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Abstract: Gastric Cancer (GC) has been identified as the world’s fifth most general tumor. So, it is 

important to diagnose the GC at initial stages itself to save the lives. Histopathological analysis remains 

the gold standard for accurate diagnosis of the disease. Though Computer-Aided Diagnostic 

approaches are prevalently applied in recent years for the diagnosis of diseases, it is challenging to 

apply in this case, due to the lack of accessible gastric histopathological image databases. With a rapid 

progression in the Computer Vision (CV) technologies, particularly, the emergence of medicinal image 

classifiers, it has become feasible to examine all the types of electron micrographs in a rapid and an 

effective manner. Therefore, the current research article presents an Anas Platyrhynchos Optimizer 

with Deep Learning-based Gastric Cancer Classification (APODL-GCC) method for the classification 

of GC using the endoscopic images. The aim of the proposed APODL-GCC method is to identify the 

presence of GC with the help of CV and Deep Learning concepts. Primarily, the APODL-GCC 

technique employs a contrast enhancement technique. Next, the feature extraction process is performed 

using a neural architectural search network model to generate a collection of feature vectors. For 
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hyperparameter optimization, the Anas Platyrhynchos Optimizer (APO) algorithm is used which 

enhances the classification performance. Finally, the GC classification process is performed using the 

Deep Belief Network method. The proposed APODL-GCC technique was simulated using medical 

images and the experimental results established that the APODL-GCC technique accomplishes 

enhanced performance over other models. 

Keywords: gastric cancer; artificial intelligence; deep learning; computer vision; NASNet model; 

endoscopic images 

 

1. Introduction 

Gastric Cancer (GC) is one of the most commonly-occurring cancerous types across the globe. 

However, its diagnosis rate is comparatively poor and has become a major threat globally [1]. 

Malignant tissues may grow in any part of the Gastrointestinal (GI) tract since it gets directly and 

constantly exposed to carcinogens in the gut environment via food ingestion. Various authors have 

identified several hotspots for malevolent conversion of the tissues that get continuously exposed to 

carcinogens. GI tumors cause 35% of the cancer-related mortality and 26% of tumor incidence 

globally [2]. The current increase in the mortality and incidence rates can be connected to the 

increasing occurrence of adaptable risk components like unhealthy diet, sedentary lifestyle, other 

metabolic abnormalities and obesity [3]. The outcomes from the recent analysis have exposed a 

substantial surge in GI cancer occurrence among the individuals aged between 25 and 49 years, thus 

warning the public about the evolution of medical complications [4]. The five main GI tumors lead to 

substantial global problems, such as hepatocellular carcinoma, esophageal squamous cell carcinoma, 

colorectal cancer, pancreatic cancer and gastric adenocarcinoma [5]. Unfortunately, early diagnosis of 

the GI-based tumors is frequently missed due to the absence of particular indications. In most of the cases, 

the medical attention is sought only when non-specific indications turn out to be unbearable [6,7]. 

With the fast expansion of Computer Vision (CV) technologies, particularly, the development of 

medical image classifiers, any type of electron microscopic images can be inspected in a rapid and an 

efficient manner [8]. Therefore, it presents a chance to realize a solution that is relevant to the diagnosis 

of GC. Particularly, the image classification process serves a significant role in computer-aided 

diagnostics [9]. The outcomes attained from the image classification approaches are predominantly 

utilized as significant references by doctors in terms of differentiating the malignant tumors from the 

benign ones, differentiating the differentiation phases of cancers and distinguishing the subtypes in 

cancer [10,11]. Moreover, with the progression of medical image classification technology, the main 

aim is to have a high anti-interference ability and attain the maximum precision.  

Computer-related analysis of the tissue images is gaining attention among the researchers in 

digital pathology [12]. In recent times, Deep Learning (DL) techniques have been leveraged to classify 

and distinguish different types of cancers including the GC. DL utilizing the Convolutional Neural 

Network (CNN) systems includes visual recognition capability since it can discern the features directly 

from large training datasets, thus outpacing the human beings [13]. With the current adoption of digital 

pathology methods such as the Whole-Slide Imaging (WSI) technique for key prognosis, there is an 

explosive growth experienced in the digitalized tissue slides. This in turn renders massive volumes of 

digital pathological images [14,15]. But, the application of DL in digital histopathology is still in a 
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nascent stage. So, the accuracy and efficacy of the pathology analysis are enhanced by merging the 

routine digitalization of DL and WSI.  

