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Abstract: In this paper, for given mass m > 0, we focus on the existence and nonexistence of
constrained minimizers of the energy functional

I(u) :=
a
2

∫
R3
|∇u|2 dx +

b
4

(∫
R3
|∇u|2 dx

)2

−

∫
R3

F(u)dx

on S m :=
{
u ∈ H1(R3) : ∥u∥22 = m

}
,where a, b > 0 and F satisfies the almost optimal mass subcritical

growth assumptions. We also establish the relationship between the normalized ground state solutions
and the ground state to the action functional I(u) − λ2∥u∥

2
2. Our results extend, nontrivially, the ones

in Shibata (Manuscripta Math. 143 (2014) 221–237) and Jeanjean and Lu (Calc. Var. 61 (2022) 214)
to the Kirchhoff type equations, and generalize and sharply improve the ones in Ye (Math. Methods.
Appl. Sci. 38 (2015) 2603–2679) and Chen et al. (Appl. Math. Optim. 84 (2021) 773–806).

Keywords: Kirchhoff type equations; constrained minimizers; L2-subcritical; Berestycki-Lions type
conditions

1. Introduction and main results

In this paper, we are devoted to investigating the following Kirchhoff type problem:

−

(
a + b

∫
R3
|∇u|2dx

)
∆u = λu + f (u), u ∈ H1(R3), (1.1)

with an L2 constraint
∥u∥2L2(R3) = m,
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where f ∈ C(R,R), a, b, m are positive constants and λ ∈ R is not a priori given, and will appear as a
Lagrange multiplier.

Problems like (1.1) is related to the stationary analogue of the equation

utt −

(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u), (1.2)

which was proposed by Kirchhoff in [1] as an extension of the classical D’Alembert’s wave equation
for free vibrations of elastic strings. In [2], Lions proposed an abstract framework for this problem and
after that (1.2) began to receive more attention. Due to the strong physical meaning and the presence
of the nonlocal term

∫
R3 |∇u|2dx, equations like (1.1) have been widely studied during the past decade.

We mention that there are two totally different views to explore solutions for problem (1.1) in terms
of the parameter λ ∈ R. The first one is to fix the parameter λ. In this case, solutions without any L2

constraint can be obtained as critical points of the associated functional. We refer the reader to [3–8]
and the references therein. Nowadays, finding solutions with a prescribed L2-norm for problem (1.1)
has been the object of an intense activity. In this situation, the parameter λ is unknown and determined
by the solution. For related works, one can see [9–19] and the references therein. Here, we would like
to introduce some results for (1.1) with mass subcritical growth nonlinearities. In [14], Ye studied the
existence and non-existence of normalized solutions for problem (1.1) with f (u) = |u|p−2u (p ∈ (2, 6)),
and showed that p = 14

3 is a L2-critical exponent. Roughly speaking, for any given mass m > 0, when
p ∈ (2, 14

3 ), Ye proved that the functional I associated to (1.1) defined by

I(u) =
a
2

∫
R3
|∇u|2 dx +

b
4

(∫
R3
|∇u|2 dx

)2

−

∫
R3

F(u)dx, (1.3)

where F(s) :=
∫ s

0
f (t)dt, is bounded from below on

S m :=
{
u ∈ H1(R3) : ∥u∥22 = m

}
,

and when p ∈ ( 14
3 , 6), I is unbounded from below on S m for any m > 0. Moreover, for any p ∈ (2, 14

3 ),
Ye established the sharp existence of global constraint minimizers for (1.1). Subsequently, for p ∈
(2, 14

3 ), Zeng and Zhang [17] proved the existence and uniqueness of normalized solutions by using
a different method. Recently, Li and Ye [11] considered the existence and concentration behavior of
L2-subcritical constraint minimizers for a class of Kirchhoff equations with potentials and the power-
type nonlinearity. More recently, replacing f (u) by K(x) f (u) in (1.1), Chen et al. [20] considered the
nonautonomous Kirchhoff type equations with mass sub- and super-critical case. More precisely, in the
mass subcritical case, Chen et al. [20] obtained the global minimizers when K satisfies some suitable
assumptions, and f satisfies

