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Abstract: In order to effectively control and predict the settlement deformation of the surrounding 
ground surface caused by deep foundation excavation, the deep foundation pit project of Baoding City 
Automobile Technology Industrial Park is explored as an example. The initial population approach of 
the whale algorithm (WOA) is optimized using Cubic mapping, while the weights of the shrinkage 
envelope mechanism are adjusted to avoid the algorithm falling into local minima, the improved whale 
algorithm (IWOA) is proposed. Meanwhile, 10 benchmark test functions are selected to simulate the 
performance of IWOA, and the advantages of IWOA in learning efficiency and convergence speed are 
verified. The IWOA-LSTM deep foundation excavation deformation prediction model is established 
by optimizing the input weights and hidden layer thresholds in the deep long short-term memory 
(LSTM) neural network using the improved whale algorithm. The IWOA-LSTM prediction model is 
compared with LSTM, WOA-optimized LSTM (WOA-LSTM) and traditional machine learning, the 
results show that the final prediction score of the IWOA-LSTM prediction model is higher than the 
score of other models, and the prediction accuracy is better than that of traditional machine learning. 

Keywords: deep foundation pit; deep learning; whale optimization algorithm; numerical simulation; 
short and long term memory; settlement prediction 
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1. Introduction  

Presently, above-ground resources can no longer meet people’s needs, and urban construction 
has gradually shifted to underground development [1]. As a result, the size and depth of foundation 
pits have grown in recent years [2], the risk of foundation pit excavation construction also rises 
gradually [3]. Therefore, it is the main task at present to control and predict the settlement deformation 
during the excavation of deep foundation pits to provide reference for construction, so as to effectively 
ensure construction safety [4]. 

With the rapid rise of intelligent algorithms [5], many data processing methods have achieved 
better applications in foundation pit deformation prediction [6]. Among them, the representative ones 
are neural network model, gray model, support vector machine model (SVM), etc. Meng Guo [7] et al. 
used BP neural network rolling prediction method for the horizontal displacement of the enclosure 
structure, which is more suitable for practical engineering. Zhang Zhenghu [8] et al. combined the gray 
model with the time series analysis method to extract the trend terms of slope displacements using the 
improved GM(1,1) to transform the non-smooth time series into smooth time series for ARMA or AR 
time series analysis. Zhou Y [9] et al. substituted the data and risk levels of different monitoring items 
into the random forest model to obtain the relationship between foundation pit monitoring values and 
safety risks. Su W [10] et al. proposed the method of SVM model to determine the risk level to assess 
the risk during the construction of foundation pits. These data mining methods have achieved some 
results, but they also have limitations. For example, BP neural network is an optimization method for 
local search, but the problem it wants to solve is to solve the global extrema of complex functions, 
and the algorithm has the problem of falling into local extremums, making training failure; support 
vector machine model has better prediction effect, but it is prone to the problem of difficult 
parameter selection. 

Based on this, Hinton [11] proposed a deep learning approach. Compared to traditional machine 
learning, it has strong learning ability, feature extraction does not rely on manual, can map arbitrary 
functions, and can solve very complex problems. RNN (recurrent neural network) is a kind of deep 
learning, which can effectively deal with sequence data, but there is a serious short-term memory 
problem. LSTM is improved based on RNN, which can effectively retain for long-term information 
and solve the long sequence training. There are problems with vanishing gradients and gradient 
explosions during this process. Hong Yuchao [12] et al. used a combined CNN-LSTM neural network 
to predict the ground surface, and proved that this neural network with integrated consideration of 
spatio-temporal characteristics is more accurate than a single LSTM neural network in predicting 
results. Zhang Zhenkun [13] et al. exploited the multi-head attention mechanism combined with 
LSTM to make dynamic prediction of landslide, the results showed that the prediction accuracy 
was greatly improved. 

WOA [14] mimics the social behavior of whales. The algorithm employs a bubble net search 
strategy. It has the advantages of less parameter setting, better search ability and simple mechanism 
compared with traditional methods. Although using WOA to tune the input weights and hidden layer 
thresholds of LSTM can make the model accuracy improve [15], however, there is still a problem that 
the algorithm is prone to fall into the local minimum value and the convergence speed is slow [16]. 

