕ > p1ψa1γ

(d10+d12δ)
, and δ > p4γa4

d4
all eigenvalues

have negative real parts. Consequently, the equilibrium of the non-cell E0 in the system (2.1)–(2.7) is
locally asymptotically stable under these conditions. However, if R0A > 1 or R0B > 1, at least one of
the seven eigenvalues has a positive real part, making E0 unstable.

Lemma 2. If R02 = max[R0C,R0D] < 1, i1 > 0, i1i2 > i3, i1i2i3 > i2
3 + i2

1i4 the first glioma-free
equilibrium is locally asymptotically stable: If, however, R02 = max[R0C,R0D] > 1, at least one of the
eigenvalues has a positive real part, making E1 unstable.

Proof. We consider the Jacobian of the system (2.1)–(2.7) at the glioma-free equilibrium point, E1,
which reduces to which is given by DfE1. By symbolizing each component of the matrix with ei j,
where i represents the row index and j represents the column index, we obtain

DfE1 =



e11 e12 e13 e14 0 e16 e17

0 e22 0 0 0 0 0
0 e32 e33 0 0 0 0
0 e42 e43 e44 0 0 e47

0 0 0 0 e55 0 0
e61 e62 0 0 e65 e66 0
0 0 0 e74 0 0 e77


.

The structure of DfE1 allows us to immediately read off the first to third eigenvalues,

λ1 = β2gb
1 + ρ + u +

d2(gb
4, y

b)qb

a2
(R0C − 1), λ2 = β3gb

1 + ρ(R0D − 1), λ3 = −
d5(gb

4, y
b)qb

a5
,

then we find λ4, λ5, λ6, λ7 from the roots of the following equation

i0λ
4 + i1λ

3 + i2λ
2 + i3λ + i4 = 0

with

i0 = 1,
i1 = −(e11 + e66 + e44 + e77),
i2 = (e66 + e44 + e77)e11 + (e44 + e77)e66 + e44e77 − e74e47,

i3 = ((−e44 − e77)e66 − e44e77 + e74e47)e11 − e66(e44e77 − e74e47),
i4 = e66(e44e77 − e74e47)e11 − e61e44e77e16.

For local stability, we must ensure that the Routh-Hurwitz criteria is satisfied; it will be negative if
i1 > 0, i1i2 > i3, i1i2i3 > i2

3 + i2
1i4. It can be easily confirmed that for R0C < 1, R0D < 1, all eigenvalues

have negative real parts. Consequently, the second glioma-free equilibrium E1 in the system (2.1)–(2.7)
is locally asymptotically stable under these conditions. However, if R0C > 1 or R0D > 1, at least one of
the seven eigenvalues has a positive real part, rendering E1 unstable.
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Lemma 3. Given the values of s2, B, and P in Eqs (2.15), (2.19), and (2.20), if R0B > max[1,R0A],
p1 < β1gr

3 +
(d11gr

4+d12yr+d10)qr

a1
, P

3 6√2
<

2√3B
3P +

s2
3 and P

6 3√2
+ s2

3 >
3√2B
6P , then the equilibrium point E2 =

(0, 0, gr
3, g

r
4, 0, q

r, yr) is asymptotically stable.

Proof. We consider the Jacobian of the system (2.1)–(2.7) at the glioma-free equilibrium point, E2,
which reduces to which is given by DfE2. By symbolizing each component of the Jacobian matrix
with oi j, where i represents the row index and j represents the column index, we obtain

DfE2 =



o11 0 0 0 0 0 0
0 o22 0 0 0 0 0

o31 o32 o33 o34 0 0 0
0 o42 o43 o44 0 0 o47

0 0 0 0 o55 0 0
o61 o62 0 0 o65 o66 0
0 0 0 o74 0 0 o77.


. (2.13)

The structure of DfE2 allows us to immediately read off the first to fourth eigenvalues,

λ1 = p1 − β1gr
3 −

(d11gr
4 + d12yr + d10)qr

a1

λ2 =

(
1 −

d21gr
4 p3ϕ

p2ρψa2

)
(R0A − R0B)

λ3 = −
(d51gr

4 + d52yr + d50)qr

a5
λ4 = −ψ,

then we find λ5, λ6, λ7, λ8 from the roots of the following equation

s1λ
3 + s2λ

2 + s3λ + s4 = 0. (2.14)

with

s1 = 1
s2 = −o33

s3 = o47o74

s4 = −o33o47o74 − o34o43o77

Next, the roots of the characteristic equation (2.14) are obtained by following the steps of Cardano’s
formula, provided by [17] as follows:

λ5 =

3
√

A +
√

A2 + 4B3

3 3√2
−

3√2B

3
3√
A2 +

√
A2 + 4B3

−
s2

3
(2.15)

λ6 = −
(1 − i

√
3)