(T1) f ∈ C(R,R), f (t) = o(t) as t → 0, and there exists constant C > 0 and p ∈ (10
3 ,

14
3 ), such that

| f (t)| ≤ C(1 + |t|p−1);
(T2) there exists µ0 ∈ (2, 14

3 ), such that f (t)t ≥ µ0F(t) > 0 for all t ∈ R\{0};
(T3) there exists q0 ∈ (2, 10

3 ), such that lim|t|→0
F(t)
|t|q0 > 0 or lim|t|→0

F(t)

|t|
10
3
= 0.

Motivated by the above works and [21] which was concerned with global minimizers for the
nonlinear scalar field equation with L2 constraint (see also [22, 23]), in this paper, we aim to establish
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the existence of global L2 constraint minimizers for problem (1.1) with Berestycki-Lions type
conditions, which was first introduced by Berestycki and Lions [24], that we believe to be nearly
optimal, and also discuss the relationship between the minimizers v of I on S m and the ground state to
equation (1.1) with λ = λ(v), where λ(v) denotes the Lagrange multiplier. To the best of our
knowledge, so far, few results on this issue are known to the nonlocal problem. More precisely, we
introduce the following assumptions:

( f1) f ∈ C(R,R), limt→0
f (t)
t = 0 and lim sup|t|→∞

| f (t)|
|t|5 < ∞;

( f2) lim supt→∞
F(t)
|t|14/3 ≤ 0;

( f3) There exists ζ , 0, such that F(ζ) > 0;
( f4) lim inft→0

F(t)
|t|10/3 = +∞;

( f ′4) lim supt→0
F(t)
|t|10/3 < +∞;

( f̃ ′4) lim supt→0
F(t)
|t|10/3 ≤ 0.

Now, we state our first main result which reads as follows:

Theorem 1.1. Assume that f satisfies ( f1) − ( f3). Then, we have the following conclusions:

(i) If ( f4) holds, then for any m > 0, Em := infu∈S m I(u) < 0 and is achieved for some v ∈ S m and,
thus, I admits a constraint minimizer v on S m.

(ii) If ( f ′4) holds, then there exists a number m∗ > 0, such that Em = 0 if m ∈ (0,m∗] and Em < 0 if
m > m∗. Moreover, when m > m∗, Em is achieved for some v ∈ S m and, thus, I admits a constraint
minimizer v on S m; and when 0 < m < m∗, Em is not achieved.

(iii) If we replace ( f ′4) by the stronger condition ( f̃ ′4), then Em∗ = 0 is achieved for some v ∈ S m∗ and,
thus, I admits a constraint minimizer v on S m∗ .

(iv) The Lagrange multiplier λ(v) corresponding to the minimizer v ∈ S m obtained above is negative.
(v) If ( f ′4) holds and we, in addition, assume that f (t)t ≤ 10

3 F(t) for t ∈ R, then Em∗ is not achieved.

Remark 1.1. It is clear that the nonlinearity f (t) = |t|
4
3 t fulfills the assumptions in Item (v). We would

like to point out that, when f (t) = |t|
4
3 t, Ye [14] derived the exact description of m∗ and proved Em∗ is

not achieved. The optimal achieved function for the well known Gagliardo-Nirenberg inequality plays
a crucial role in [14]. However, the methods used in [14] are not available anymore for our general
conditions case.

Remark 1.2. Due to the existence of nonlocal term, in contrast to the mass constrained nonlinear
Schrödinger equations in [21,23], the behavior of f near 0 for Kirchhoff type equation depends heavily
on the growth rate 10

3 , not on the mass critical exponent 14
3 . Moreover, from Item (v), the results for

the case that F(t) grows like C|t|
10
3 is totally different from those in [23, Theorem 1.4 (ii)] about the

Schrödinger equations. In fact, in [23], the author showed that Em∗ is achieved when there exist positive
constants C and δ, such that F(t) = C|t|

14
3 for |t| ≤ δ. Therefore, our results extend, nontrivially, the

ones in [21,23] to Kirchhoff type equations. However, for the Kirchhoff type equation, we do not know
whether Em∗ is not achieved under the assumption that F(t) grows locally like C|t|

10
3 , i.e., F(t) = C|t|

10
3

for |t| ≤ δ.