In view of the above problems, this paper proposes a new method to optimize LSTM based on 
IWOA. This method uses Cubic mapping to optimize the initial selection method of whale algorithm 
to improve the optimization-seeking efficiency, while adjusting the weights of the shrinkage envelope 
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mechanism to avoid the algorithm falling into local minima points, optimizes input weights and hidden 
layer thresholds in the depth-length short-term memory neural network using the IWOA to establish 
the IWOA-LSTM deep foundation excavation deformation prediction model. 

2. Background 

The study was based on the pipe jacking work well for the drainage project of Yong Hua Street 
(South Second Ring Road - Tai Hang Road) of the Great Wall Automobile Technology Industrial Park 
municipal road construction project located in Baoding City. The excavation depth of the pit reached 
10.38 m, and the perimeter of the pit was about 80 m. The slope was made of 80-thick C20 shotcrete 
surface layer with 16 mm diameter reinforcement, and the length of the reinforcement was 1.2 m. As 
shown in Figure 1. The site of the foundation pit is shown in Figure 2. 

 

Figure 1. Foundation pit support section. 

 

Figure 2. Site plan of foundation pit. 

The soil parameters obtained according to the geological survey report provided by the 

construction unit are shown in Table 1. 
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Table 1. Parameters of soil layer. 

Soil layer Thickness/

m 

Volumetric 

weight/

（kN·m-

Cohesion

/kPa 

Angle of 

internal 

friction/

Natural 

moisture 

content/% 

Natural 

porosity 

ratio/% 

Liquid 

moisture 

limit/% 

Plastic limit 

water 

content/% 

Vegetative fill 0.30～1.00 18.8 17.5 22.9 19.6 0.641 27.3 17.7 

Powdered earth 2.40～7.40 19.3 18.4 21.9 18.2 0.691 27.1 17.5 

Powdery clay 0.80～1.90 19.4 16.1 21.9 19.6 0.718 27.5 17.9 

Powdered earth 1.00～2.50 19.6 19.4 21.7 18.6 0.691 27.4 17.4 

Fine Sand 2.00～7.80 19.5 17.2 21.1 17.5 0.705 27.2 17.5 

The project monitored the settlement of the surrounding buildings, the surrounding surface 
settlement, the deep horizontal displacement and the slope earth pressure from the beginning to the 
completion of the construction, and the monitoring point arrangement is shown in Figure 3. The surface 
settlement curve is shown in Figure 4. 

 

Figure 3. Monitoring point plan layout. 
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Figure 4. Surface settlement curve. 

As can be seen from Figure 4, the settlement of DB-1, DB-2, DB-3 and DB-4 monitoring points 
generally increases with the increase of excavation depth. In addition, the settlement rate is relatively 
high at the initial stage of excavation, and the settlement is basically stable until the excavation reaches 
the bottom of the pit and a period of time thereafter. In this monitoring, the maximum settlement value 
of the surface monitoring point is DB-4, reaching about 3.74 mm, and the minimum settlement value 
is DB-3. The reason is that the DB-4 point is close to the construction foundation pit, which is greatly 
affected. At the same time, it can be seen that the surface settlement curve has an obvious inflection 
point after the foundation pit anchor is applied on the 18th day of construction, indicating that the 
surface settlement is affected by the foundation pit support. 

3. Research methods 

3.1. Deep long and short term memory neural network 

The LSTM was proposed by Hochrieter [17], it was proposed and also improved, and the network 
basic unit is shown in Figure 5 [18]. 