The current research article introduces an Anas Platyrhynchos Optimizer (APO) with DL-based 

GC classification (APODL-GCC) technique for endoscopic images. The presented APODL-GCC 

technique employs a contrast enhancement technique. Next, the feature extraction process is performed 

with the help of Neural Architectural Search network (NASNet) model to generate a collection of 

feature vectors. For hyperparameter optimization, the APO algorithm is used which enhances the 

classification performance. Finally, the GC classification process is performed using the Deep Belief 

Network (DBN) method. The proposed APODL-GCC technique was simulated using the medical 

images and the outcomes were achieved.  

2. Related works 

In literature [16], a new publicly-available gastric histopathology sub-size image database 

(GasHisSDB) was published to determine the performance of the classifiers. In order to prove that the 

erstwhile image classification techniques have differences on the GasHisSDB, the authors selected 

various classifiers for evaluation. A new transformer-based classifier, seven conventional machine 

learning techniques and three CNN classifiers were chosen to validate the image classification tasks. 

In the study conducted earlier [17], an RF deep feature selection technique was modelled. By 

compiling the Copy Number Variation (CNV) data and gene expression data, the dimensions of the 

multi-omics data were minimized and the classification accuracy was improved using a DNN 

technique and the RF. Li et al. [18] projected a DL-related structure called GT-Net for automatic 

segmentation of the GC. The devised GT-Net implemented diverse structures for deep and shallow 

layers for a superior extraction of the features. 

Zhu et al. [19] built a CNN-Computer-Aided Diagnostic (CAD) mechanism related to endoscopic 

images to screen the patients and determine the depth of invasion using endoscopic resection. An 

Artificial Intelligence (AI)-related CNN-CAD system was advanced in this study with the help of TL 

through an existing pre-trained CNN architecture i.e., ResNet50. Lee et al. [20] presented a CADx 

mechanism that differentiates and categorizes the gastric tumors from other pre-cancerous 

circumstances like gastritis, gastric polyps, bleeding and gastric ulcers. This mechanism leveraged the 

DL method i.e., Xception which involves depthwise separable convolution for the categorization of 

non-cancers and cancer. The presented technique had stages such as the fast and robust FCM method 

for image segmentation during preprocessing stage. These techniques produce a possible technique for 

differentiation and the classification of tumors from other gastric diseases. 

Yoon et al. [21] developed an optimized method for depth prediction and EGC detection. In this 

study, the authors inspected the elements that hinder the outcomes of AI-based diagnosis. The authors 

used the Visual Geometry Group (VGG)-16 method to classify the endoscopic images as either non-

EGC or EGC (T1a or T1b). To construct a method for the identification of EGC areas during training, 

the authors devised a new loss function that concurrently measures the localization and classification 

errors. In the study conducted earlier [22], TL was implemented via a fine-tuned deep CNN technique 

for mechanical categorization of the M-NBI images into two groups such as the EGC images and 

normal gastric images. Furthermore, this study also explored the impact of TL upon the classifier’s 

outcome under four aspects such as the size of the network input image, training dataset, basic 

structures of the deep CNN and the number of optimally-tuned network layers; this study even 
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presented a certain set of guidelines to be followed in this domain for later studies.  

3. Proposed model 

In the current research work, a new APODL-GCC approach has been modelled for GC 

classification on endoscopic images. The presented APODL-GCC technique focuses on the 

identification of GC using the CV and DL concepts. It comprises a sequence of operations such as the 

contrast enhancement, feature extraction using the NASNet, APO-based hyperparameter tuning and 

the DBN classification. Figure 1 illustrates the workflow of the APODL-GCC approach. 

3.1. Image preprocessing  

Primarily, the APODL-GCC technique exploits the contrast enhancement technique. CLAHE is 

different from the Adaptive Histogram Equalization (AHE) method it overcomes the over-

amplification of the contrast. CLAHE is applied to smaller regions of the image that are termed as tiles, 

instead of the whole image. The adjacent tiles are subsequently compiled through bilinear interpolation 

so as to remove the artificial boundary. This method is executed to enrich the image contrast. 

3.2. Feature extraction using the optimal NASNet model  

At this stage, the feature extraction process is performed with the help of NASNet model to 

produce a collection of feature vectors. Zoph and Le proposed a neural structure search network, 

named as the NASNet model. This model uses Reinforcement Learning and Recurrent Neural Network 

(RNN) technique for training so as to attain the most precise parameters [23]. Constructing a CNN 

model requires extensive computational time, in case if the content is larger as in the case of ImageNet 

data. The CNN model searches for a better structure from the smaller data and transmits it so that it 

can be used for training using the larger dataset. This phenomenon is referred to as learning transferable 

structure. The NASNet structure is scaled based on the quantity of information. 
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Figure 1. Workflow of the proposed APODL-GCC approach. 

Here, N time denotes the time required to identify and segregate the number of cancerous cells 

from the normal cells. In this stage, the RNN approach is implemented as a search technique. An 

example operation for detection and classification of the cancerous and normal cells is given below. 