3
√

A +
√

A2 + 4B3

6 3√2
+

(1 + i
√

3) 3√2B

6
3
√

A +
√

A2 + 4B3

−
s2

3
(2.16)
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λ7 = −
(1 + i

√
3)

3
√

A +
√

A2 + 4B3

6 3√2
+

(1 − i
√

3) 3√2B

6
3
√

A +
√

A2 + 4B3

−
s2

3
(2.17)

where

A = 9s2s3 − 27s4 − 2s3
2 (2.18)

B = 3s3 − s2
2. (2.19)

Next, we will analyze the real part of these eigenvalues and the conditions under which the real part of
the eigenvalues is negative. Let

P =
3
√

A +
√

A2 + 4B3. (2.20)

The condition for P to be real is that A2 ≥ B then we obtain:

λ5 =
P

3 3√2
−

3√2B
3P
−

s2

3
(2.21)

λ6 = −
(1 − i

√
3)P

6 3√2
+

(1 + i
√

3) 3√2B
6P

−
s2

3
(2.22)

= −
P

6 3√2
+

3√2B
6P
−

s2

3
+

i
√

3
6

 P
3√2
+

3√2B
P

 (2.23)

λ7 = −
(1 + i

√
3)P

6 3√2
+

(1 − i
√

3) 3√2B
6P

−
s2

3
(2.24)

= −
P

6 3√2
+

3√2B
6P
−

s2

3
−

i
√

3
6

 P
3√2
+

3√2B
P

 . (2.25)

The condition for λ5 < 0 is P
3 6√2

<
2√3B
3P +

s2
3 , and the condition for Re(λ6,7) < 0 is P

6 3√2
+ s2

3 >
3√2B
6P .

Since the real part of all eigenvalues λi is negative for each i = 1, 2, 3, 4, 5, 6, 7, the equilibrium
point E2 = (0, 0, gr

3, g
r
4, 0, q

r, yr) is asymptotically stable.

3. Analysis of parameter sensitivity

Sensitivity analysis is performed to guide the parameters that contribute the most to cancer treatment
efficacy. In this study, a normalization index method [18] will be employed to indicate which treatment
parameters contribute the most to cancer eradication. The analysis is focused on parameters related
to the basic reproduction number. A sensitivity analysis of this model is conducted to determine the
impact of changes in parameter values on the values of the basic reproduction number. We focus on
sensitivity analysis regarding the second reproduction number R02, specifically the glioma-free state.
If the data were available, we could use ordinary least squares and its extension [30] to estimate the
parameters. However, if the data were affected by uncertainties, the parameters could still be estimated
using a fuzzy approach; see, e.g., [31–33] for a more detailed method. In this paper, however, we will
only use predefined parameter values, as given in Table 2. The results of the sensitivity analysis for a
parameter are as follows.
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Table 2. Parameters of the non-dimensionalization model.

Parameter Value Description Reference

p1 0.0068 p1 < p2 [19]

p2 0.012 - [20]

p3 0.002; 0.006 - [21]

p4 0.002 p4 < p1 [22]

β1 1.8 × 10−2 - [19]

β2, β3 1.8 × 10−3 β2, β3 < β1 [19]

ai, i = 1, 2, 4, 5 1 - [21]

τ 0.15 τ < 1 [19]

µ 0.004 µ > p4 [23]

c1 0.0002 - [19]

c2 0.032 c2 ≫ c1 [19]

c4 0.032 c4 ≥ c2 [24]

c5 0.0012 c5 ≥ c1 Assumption

u 0 − 1 - [21]

ρ 0 − 1 - [25]

α 0 − 10 - [19]

d10 4.7 × 10−8 - [19]

d20 7.8 × 10−2 d20 ≫ d10 [26]

d50 4.7 × 10−3 d20 > d50 ≫ d10 Assumption

d4 0.71 d3 > d20 [19]

d11 4.0 × 10−8 d11 < d10 [19]

d21 4.0 × 10−2 d21 > d11 [19]

d51 4.0 × 10−3 d21 > d51 > d11 Assumption

d12 3.9 × 10−8 d12 < d10 [19]

d22 7.5 d22 > d12 [19]

d52 3.9 × 10−3 d22 > d52 > d12 Assumption

ϕ 3.3 × 10−3 - [27]

ψ 0.01813 - [28]

δ 2.4 × 10−4 ϕ = 14δ [27]

γ 0.136 γ = 7.5ψ [29]
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Table 3. Sensitivity index value R0C.

Parameter Sensitivity value
ψ 0.61836
ϕ −0.62177
ρ −0.2954

From Table 3, it is evident that the parameter with a positive sensitivity index is ψ. This indicates
that if ψ is increased while keeping the other parameters constant, it will increase the value of R0C and,
consequently, increase the endemicity of tumor cells from glioma. On the other hand, the parameters ϕ
and ρ have negative values of the sensitivity index, meaning that if ϕ or ρ increases while keeping the
other parameters constant, it will decrease the value of R0C and consequently reduce the endemicity of
glioma tumor cells.