Remark 1.3. There are many functions satisfying our general assumptions and different to the pure
power nonlinearity considered in [14], and not satisfying the Ambrosetti-Rabinowitz type conditions
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(T2). For example, the function

f (t) = 2t ln(1 + |t|) +
|t| t

1 + |t|
,

satisfies ( f1) − ( f3) and ( f̃ ′4) but it does not fulfill (T2). The function

f (t) = |t|p−2t − |t|q−2t, 2 < p < q ≤ 6

satisfies ( f1) − ( f3) but does not satisfy (T2) if q ≥ 14
3 . Moreover, it satisfies ( f4) and ( f ′4) if p < 10

3 and
p ≥ 10

3 , respectively. Therefore, Theorem 1.1 sharply improves and extends the results in [14, 20].

Next, inspired by [21], we investigate the relationship between the global constrained minimizers v
of I on S m and the ground state of (1.1) with λ = λ(v). Indeed, we have the following result.

Theorem 1.2. Under the assumptions of Theorem 1.1, the following conclusions are held:

(i) The minimizer v of I on S m is a ground state of (1.1) with λ = λ(v), i.e., J′λ(v) = 0 and

Em −
λ

2
m = cλ := inf{Jλ(u)|u ∈ H1(R3)\{0}, J′λ(u) = 0},

where the C1 action functional Jλ : H1(R3)→ R defined by

Jλ(u) = I(u) −
λ

2

∫
R3
|u|2 dx. (1.4)

In particular, the minimizer v has constant sign and is radially symmetric up to translation (i.e.,
v(x) = v(r), where r = |x|) and monotone with respect to r.

(ii) For any given λ ∈ {λ(v) : v ∈ S m is a minimizer for I on S m}, any ground state w ∈ H1(R3) of
(1.1) is a minimizer of I on S m, i.e., w ∈ S m and I(w) = Em.

The remainder of this paper is organized as follows: In Section 2, we give some preliminary lemmas
that will be frequently used in the proofs of our main theorems. Section 3 is devoted to dealing with
the proof of Theorems 1.1 and 1.2.

Throughout this paper, we use the standard notations. We denote by C, ci,Ci, i = 1, 2, · · · for various
positive constants whose exact value may change from lines to lines but are not essential to the analysis
of the problem. ∥ · ∥q denotes the usual norm of Lq(R3) for q ≥ 2. We use “→” and “⇀” to denote the
strong and weak convergence in the related function space, respectively. We will write o(1) to denote
quantity that tends to 0 as n→ ∞.

2. Preliminaries

In this section, we collect some known results and prove some lemmas, which will be used
frequently in what follows. We start with recalling the well-known
Gagliardo-Nirenberg inequality: for p ∈ (2, 6), there exists a constant Cp > 0, such that

∥u∥pp ≤ Cp∥∇u∥pγp

2 ∥u∥
p(1−γp)
2 , ∀ u ∈ H1(R3), (2.1)

where γp =
3(p−2)

2p .
The following well-known Brezis-Lieb type splitting result (see [25, Lemma 3.2]) will be useful to

study our problem.
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Lemma 2.1. Assume that f satisfies ( f1) and {un} ⊂ H1(R3) is bounded and un ⇀ u a.e. in R3 for some
u ∈ H1(R3), then

lim
n→∞

∫
R3
|F(un) − F(un − u) − F(u)| dx = 0. (2.2)

Now we summarize some properties of I on S m which play an important role in our proof.

Lemma 2.2. Assume that ( f1)–( f3) are satisfied. Then, the following conclusions hold:

(i) For any m > 0, Em = infu∈S m I(u) is well defined and Em ≤ 0.
(ii) There exists m0 > 0, such that Em < 0 for any m > m0.