This is achieved by searching the controller RNN for a proper architecture.  

▪ 1 × 7 then 7 × 1 convolutional layer  

▪ 3 × 3 average pooling layer  

▪ 5 × 5 max pooling layer 

▪ 1 × 1 convolutional layer  

▪ 3 × 3 depth-wise separable convolutional layer 

▪ 7 × 7 depth-wise separable convolutional layer 
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▪ 1 × 3 then 3 × 1 convolutional layer 

▪ 3 × 3 dilated convolutional layer 

▪ 3 × 3 max pooling layer 

▪ 7 × 7 max pooling layer 

▪ 3 × 3 convolutional layer 

▪ 5 × 5 depth-wise separable convolutional layer 

For hyperparameter optimization, the APO algorithm is used which in turn enhances the 

classification performance. The population in the APO is established based on the Anas platyrhynchos 

performance method as given below [24]. 

𝑃𝑜𝑝𝑖 = 𝑟𝑎𝑛𝑑 × (𝑢𝑝 − 𝑙𝑜𝑤) + 𝑙𝑜𝑤.                                                              (1) 

In Eq (1), 𝑃𝑜𝑝𝑖 represents the 𝑖𝑡ℎ population, 𝑁 denotes the population size, 𝑙𝑜𝑤 and 𝑢𝑝 indicate 

the lower and upper boundaries of the search space respectively and 𝑟𝑎𝑛𝑑 denotes the arbitrary values 

selected in the range of [0,1]. With regards to warning performance, the fly-in-danger functions are 

recognized by the selected probability 𝑃𝑐. The basic method of warning classification is established 

using the following equation: 

Step1: Evaluate the probability of distress 𝑃𝑐 using the following expression. 

𝑃𝑐𝑖 =
𝑟𝑎𝑛𝑘(𝑓𝑖𝑡(𝑃𝑜𝑝𝑖))

𝑁
.                                                           (2) 

In Eq (2), 𝑓𝑖𝑡(𝑃𝑜𝑝𝑖) indicates the fitness value of 𝑃𝑜𝑝𝑖, and 𝑟𝑎𝑛𝑘(𝑓𝑖𝑡(𝑃𝑜𝑝𝑖)) is considered as a rank 

of individual 𝑃𝑜𝑝𝑖 values among other individuals in the population. 

Step2: Once the probability 𝑃𝑐 is attained, a novel individual is constructed based on the equation 

given below. 

𝑃𝑜𝑝𝑖(𝑡 + 1) = 𝑃𝑜𝑝𝑖(𝑡) + 𝑠𝑖𝑔𝑛 (𝑟𝑎𝑛𝑑 −
1

2
) × 𝛼0 ×∨ 𝑃𝑜𝑝𝑖(𝑡) − 𝑃𝑜𝑝𝑏𝑒𝑠𝑡(𝑡) ∨× 𝐿𝑒𝑣𝑦(𝑠).       (3) 

Now, 𝑡 represents the present iteration, 𝑃𝑜𝑝𝑒𝑠𝑡 shows the lead duck, 𝛼0 > 0 denotes the step length 

scale factor and 𝑠𝑖𝑔𝑛 signifies the sign function. Levy Flight (LF) is responsible for arbitrary walks 

and the distribution equation is formulated as given below.  

𝐿𝑒𝑣𝑦 ∼ 𝜇 = 𝑡−𝜆, 1 < 𝜆 ≤ 3.                                                         (4) 

LF is a distinct type of arbitrary walk, and the distribution probability of the step length follows 

a heavy‐tailed distribution as given below. 

𝑠 =
𝜇

|𝜈|
1
𝛽

 .                                                                               (5) 

In Eq (5), 𝑠 indicates the LF step length. Moreover, 𝜆 = 1 + 𝛽; also, 𝛼0 = 0.01 and 𝛽 = 3 2⁄ , as CS 

is fixed. Additionally, 𝜇 and 𝜈 are selected for the standard distribution 𝜇 = 𝑁(0, 𝛿𝜇
2) and 𝜈 = 𝑁(0, 𝛿𝑣

2).  
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𝛿𝜇 = [
𝛤(1 + 𝛽)𝑠𝑖𝑛 (

𝜋𝛽
2

)

𝛽 × 𝛤 (
1 + 𝛽

2
) ×

2(𝛽 − 1)
2

]

𝛿𝑣=1

1
𝛽

                                                (6) 

An intelligent technique is selected for this study to simulate the biological migration process. 

Similar to the SOMA, the APO essentially concentrates on the Anas platyrhynchos, thus simulating its 

migration movement. SOMA and APO differ from each other in terms of place upgrade method and 

the flow of the technique. In this performance, a basic technique is established as follows. 