 

Figure 5. LSTM neural network basic unit. 
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After continuous improvement, the current LSTM calculation method is as follows: 

                        1t ox t oh t oo W x W h b                         (1) 

                         1t fx t fh t ff W x W h b   
                     (2) 

                          1t gx t gh t gg W x W h b   
                     (3) 

                           1t i x t ih t ii W x W h b                         (4) 

1t t t t tS g i S f                    
       (5) 

    t t th S o                            (6) 

where, tf , ti , tg , to , th and tS  are respectively the states of forgetting gate, input gate, input node, 

output gate, intermediate output and state unit; fxW , fhW , ixW , ihW , gxW , ghW , oxW  and ohW  are the matrix 

weights of the corresponding gate multiplied by the input and intermediate output, respectively; fb ,

ib , gb , ob are the corresponding weight coefficient matrix.  means multiplying the elements of a 

vector by bits;   indicates the change of sigmoid function;   is the change in the tanh function. 

3.2. The whale optimization algorithm 

Whales are considered to be the largest mammals on Earth and can think, choose and 
cooperate [14]. However, what is most remarkable is their hunting technique. Humpback whales 
create special bubbles along the spiraling circle to complete their hunting, and eventually surround the 
fish on the surface of the ocean in an optimal way to catch prey [19]. WOA is an intelligent 
optimization algorithm that simulates this special hunting method. This predation can be described as 
three periods: surround the prey, bubble net predation and hunt for prey [20]. 

1) Surround the prey 
The position of the candidate solution in this stage,  1X t 


, is determined by the following formula: 

                                                                   .D C X X t 
  

                                                                  (7) 

                                    1 .X t X t A D  
  

                              
(8) 

where,  X t


 is the current position,  X t


 is the best candidate solution in the current iteration, 

and t  is the number of iterations. A


 and C


 is determined by the following formula: 

                                 2 .A a r a 
   

                                   (9) 

                                    2.C r
 

                                    (10) 
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where, r


is a random vector in  0,1 , and a


is a parameter decreasing from 2 to 0 as the number of 

iterations increases, defined as 

2 2 /a t T                                  (11) 

T  is the maximum number of iterations 
2) Hunt for prey 
In the stage of searching prey, when A  meets 1A  , whales update their positions according to 

each other’s positions. so that the algorithm acquires a certain amount of global optimality-seeking 
capability. The location is determined by the following equation: 

                                                                 . randD C X X t 
  

                                                            (12) 

                                  
   1 .randX t X t A D  

  
                           

(13) 

where,  randX t


 represents the position vector of randomly selected whales in the population. 
3) Bubble net predation 
During a bubble net attack, humpbacks use two strategies simultaneously: narrowing the circle 

and spiraling, which shrinks the circle as the spiral travels. In the whale algorithm, the shrink surround 
mechanism is realized by reducing the a value in Eq (11). The spiral travel formula is as follows: 

                                1 '. .cos 2blX t D e l X t   
  

                       (14) 

where    'D X t X t 
  

 represents the distance between the whale and its prey, which is the distance 

between the ith candidate solution and the best solution in the current iteration. b  is the constant that 

defines the helix equation,  1,1l  . 
Whales shrink the encircling and swim along the spiral path toward the prey. In order to 

synchronize these two behaviors, WOA assumes that the probability of choosing spiral rotation and 
shrinking the encircling is 0.5 during the hunting process at this time, and the bubblenet predation 
model is expressed as 

                          

 
 

   
, 0.5

1
'. .cos 2 , 0.5bl

X t A D p
X t

D e l X t p





     
 

 


 
                     (15) 

3.3. Improved whale optimization algorithm 

Because the traditional WOA has the problems of easily falling into local minima, low efficiency 
of optimization and the problems of slow convergence speed, so using Cubic mapping mode of initial 
population of WOA algorithm is optimized to ensure the diversity of initial population, adjust the 
adaptive weight at the same time, avoid algorithm trapped in local minimum points, improve the whale 
algorithm (IWOA) [21]. Its expression is: 

                                 2
1 1n n nx x x                                       (16) 
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where  0,1nx  ,   are mapping factors. 

For the adaptive weights are adjusted as shown in the following equation. 

                                max
min max min

t

genw w w w mm e


                           (17) 

where mm  is the adjustment factor and max gen  is the number of iterations. 
Cubic mapping initial selection method, compared with the original selection method, IWOA has 

a more uniform initial position distribution, which ensures the diversity of the initial population and 
improves the defect that the algorithm is easy to fall into local extremes, thus improving the efficiency 
of the algorithm for finding the best [22]. 