(iii) If ( f4) holds, then one has Em < 0 for any m > 0.
(iv) If ( f ′4) holds, then one has Em = 0 for m > 0 small enough.
(v) The function m→ Em is continuous and nonincreasing.

Proof. (i) Note that ( f1) and ( f2) imply that for any ε > 0, there exists Cε > 0, such that

F(t) ≤ Cε|t|2 + ε|t|14/3, for all t ∈ R. (2.3)

Then, for any u ∈ H1(R3), from (2.3) and (2.1), we deduce that∫
R3

F(u)dx ≤ Cε

∫
R3
|u|2 dx + ε

∫
R3
|u|

14
3 dx ≤ Cε ∥u∥22 + εC 14

3
∥∇u∥42 ∥u∥

2
3
2 . (2.4)

Thus, by (1.3) and (2.4), choosing ε = b

8C 14
3

m
1
3
, for u ∈ S m, we have

I(u) ≥
a
2
∥∇u∥22 +

b
8
∥∇u∥42 −Cεm, (2.5)

which implies I is coercive and bounded from below on S m, and, thus, Em is well-defined.
For any u ∈ H1(R3) and s ∈ R, we define (s ∗ u)(x) := e3s/2u(esx) for a.e. x ∈ R3. Fixed u ∈

S m ∩ L∞(R3), it is clear that s ∗ u ∈ S m and

∥∇(s ∗ u)∥2 → 0 and ∥s ∗ u∥∞ → 0, as s→ −∞.

Then, by ( f1) and (1.3), we have

lim
s→−∞

I(s ∗ u) = lim
s→−∞

(
a
2
∥∇(s ∗ u)∥22 +

b
4
∥∇(s ∗ u)∥42 −

∫
R3

F(s ∗ u)dx
)
= 0.

Thus, Em ≤ 0 for any m > 0.
(ii) In view of ( f3) and arguing as in the proof of Theorem 2 in [24], we can find a function u ∈

H1(R3), such that
∫
R3 F(u)dx > 0. For any m > 0, we set um(x) := u

((
∥u∥22

m

) 1
3

x
)
. Clearly, um ∈ S m.

Then, it follows from (1.3) that

I(um) =
am

1
3

2∥u∥
2
3
2

∥∇u∥22 +
bm

2
3

4∥u∥
4
3
2

∥∇u∥42 −
m
∥u∥22

∫
R3

F(u)dx,

Electronic Research Archive Volume 31, Issue 5, 2580–2594.
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which implies that Em ≤ I(um) < 0 for m > 0 large enough.
(iii) For any m > 0, we choose u ∈ S m ∩ L∞(R3). By ( f4), for M := a∥∇u∥22

∥u∥
10
3
10
3

> 0, there exists δ > 0,

such that F(t) ≥ M|t|
10
3 for any |t| ≤ δ. Then, for any s < 0 small enough, such that ∥s ∗ u∥∞ ≤ δ and

e2s∥∇u∥22 <
2a
b , by (1.3), we have

Em ≤ I(s ∗ u) ≤
ae2s

2
∥∇u∥22 +

be4s

4
∥∇u∥42 − Me2s

∫
R3
|u|

10
3 dx

=
be4s

4
∥∇u∥42 −

ae2s

2
∥∇u∥22

< 0.

(iv) Fixed p ∈ ( 10
3 ,

14
3 ). By ( f2) and ( f ′4), there exists C > 0, such that

F(t) ≤ C
(
|t|

10
3 + |t|

14
3 + |t|p

)
, for all t ∈ R.

For any u ∈ H1(R3), from (2.1), we have∫
R3

F(u)dx ≤ C
∫
R3

(
|u|

10
3 + |u|

14
3 + |u|p

)
dx

≤ C
(
C 10

3
∥∇u∥22 ∥u∥

4
3
2 +C 14

3
∥∇u∥42 ∥u∥

2
3
2 +Cp ∥∇u∥

3(p−2)
2

2 ∥u∥
6−p

2
2

)
.