Step1: Once an optimal particle is defined, then other search particles try to shift towards the best 

particles which is mathematically expressed as follows: 

𝑃𝑜𝑝𝑖(𝑡 + 1) = 𝑃𝑜𝑝𝑖(𝑡) − 𝐴|𝐶 × 𝑃𝑜𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑃𝑜𝑝(𝑡)|,                            (7) 

In Eq (7), 𝐴 and 𝐶 indicate the co-efficient vectors that are obtained as given below.  

𝐴 = 2𝑎 × 𝑟𝑎𝑛𝑑 − 𝑎,                                                                           (8) 

𝐶 = 2 × 𝑟𝑎𝑛𝑑,                                                                             (9) 

Here, 𝑎 indicates the co-efficient vector that gets linearly decreased with multiple iterations. The value 

of 𝑎 is expressed as follows.  

𝑎 = 2 − 𝑡
2

𝑇
                                                                             (10) 

In this expression, 𝑇 indicates the maximal number of iterations.  

Step2: Once the novel individual solution is found to be worse than the older solution, then other 

particle 𝑃𝑜𝑝𝑎𝑛𝑑 is randomly selected 

Step 3: When 𝑃𝑜𝑝𝑎𝑛𝑑 is better than Pop, then the 𝑖𝑡ℎ  individual is transferred to an arbitrary 

particle 𝑃𝑜𝑝𝑎𝑛𝑑 as given below.  

𝑃𝑜𝑝𝑖(𝑡 + 1) = (𝑃𝑜𝑝𝑟𝑎𝑛𝑑(𝑡) − 𝑃𝑜𝑝𝑖(𝑡)) × 𝑒−𝑙2
+ 𝑃𝑜𝑝𝑖(𝑡),                            (11) 

Now 𝑙 shows the distance of the arbitrary particles and the 𝑖𝑡ℎ individual. 

Step4: When 𝑃𝑜𝑝𝑎𝑛𝑑 corresponds to 𝑃𝑜𝑝𝑖, it remains the same. 

Step5: Once the 𝑃𝑜𝑝𝑟𝑎𝑑 is less than 𝑃𝑜𝑝𝑖, then the particle moves towards the 𝑖𝑡ℎ individual in a 

random manner using the following expression. 

𝑃𝑜𝑝𝑟𝑎𝑛𝑑(𝑡 + 1) = (𝑃𝑜𝑝𝑖(𝑡) − 𝑃𝑜𝑝𝑟𝑎𝑛𝑑(𝑡)) × 𝑒−𝑙2
+ 𝑃𝑜𝑝𝑟𝑎𝑛𝑑(𝑡),                    (12) 

Fitness selection is an essential feature in APO system. The solution encoded is exploited to 

calculate the aptitude (goodness) of the candidate solutions. At this point, the accuracy value is the 

main criterion, employed in this study, to decide the fitness function.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥(𝑃)                                                                     (13) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                             (14) 

Here, 𝑇𝑃 denotes the True Positive values whereas 𝐹𝑃 stands for the False Positive value. 
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3.3. GC classification using DBN 

Lastly, the GC classification process is carried out with the help of the DBN model. During the 

classification process, the normalized feature vector is provided as the input to the DBN mechanism 

for both detection and the classification of the GC [25]. Artificial Neural Network (ANN) is modeled 

by dissimilar output and hidden unit layers and is named as DL. It encompasses two levels, namely, 

▪ Pre-training phase 

▪ Fine-tuning phase  

Pre-training phase  

In DBN technique, an essential feed forward network and a deep structure are involved in which 

the sample is derived from the input to output layers through the highest quantity of hidden nodes that 

possess additional nodes. Based on the application of the DBN approach, the algorithm generates the 

activation function according to the hidden unit that differentiates the DBN method. Moreover, the 

Restricted Boltzmann Machine (RBM) is defined to resolve the problems encountered in potential 

activation function. Figure 2 showcases the framework of DBN. RBM is a type of Markov subjective 

field that encompasses the individual layers with stochastic hidden unit.  

 

Figure 2. Framework of DBN. 

Step 1: Initializing the rich unit 𝜈 for RBM training. 

𝐹(𝑣, ℎ) = − ∑ ∑ 𝑊𝑘𝑙𝑣𝑘ℎ𝑙 − ∑ 𝛼𝑘𝑣𝑘 − ∑ 𝛽𝑙ℎ𝑙

𝐿

𝑙=1

                                       (15)

𝐾

𝑘=1

𝐿

𝑙=1

𝐾

𝑘=1

 

In Eq (4), 𝑊𝑘𝑙 indicates the symmetric transmission between the 𝑣𝑘visible and ℎ𝑙 hidden layers, 

the term 𝛼 ∧ 𝛽 indicates the biases and 𝐾 and 𝐿  show the quantity of visible and hidden layers 

respectively. The subordinate of the 𝑙𝑜𝑔 possibility, of the preparation vector, with regards to its weight 

is irregular. From the hidden unit of RBM, there is no unpredicted replies that tend to accomplish the 
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impartial sample from (𝑉𝑘 , ℎ𝑙)𝑑𝑎𝑡𝑎. 