3.4. IWOA-LSTM prediction model flow 

 

Figure 6. Flow chart of IWOA-LSTM model. 

WOA mainly relies on the coefficient vector A


 to select the path to search for prey and uses the 
probability p  to decide the final predation mechanism [23], and the computational flow of IWOA-
LSTM is shown in Figure as follows. 
Step 1: Set the initial parameters 
Step 2: Calculate ,p A . Determine if p  is less than 50%, if yes, go to the next step, otherwise use 
Eq (14) for position update. 
Step 3: judge if A  is less than 1, yes then use Eq (8) for position update; otherwise use Eq (13) for 
the position update.   
Step 4: Determine whether it is the optimal solution. 
Step 5: Determine whether tmax has been achieved if not, go back to step 2. 
Step 6: Output the optimal solution and construct the LSTM network with the output parameters. 
Step 7: Perform prediction with the constructed LSTM network [24]. 
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4. IWOA-LSTM predictive model application 

4.1. IWOA performance analysis 

Table 2. Benchmark function expressions. 

Function expressions Dimensionality Search interval 
minf  

  2
1

1

D

i
i

f x x


   30 [-100,100] 0 

 2 1
1

D
D

i ii
i

f x x x




    30 [-100,100] 0 

   2

3 1
1

D
i

jj
i

f x x




    30 [-100,100] 0 

   4 max ,1i if x x i D    30 [-50,50] 0 

     21 22
5 11

100 1
D

i i ii
f x x x x




        30 [-30,30] 0 

   4
6 1

0,1
D

ii
f x ix random


   

100 [-10,10] 0 

   2

7 1
0.5

D

ii
f x x


   

100 [-100,100] 0 

   8 1
sin 418.9829

D

i ii
f x x x D


     100 [-500,500] 0 

   2
9 1

10cos 2 10
D

i ii
f x x x


      

100 [-10,10] 0 

  2
10 1

1
20exp 0.2

D

ii
f x x

D 

 
    

 
  

100 [-50,50] 0 
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(A)                                   (B) 

 

(C)                                   (D) 

 

(E)                                  (F) 

continued on next page 

Figure 7. Convergence curve of each test function. 
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(G)                                    (H) 

 

(I)                                   (J) 

Figure 7. Convergence curve of each test function. 

To assess the performance of the IWOA, the improved whale algorithm performance is tested by 
simulation with the 10 benchmark functions shown in Table 2. The benchmark functions are shown in 
Table 2 [25]. The maximum number of iterations is set to 500 times, the number of populations is set 
to 30, and the optimized values of the test function are all 0. The optimal iterative convergence curve 
is shown in Figure 7 [26]. 

The abscissa in Figure 7 is the number of iterations. The smaller the vertical coordinate, the higher 
the convergence accuracy of the algorithm [27]. As can be known from the Figure 7, IWOA algorithm 
during the entire process of search has faster convergence speed and higher convergence precision. 
This proves that the Cubic mapping is used to optimize the initial population selection method of the 
IWOA algorithm, which makes the distribution of the initial position of the improved population more 
uniform and increases the diversity of the population position [28]. These improvements make weights 
in the IWOA alter automatically according to current conditions [29]. As a result, IWOA obtains a 
faster optimization speed than WOA during the initial iteration, and can balance the utilization ability 
of other positions while optimizing [30]. 
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In this study, the optimized hyperparameters of LSTM model were set as follows:“Hidden 
layers = 2”, “Number of neurons in the first layer = 115”, “Number of second layer neurons = 55”, 
“Dropout = 0.2”, “epoch = 11”, and “batch-size = 256”. 

4.2. Model evaluation 

In this paper, three evaluation tools are used to evaluate and analyze the final prediction results, 
namely, MAE, RMSE and ARER [31]. 