(2.6)

Taking m small enough, such that

CC 10
3

m
2
3 ≤

a
4

and CC 14
3

m
1
3 ≤

b
8
, (2.7)

for any u ∈ S m, by (1.3) and (2.6), we conclude that

I(u) =
a
2
∥∇u∥22 +

b
4
∥∇u∥42 −

∫
R3

F(u)dx

≥ ∥∇u∥22

(
a
2
+

b
4
∥∇u∥22 −C

(
C 10

3
m

2
3 +C 14

3
m

1
3 ∥∇u∥22 +Cpm

6−p
4 ∥∇u∥

3p−10
2

2

))
≥ ∥∇u∥22

(
a
4
+

b
8
∥∇u∥22 −CCpm

6−p
4 ∥∇u∥

3p−10
2

2

)
.

(2.8)

By Young’s inequality and (2.8), one has

CCpm
6−p

4 ∥∇u∥
3p−10

2
2 =

[ b
2(3p − 10)

] 3p−10
4

∥∇u∥
3p−10

2
2

[2(3p − 10)
b

] 3p−10
4

CCpm
6−p

4

≤
b
8
∥∇u∥22 +

14 − 3p
4

(CCp)
4

14−3p

[2(3p − 10)
b

] 3p−10
14−3p

m
6−p

14−3p

≤
b
8
∥∇u∥22 +

a
4
,

(2.9)
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if we choose m > 0 satisfies

m
6−p

14−3p ≤ (CCp)
4

3p−14
a

14 − 3p

[ b
2(3p − 10)

] 3p−10
14−3p

. (2.10)

Therefore, from (2.8) and (2.9), we deduce I(u) ≥ 0 for any u ∈ S m if we choose m > 0 small
enough, such that (2.7) and (2.10) hold. Therefore, from (i), we infer that Em = 0 for m > 0 small
enough.

(v) To show the continuity, it is equivalent to prove that for a given m > 0, and any positive sequence
mk, such that mk → m as k → ∞, one has

lim
k→∞

Emk = Em. (2.11)

In view of the definition of Emk , for every k ∈ N, let uk ∈ S mk , such that

I(uk) ≤ Emk +
1
k
≤

1
k
. (2.12)

From (2.5), it follows that {uk} is bounded in H1(R3). By ( f1), for any ε > 0 there exists Cε > 0,
such that

| f (t)| ≤ ε|t| +Cε|t|5 and |F(t)| ≤ ε|t|2 +Cε|t|6, for all t ∈ R. (2.13)

Then, noting that
√

m
mk

uk ∈ S m, from mk → m as k → ∞, (2.13) and (2.12), similar to the proof
of [23, Lemma 2.4], we obtain that

Em ≤ I
(√ m

mk
uk

)
= I(uk) + o(1) ≤ Emk + o(1). (2.14)

On the other hand, choosing a minimization sequence {vn} ∈ S m for I, we can follow the same line
as in (2.14) to obtain that Emk ≤ Em + o(1). Therefore, we obtain (2.11).

To show that Em is nonincreasing in m > 0, we first claim that for any m > 0,

Etm ≤ tEm, for any t > 1. (2.15)

Indeed, for any u ∈ S m and t > 1, set v(x) := u(t−
1
3 x). Then, v ∈ S tm and we deduce that

Etm ≤ I(v) =
at

1
3

2
∥∇u∥22 +

bt
2
3

4
∥∇u∥42 − t

∫
R3

F(u)dx

= tI(u) +
at

1
3 (1 − t

2
3 )

2
∥∇u∥22 +

bt
2
3 (1 − t

1
3 )

4
∥∇u∥42

< tI(u).

(2.16)

Since u ∈ S m is arbitrary, we obtain the inequality (2.15). As a consequence, from (i) and (2.15), it
follows that Em is nonincreasing.