𝜌(ℎ𝑙 = 1|𝑣) = 𝛿 (∑ 𝑊𝑘𝑙𝑣𝑘 + 𝛼𝑙

𝐾

𝑘=1

)                                                (16) 

In Eq (16), 𝛿(𝑥) indicates the logistic sigmoid function, 
1

(1+𝑒𝑥𝑝(𝑥))
  and 𝑣𝑘 𝑎𝑛𝑑 ℎ𝑙 shows the unbiased 

samples. 

Updating phase 

The hidden layer is upgraded whereas the visible unit is regarded as a simultaneous element from 

both visible and the hidden layers. It leads to a complex technique as given below.  

𝛥𝑊𝑘𝑙𝜃(𝑣𝑘ℎ𝑙)𝑑𝑎𝑡𝑎 − (𝑣𝑘ℎ𝑙)𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛                           (17) 

In Eq (17), the RBM undergoes training whereas the divergent RBM is constructed with a 

multiple layer approach. In general, different RBMs are stacked together and the visible input unit is 

identified as a quality measure. The vector for the units are effectively placed in the RBM layer that is 

shared over the application of shared model in the present weight and bias. Consequently, the final 

layer is officially trained to secure the RBM. Thereby, the obtained DNN weights are occupied in the 

fine-tuning phase. 

4. Experimental validation  

The proposed model was simulated using Python 3.6.5 tool on a PC configured with i5-8600k, 

GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU. In this 

section, the experimental outcomes of the proposed APODL-GCC method were validated using the 

GC dataset [26]. This dataset has a total of 1500 images as briefed in Table 1. Figure 3 showcases some 

of the sample images from the dataset. The dataset holds images under three classes with 500 samples 

under each class. 

Table 1. Details of the dataset. 

Class No. of Images 

Healthy 500 

Early gastric cancer (EGC) 500 

Advanced gastric cancer (AGC) 500 

Total Number of Images 1500 
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Figure 3. Sample Images a) Healthy b) EGC c) AGC. 

The GC classification output of the proposed APODL-GCC model is shown in Figure 4 in the 

form of confusion matrix. The results infer that the APODL-GCC model accomplished an effectual 

categorization of the dataset under healthy and GC classes. 

 

Figure 4. Confusion matrices of the APODL-GCC system (a-b) TR/TS databases of 80: 

20 and (c-d) TR/TS databases of 70: 30. 
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Table 2 and Figure 5 portray the GC classification results accomplished by the proposed APODL-

GCC model with 80: 20 of TR/TS databases. The outcomes denote that the APODL-GCC model 

recognized both healthy and the GC cases accurately. On 80% of TR database, the APODL-GCC 

model gained an average 𝑎𝑐𝑐𝑢𝑦 of 99.67%, 𝑝𝑟𝑒𝑐𝑛 of 99.50%, 𝑟𝑒𝑐𝑎𝑙 of 99.50%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.50%, and 

an MCC of 99.25%. Meanwhile, on 20% of TS database, the APODL-GCC method obtained an 

average 𝑎𝑐𝑐𝑢𝑦 of 99.11%, 𝑝𝑟𝑒𝑐𝑛 of 98.69%, 𝑟𝑒𝑐𝑎𝑙 of 98.67%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.67%, and an MCC of 98.01%.  

Table 2. GC classification outcomes of the APODL-GCC system on 80:20 of TR/TS databases. 

Labels 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙  𝐹𝑠𝑐𝑜𝑟𝑒 MCC 

Training Phase (80%) 

Healthy 99.67 99.01 100.00 99.50 99.25 

EGC 99.50 99.75 98.75 99.24 98.87 

AGC 99.83 99.75 99.75 99.75 99.63 

Average 99.67 99.50 99.50 99.50 99.25 

Testing Phase (20%) 

Healthy 99.33 98.04 100.00 99.01 98.52 

EGC 98.67 98.02 98.02 98.02 97.01 

AGC 99.33 100.00 97.98 98.98 98.50 

Average 99.11 98.69 98.67 98.67 98.01 

 

Figure 5. Average outcomes of the APODL-GCC system on 80:20 of TR/TS databases. 
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Table 3 and Figure 6 showcase the GC classification results achieved by the proposed APODL-

GCC approach with 70: 30 of TR/TS databases. The experimental outcomes infer that the APODL-