                                                   
   




n

i

xfxS
n

MAE
1

ˆ1

                                             
(18) 

                                                 

    
n

xfxS
RMSE

n

i

2

1

ˆ





                                           
(19) 

                                                       
   

  %100
ˆ1

1




 


n

i xf

xfxS

n
ARER                                          

(20) 

where  xŜ  is the predicted value,  xf  is the true value, and n  is the number of samples. 

4.3. Predicted results 

In order to demonstrate the superiority of IWOA-LSTM prediction model, the IWOA-LSTM, 
BPNN, CNN, LSTM, GRU, WOA LSTM six kinds of prediction model is used in the comparison 
test [32]. The settlement value of a settlement monitoring point at a certain time is used as a sample, 
and there are 180 samples at each monitoring point, 720 samples in total. The 720 samples were 
randomly sorted, and 504 samples of the top 70% were selected as the training set, and 216 samples 
of the remaining 30% were selected as the test set [33]. The comparison of predicted results are shown 
in Figure 8. The comparison curve of prediction errors of different models are shown in Figure 9. 
Figure 10 shows the final score of model prediction accuracy. 
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  (A)                               (B) 

 

  (C)                               (D) 

             

(E)                               (F) 

Figure 8. Comparison of predicted results. 
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Figure 9. Prediction error curves of different models. 

 

Figure 10. Prediction accuracy scores of different models. 

Table 3. Precision comparison of models. 

Predictive Models MAE RMSE ARER 

IWOA-LSTM 0.13451 0.25689 3.1403 

WOA-LSTM 0.23456 0.31457 4.0195 

LSTM 0.61257 0.78892 8.9024 

BPNN 0.69874 0.83724 9.3514 

CNN 0.83753 0.9536 12.3371 

GRU 0.62648 0.79345 10.0237 
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As can be known from the above figure, the IWOA-LSTM has higher accuracy than the traditional 
machine learning, WOA-LSTM and LSTM prediction models. Table 3 shows the comparison of MAE, 
RMSE, and ARER of the predicted model. 

MAE, RMSE and AERE of the IWOA-LSTM prediction model are 0.13451, 0.25689 and 3.1403, 
respectively, which are better than WOA-LSTM, LSTM, BPNN, CNN and GRU. This shows that the 
IWOA-LSTM has a better prediction effect compared to the other forecasting methodology. 

5. Conclusions 

In this paper, we use Cubic mapping to optimize the initial population selection method, while 
the weights of the shrinkage envelope mechanism are adjusted, and the input weights and hidden layer 
thresholds in the deep long and short term memory neural network are optimized using the improved 
whale algorithm to establish an IWOA-LSTM deep foundation excavation deformation prediction 
model. It is also validated with the deep foundation pit project of Baoding Automobile Technology 
Industrial Park, and compared with traditional machine learning. The following conclusions are drawn. 

1) IWOA can effectively optimize the initial population selection method, thus ensuring the 
diversity of the initial population, while adjusting the weights of the shrinkage bracketing mechanism, 
which can avoid the algorithm from falling into local minimal value points. 

2) The convergence performance of IWOA is tested with 10 test functions. IWOA has higher 
convergence accuracy than WOA. Compared with WOA-LSTM model, IWOA-LSTM model takes 
less computing time and has faster convergence rate. 

3) The final prediction score of the IWOA-LSTM prediction model proposed in this paper is 98.8721, 
MAE, RMSE and ARER index were 0.13451, 0.25689 and 3.1403, respectively, which is better than the 
other five prediction models mentioned in this paper, indicating that the IWOA-LSTM has higher 
prediction accuracy. 

Foundation pit accident is a serious safety accident in building construction. It can cause huge 
economic losses and put workers' lives at risk. Therefore, it is necessary to predict the surface 
settlement of foundation pit. The results of this study show that it is feasible to use IWOA-LSTM 
model to analyze and predict. 

These predictions can effectively reflect the development trend of future foundation pit surface 
settlement and provide scientific basis for construction units to take safety measures in advance. Due 
to the limitation of the data in this study, the influence of load around the foundation pit and mechanical 
excavation vibration was not considered. In future studies, more comprehensive data attributes will be 
collected to improve the predictive accuracy of the model. 
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