In view of Lemma 2.1, m∗ := inf{m ∈ (0,+∞), Em < 0} is well-defined and it is easy to obtain the
following property of m∗.
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Lemma 2.3. Assume that ( f1)–( f3) are satisfied. Then, the following statements are true:

(i) If ( f4) holds, then m∗ = 0.
(ii) If ( f ′4) holds, then m∗ > 0; in addition, Em = 0 for m ∈ (0,m∗] and Em < 0 for m ∈ (m∗,+∞).

The following subadditivity property is crucial in the proof of Theorem 1.1.

Lemma 2.4. Assume that ( f1)–( f3) are satisfied and either ( f4) or ( f ′4) holds. Then, for any m > m∗,
we have Em < Ek + Em−k for all k ∈ (0,m).

Proof. For any m > m∗, let {un} ⊂ S m, such that I(un) → Em. We claim that there exists δ > 0, such
that

lim inf
n→∞

∥∇un∥
2
2 ≥ δ. (2.17)

Indeed, if (2.17) is not true, then passing to a subsequence, ∥∇un∥
2
2 → 0. Thus, by (2.13) and

Sobolev’s inequality, we obtain

lim
n→∞

∫
R3

F(un)dx = 0.

Then, recalling m > m∗, by Lemma 2.3 and (1.3), we deduce that

0 > Em = lim
n→∞

I(un) = lim
n→∞

(
a
2
∥∇un∥

2
2 +

b
4
∥∇un∥

4
2 −

∫
R3

F(un)dx
)
= 0,

a contradiction. Therefore, it follows from (2.17) that

Etm ≤ tI(un) +
at

1
3 (1 − t

2
3 )

2
∥∇un∥

2
2 +

bt
2
3 (1 − t

1
3 )

4
∥∇un∥

4
2

≤ tEm +
at

1
3 (1 − t

2
3 )δ

2
+

bt
2
3 (1 − t

1
3 )δ2

4
+ o(1),

which implies that for any t > 1 and m > m∗,

Etm < tEm. (2.18)

For k ∈ (0,m), if k > m∗ and m − k > m∗, using (2.18), we have

Em < Ek + Em−k. (2.19)

On the other hand, if k ≤ m∗ or m − k ≤ m∗, from Lemma 2.3, we deduce that Ek = 0 or Em−k = 0.
Then, using (2.18), we also show that (2.19) holds.

Remark 2.1. It is worth mentioning that the strict inequality in Lemma 2.4 is obtained without the
priori assumption “Em is achieved for any m > m∗”, and so our result settles an open question
proposed by Jeanjean and Lu in [21, Remark 2.3] in the general conditions framework.

As in [21], we give a mountain pass type characterization of the nontrivial solutions of (1.1) with
λ ∈ R, as below.
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Lemma 2.5. Assume that f satisfies ( f1). If J′λ(ω) = 0 for some ω ∈ H1(R3)\{0}, where the functional
Jλ is defined by (1.4), then for any δ > 0 and any L > 0, there exist a constant T = T (ω, L) > 0 and a
continuous path γ : [0,T ]→ H1(R3), such that
(i) γ(0) = 0, Jλ(γ(T )) < −1, maxt∈[0,T ] Jλ(γ(t)) = Jλ(ω);
(ii) γ(τ) = ω for some τ ∈ (0,T ), Jλ(γ(t)) < Jλ(ω) for any t ∈ [0,T ] such that ∥γ(t) − ω∥ ≥ δ;
(iii) m(t) = ∥γ(t)∥22 is a strictly increasing continuous function with m(T ) > L.

Proof. For any ω ∈ H1(R3)\{0} with J′λ(ω) = 0, we define a continuous function

γ(t) :=

ω( ·t ) if t > 0,
0, if t = 0.