GCC approach recognized both healthy and GC cases accurately. On 70% of TR database, the APODL-

GCC method reached an average 𝑎𝑐𝑐𝑢𝑦  of 97.84%, 𝑝𝑟𝑒𝑐𝑛  of 96.81%, 𝑟𝑒𝑐𝑎𝑙  of 96.76%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 

96.77%, and an MCC of 95.17%. In the meantime, on 30% of TS database, the APODL-GCC method 

attained an average 𝑎𝑐𝑐𝑢𝑦 of 98.67%, 𝑝𝑟𝑒𝑐𝑛 of 98.03%, 𝑟𝑒𝑐𝑎𝑙 of 98%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.97%, and an MCC 

of 97.03%.  

Table 3. GC classification outcomes of the APODL-GCC system on 70:30 of TR/TS databases. 

Labels Accuracy Precision Recall F-Score MCC 

Training Phase (70%) 

Healthy 97.52 94.84 98.03 96.41 94.55 

EGC 97.43 97.65 94.59 96.09 94.20 

AGC 98.57 97.95 97.67 97.81 96.75 

Average 97.84 96.81 96.76 96.77 95.17 

Testing Phase (30%) 

Healthy 98.22 94.74 100.00 97.30 96.05 

EGC 98.22 100.00 94.63 97.24 96.01 

AGC 99.56 99.36 99.36 99.36 99.02 

Average 98.67 98.03 98.00 97.97 97.03 

 

Figure 6. Average outcomes of the APODL-GCC system on 70:30 of TR/TS databases. 
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The TACC and VACC values, obtained by the proposed APODL-GCC technique in terms of GC 

classification, are shown in Figure 7. The figure shows that the APODL-GCC approach exhibited an 

improved performance with increased TACC and VACC values. Notably, the APODL-GCC technique 

reached the maximum TACC outcomes. 

 

Figure 7. TACC and VACC outcomes of the APODL-GCC system. 

The TLS and VLS values, accomplished by the proposed APODL-GCC approach in terms of GC 

classification, are portrayed in Figure 8. The figure infers that the APODL-GCC technique achieved 

better performance with minimal TLS and VLS values. Seemingly, the APODL-GCC approach 

produced low VLS outcomes. 

 

Figure 8. TLS and VLS outcomes of the APODL-GCC system. 



3213 

Electronic Research Archive  Volume 31, Issue 6, 3200–3217. 

A clear precision-recall inspection was conducted upon the APODL-GCC approach using the test 

database and the results are shown in Figure 9. The figure exhibits that the APODL-GCC technique 

achieved enhanced precision-recall values under all the classes. 

 

Figure 9. Precision-recall outcomes of APODL-GCC technique. 

The GC classification outcomes of the APODL-GCC technique were compared with that of the 

results achieved by the existing DL methods and the results are shown in Table 4 and Figure 10 [26]. 

The outcomes found the close performance of the existing models such as SSD, CNN, and Mask R-

CNN models with 𝑎𝑐𝑐𝑢𝑦 values being 96.22, 96.77, and 96.97% respectively. Concurrently, the U-Net-

CNN method and the cascade CNN method obtained moderately improved 𝑎𝑐𝑐𝑢𝑦 values such as 98.21 

and 97.07% respectively.  

Table 4. Comparative analysis outcomes of the APODL-GCC technique and other recent 

DL methods. 

Methods 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑠𝑐𝑜𝑟𝑒 

APODL-GCC 99.67 99.5 99.5 99.50 

MRFOTL-GCDC 99.17 98.42 98.96 99.13 

SSD 96.22 95.53 95.61 96.28 

CNN 96.77 94.94 97.77 97.55 

Mask R-CNN 96.97 96.95 98.35 97.66 

U-Net-CNN 98.21 97.25 97.65 95.44 

Cascade CNN 97.07 96.60 97.26 97.06 
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Figure 10. 𝐴𝑐𝑐𝑢𝑦 analysis outcomes of the APODL-GCC approach and other recent DL techniques. 

On the contrary, the MRFOTL-GCDC technique managed to achieve a considerable GC classifier 

outcome with an 𝑎𝑐𝑐𝑢𝑦 of 99.17. However, the proposed APODL-GCC model obtained the maximum 

performance, in terms of GC classification, with an 𝑎𝑐𝑐𝑢𝑦 of 99.67%. Therefore, the APODL-GCC 

model can be employed in the near future for accurate GC classification. 