Table 4. Sensitivity index value R0D.

Parameter Sensitivity value
ρ −0.84746
ϕ 1.486 × 10−7

ψ −1.478 × 10−7

From Table 4, it is evident that the sensitivity indices with positive values are associated with the
parameters ϕ . This indicates that if one of the parameters of ϕ is increased while keeping the other
constant, it will increase the value of R0D and, consequently, increase the endemicity of tumor cells
from gliomas. On the other hand, the parameters ρ and ψ have negative sensitivity indices. This means
that if one of the parameters of is increased while keeping the others constant, it will decrease the value
of R0D and, consequently, reduce the endemicity of glioma tumor cells.

(a) (b)

Figure 1. Sensitivity analysis (a) R0C vs ρ and (b) R0D vs ρ.

In Figure 1, the sensitivity analysis indicates that the sensitivity index of the parameter ρ to R0C
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is -0.2954. This means that an increase in 10% of the parameter ρ while keeping other parameters
constant will result in a decrease of 2.954% in R0C. On the contrary, a 10% decrease in ρ will lead to
a 2.954% increase in R0C. The analysis of sensitivity indicates that the ρ parameter has a sensitivity
index of -0.84746 in relation to R0D. This suggests that if the parameter ρ is increased by 10%, the
value of R0D will decrease by 8. 4746%. Conversely, if ρ is decreased by 10%, the value of R0D will
increase by 8. 4746%.

(a) (b)

Figure 2. Sensitivity analysis (a) R0C vs ψ and (b) R0D vs ψ.

In Figure 2, the sensitivity analysis results reveal that the sensitivity index of the parameter ψ to R0C

is 0.61836. This means that if the parameter ψ increases by 10%, the value of R0C also increases by
6.1836%. Conversely, if the parameter ψ decreases by 10%, the value of R0C decreases by 6.1836%.
According to the sensitivity analysis findings, the sensitivity index of the parameter ψ to R0D is approx-
imately −1.478 × 10−7. In simpler terms, if the parameter ψ is increased by 10%, the value of R0D will
decrease by approximately 1.478 × 10−7%. Conversely, if the parameter ψ is decreased by 10%, the
value of R0D will increase by approximately 1.478 × 10−7%.

The sensitivity analysis results, as depicted in Figure 3, reveals the sensitivity index of the parameter
ϕ to R0C, which is calculated at -0.62177. This means that if the parameter ϕ increases by 10%, the
value of R0C will decrease by 6.2177%. Conversely, a 10% decrease in ϕ will result in a 6.2177%
increase in the value of R0C. Furthermore, the sensitivity analysis findings indicate a sensitivity index of
1.486×10−7 for the parameter ϕ to R0D. In simpler terms, a 10% increase in ϕwill lead to 14.86×10−7%
increase in the value of R0D, while a 10% decrease in ϕ will correspondingly reduce the value of R0D.

From the general sensitivity analysis, it becomes evident that the chemotherapy infusion rate (ϕ)
and the angiogenic dormancy rate (ρ) exert the most significant influence on the fundamental repro-
duction number R0C. This implies that higher values of ϕ and ρ will lead to a decrease in R0C, thereby
inhibiting the spread of tumor cells in gliomas. Similarly, among the nine parameters affecting R0D, the
chemotherapy infusion rate (ϕ) and the angiogenic dormancy rate (ρ) are the most impactful. Notably,
these impacts are in opposite directions. Increasing ϕ will result in the expansion of R0D, leading to a
wider tumor spread. Conversely, raising ρ will cause a decrease in R0D, thereby restricting the spread
of glioma tumors.
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(a) (b)

Figure 3. Sensitivity analysis (a) R0C vs ϕ and (b) R0D vs ϕ.

4. Results and discussion

In brief, this study unveiled a comprehensive model for glioma progression, emphasizing the effi-
cacy of combination therapy and the role of antiangiogenic measures. Key parameters, particularly the
chemotherapy infusion rate (ϕ) and the angiogenic dormancy rate (ρ), significantly influence glioma
proliferation. Sensitivity analysis identified ϕ and ρ as crucial in decelerating glioma growth, shed-
ding light on the interplay between drug-sensitive and drug-resistant cells. This insight was pivotal
for refining treatment strategies and curbing disease progression. The significance of this study lies
in optimizing therapeutic interventions through sensitivity analysis, providing valuable insights into
glioma development and treatment effectiveness. Explaining these dynamics will contribute to advanc-
ing treatments for patients with glioma and propelling ongoing research in this field.
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