5. Conclusions 

In the current research work, a new APODL-GCC approach has been developed for GC 

classification on endoscopy images. The presented APODL-GCC method focuses on the identification 

of the GC using both CV and DL concepts. Primarily, the APODL-GCC technique employs a contrast 

enhancement technique. Next, the feature extraction process is performed with the help of the NASNet 

model to generate a collection of feature vectors. For hyperparameter optimization, the APO algorithm 

is used which in turn enhances the classification performance. Finally, the GC classification process is 

executed by the DBN model. The proposed APODL-GCC technique was simulated using the medical 

images. The experimental results confirmed that the proposed APODL-GCC technique accomplished 

an enhanced performance over other models. Therefore, the proposed model can be employed in 

real-time GC detection and classification tasks, which will help the physicians in decision making 

process. In the future, the performance of the APODL-GCC method can be boosted by the 

ensemble learning models. 



3215 

Electronic Research Archive  Volume 31, Issue 6, 3200–3217. 

Acknowledgments  

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry 

of Education in Saudi Arabia for funding this research work through the project no. (IFKSURG-1742).  

Conflict of interest 

The authors declare that they have no conflict of interest. The manuscript was written through 

contributions of all authors. All authors have given approval to the final version of the manuscript. 

References 

1. Z. Song, S. Zou, W. Zhou, Y. Huang, L. Shao, J. Yuan, et al., Clinically applicable 

histopathological diagnosis system for gastric cancer detection using deep learning, Nat. 

Commun., 11 (2020), 1–9. https://doi.org/10.1038/s41467-020-18147-8 

2. Y. Zhao, B. Hu, Y. Wang, X. Yin, Y. Jiang, X. Zhu, Identification of gastric cancer with 

convolutional neural networks: a systematic review, Multimedia Tools Appl., (2022), 1–20. 

https://doi.org/10.1007/s11042-022-12258-8 

3. L. Zhang, D. Dong, W. Zhang, X. Hao, M. Fang, S. Wang, et al., A deep learning risk prediction 

model for overall survival in patients with gastric cancer: A multicenter study, Radiother. Oncol., 

150 (2020), 73–80. https://doi.org/10.1016/j.radonc.2020.06.010 

4. X. Wang, Y. Chen, Y. Gao, H. Zhang, Z. Guan, Z. Dong, et al., Predicting gastric cancer outcome 

from resected lymph node histopathology images using deep learning, Nat. Commun., 12 (2021), 

1–13. https://doi.org/10.1038/s41467-021-21674-7 

5. Z. Song, S. Zou, W. Zhou, Y. Huang, L. Shao, J. Yuan, et al., Clinically applicable 

histopathological diagnosis system for gastric cancer detection using deep learning, Nat. 

Commun., 11 (2020), 1–9. https://doi.org/10.1038/s41467-020-18147-8 

6. S. Ai, C. Li, X. Li, T. Jiang, M. Grzegorzek, C. Sun, et al., A state-of-the-art review for gastric 

histopathology image analysis approaches and future development, BioMed. Res. Int., 2021. 

https://doi.org/10.1155/2021/6671417 

7. H. Chen, C. Li, G. Wang, X. Li, M. Rahaman, H. Sun, et al., GasHis-Transformer: A multi-scale 

visual transformer approach for gastric histopathological image detection, Pattern Recognit., 130 

(2022), 108827. https://doi.org/10.1016/j.patcog.2022.108827 

8. Y. Li, X. Wu, C. Li, X. Li, H. Chen, C. Sun, et al., A hierarchical conditional random field-based 

attention mechanism approach for gastric histopathology image classification, Appl. Intell., 

(2022), 1–22. 

9. Y. Li, C. Li, X. Li, K. Wang, M. Rahaman, C. Sun, et al., A comprehensive review of Markov 

random field and conditional random field approaches in pathology image analysis, Arch. Comput. 

Methods Eng., 29 (2022), 609–639. https://doi.org/10.1007/s11831-021-09591-w 

10. J. Zhang, C. Li, S. Kosov, M. Grzegorzek, K. Shirahama, T. Jiang, et al., LCU-Net: A novel low-

cost U-Net for environmental microorganism image segmentation, Pattern Recognit., 115 (2021), 

107885. https://doi.org/10.1016/j.patcog.2021.107885 

11. P. Dell’Aversana, Reservoir prescriptive management combining electric resistivity tomography 

and machine learning, AIMS Geosci., 7 (2021), 138–161. https://doi.org/10.3934/geosci.2021009 

https://doi.org/10.1038/s41467-020-18147-8
https://doi.org/10.1007/s11042-022-12258-8
https://doi.org/10.1016/j.radonc.2020.06.010
https://doi.org/10.1038/s41467-021-21674-7


3216 

Electronic Research Archive  Volume 31, Issue 6, 3200–3217. 

12. S. Zhou, J. Zheng, C. Jia, SPREAD: An ensemble predictor based on DNA autoencoder 

framework for discriminating promoters in Pseudomonas aeruginosa, Math. Biosci. Eng., 19 

(2022), 13294–13305. https://doi.org/10.3934/mbe.2022622 

13. J. Zhang, C. Li, Y. Yin, J. Zhang, M. Grzegorzek, Applications of artificial neural networks in 

microorganism image analysis: a comprehensive review from conventional multilayer perceptron 

to popular convolutional neural network and potential visual transformer, Artif. Intell. Rev., (2022), 

1–58. https://doi.org/10.1007/s10462-022-10192-7 

14. F. Kulwa, C. Li, J. Zhang, K. Shirahama, S. Kosov, X. Zhao, et al., A new pairwise deep learning 

feature for environmental microorganism image analysis, Environ. Sci. Pollut. Res., (2022), 1–18. 

https://doi.org/10.1007/s11356-022-18849-0 

15. A. Chen, C. Li, S. Zou, M. Rahaman, Y. Yao, H. Chen, et al., SVIA dataset: A new dataset of 

microscopic videos and images for computer-aided sperm analysis, Biocybern. Biomed. Eng., 42 

(2022), 204–214. https://doi.org/10.1016/j.bbe.2021.12.010 

16. W. Hu, C. Li, X. Li, M. Rahaman, J. Ma, Y. Zhang, et al., GasHisSDB: A new gastric 

histopathology image dataset for computer aided diagnosis of gastric cancer, Comput. Biol. Med., 

142 (2022), 105207. https://doi.org/10.1016/j.compbiomed.2021.105207 

17. Y. Hu, L. Zhao, Z. Li, X. Dong, T. Xu, Y. Zhao, Classifying the multi-omics data of gastric cancer 

using a deep feature selection method, Expert Syst. Appl., 200 (2022), 116813. 

https://doi.org/10.1016/j.eswa.2022.116813 

18. Y. Li, X. Xie, S. Liu, X. Li, L. Shen, November. Gt-net: a deep learning network for gastric tumor 

diagnosis, in 2018 IEEE 30th International Conference on Tools with Artificial Intelligence 

(ICTAI), (2018), 20–24. 

19. Y. Zhu, Q. Wang, M. Xu, Z. Zhang, J. Cheng, Y. Zhong, et al., Application of convolutional 

neural network in the diagnosis of the invasion depth of gastric cancer based on conventional 

endoscopy, Gastrointest. Endosc., 89 (2019), 806–815. https://doi.org/10.1016/j.gie.2018.11.011 

20. S. Lee, H. Cho, H. Cho, A novel approach for increased convolutional neural network 

performance in gastric-cancer classification using endoscopic images, IEEE Access, 9 (2021), 

51847–51854. https://doi.org/10.1016/j.gie.2018.11.011 

21. H. Yoon, S. Kim, J. Kim, J. Keum, S. Oh, J. Jo, et al., A lesion-based convolutional neural network 

improves endoscopic detection and depth prediction of early gastric cancer, J. Clin. Med. Res., 8 

(2019), 1310. https://doi.org/10.3390/jcm8091310 

22. X. Liu, C. Wang, Y. Hu, Z. Zeng, J. Bai, G. Liao, Transfer learning with convolutional neural 

network for early gastric cancer classification on magnifiying narrow-band imaging images, in 

2018 25th IEEE International Conference on Image Processing (ICIP), (2018), 1388–1392. 

https://doi.org/10.1109/ICIP.2018.8451067 

23. A. Adedoja, P. Owolawi, T. Mapayi, Deep learning based on nasnet for plant disease recognition 

using leave images, in 2019 International Conference on Advances in Big Data, Computing and 

Data Communication Systems (icABCD), (2019), 1–5. 

https://doi.org/10.1109/ICABCD.2019.8851029 

24. Y. Zhang, P. Wang, L. Yang, Y. Liu, Y. Lu, X. Zhu, Novel swarm intelligence algorithm for 

global optimization and multi-UAVs cooperative path planning: Anas platyrhynchos optimizer, 

Appl. Sci., 10 (2020), 4821. https://doi.org/10.3390/app10144821 

25. J. Wan, B. Chen, Y. Kong, X. Ma, Y. Yu, An early intestinal cancer prediction algorithm based 

on deep belief network, Sci. Rep., 9 (2019), 1–13. https://doi.org/10.1038/s41598-018-37186-2 



3217 

Electronic Research Archive  Volume 31, Issue 6, 3200–3217. 

26. F. Alrowais, S. Alotaibi, R. Marzouk, A. Salama, M. Rizwanullah, A. Zamani, et al., Manta ray 

foraging optimization transfer learning-based gastric cancer diagnosis and classification on 

endoscopic tmages, Cancers, 14 (2022), 5661. https://doi.org/10.3390/cancers14225661 

©2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.3390/cancers14225661