Then, it is clear that m(t) := ∥γ(t)∥22 = t3 ∥ω∥22 is strictly increasing with respect to t and m(t) → ∞
as t → ∞. Since ω is a critical point of Jλ, it follows from (1.4) and the Pohozaev identity (see [3])

P(ω) :=
a
2
∥∇ω∥22 +

b
2
∥∇ω∥42 −

3
2
λ∥ω∥22 − 3

∫
R3

F(ω)dx = 0 (2.20)

that
Jλ(γ(t)) =

a
2
∥∇γ(t)∥22 +

b
4
∥∇γ(t)∥42 −

∫
R3

F(γ(t))dx −
λ

2
∥γ(t)∥22

=
a
2

t ∥∇ω∥22 +
b
4

t2 ∥∇ω∥42 − t3
∫
R3

F(ω)dx −
λ

2
t3 ∥ω∥22

=
a
2

t ∥∇ω∥22 +
b
4

t2 ∥∇ω∥42 −
t3

6

(
a ∥∇ω∥22 + b ∥∇ω∥42

)
=

(
t
2
−

t3

6

)
a ∥∇ω∥22 +

(
t2

4
−

t3

6

)
b ∥∇ω∥42 .

Thus, by a simple computation, Jλ(γ(t)) has a unique maximum at t = 1 and Jλ(γ(t)) → −∞ as
t → ∞. Consequently, from the above argument, for any L > 0, there exists a large enough constant
T = T (ω, L) > 0, such that Jλ(γ(T )) < −1 and m(T ) > L and the continuous path γ(t) : [0,T ] →
H1(R3) is desired.

3. Proof of main theorems

In this section, we devote to proving our main theorems. We first give the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.1] (i) Fixed m > 0, from Lemma 2.2 (iii), one has Em < 0. Let {un} ⊂ S m

be a minimization sequence, such that I(un) → Em. By (2.5), {un} is bounded in H1(R3). Up to
subsequence, there exists u ∈ H1(R3), such that un ⇀ u in H1(R3), un → u in Ls

loc(R
3) for s ∈ [2, 6) and

un(x)→ u(x) a.e. in R3. Denote

ρ := lim sup
n→∞

sup
y∈R3

∫
B1(y)
|un|

2 dx.

Suppose ρ = 0. In view of Lions’ Lemma [26, Lemma 1.21], one has un → 0 in Ls(R3) for s ∈ (2, 6).
Note that by ( f1) and ( f2), for any ε > 0 there exists Cε > 0, such that

F(t) ≤ ε|t|2 +Cε|t|
14
3 , for all t ∈ R. (3.1)
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Then, using (3.1) and (2.1), we obtain

lim sup
n→∞

∫
R3

F(un)dx ≤ 0.

Consequently, in view of Lemma 2.2 (iii), we deduce that

0 > Em = lim
n→∞

I(un) ≥ − lim sup
n→∞

∫
R3

F(un)dx ≥ 0,

a contradiction. Thus, {un} is non-vanishing, i.e., ρ > 0. Passing to a subsequence if necessary, there
exists {yn} ⊂ R

3 and v ∈ H1(R3)\{0}, such that un(x + yn) =: ũn ⇀ v in H1(R3), ũn → v in Lp
loc(R

3) for
p ∈ [2, 6) and ũn(x) → v(x) a.e. in R3. Clearly, ∥̃un∥

2
2 = m, I(ũn) → Em and ∥v∥22 ≤ m. Then, from

Lemma 2.1, we infer that

Em = lim
n→∞

I(ũn)

= I(v) + lim
n→∞

[I(ũn − v) +
b
2
∥∇v∥22 ∥∇(ũn − v)∥22]

≥ E∥v∥22 + Em−∥v∥22
.

(3.2)

If ∥v∥22 < m, it follows from Lemma 2.3 (i), Lemma 2.4 and (3.2) that

Em ≥ E∥v∥22 + Em−∥v∥22
> Em,

a contradiction. Therefore, ∥v∥22 = m and so it follows from (3.2) that ũn → v and I(v) = Em. Hence,
Em < 0 is achieved at v ∈ S m.

(ii) By Lemma 2.3 (ii), when m > m∗ one has Em < 0 and when 0 < m ≤ m∗ one has Em = 0. For
m > m∗, one can follow the same line in the proof of Item (i) to obtain that Em < 0 is achieved at some
v ∈ S m. Now we show that if 0 < m < m∗ then Em = 0 is not achieved. Indeed, arguing indirectly, we
assume that there exists m ∈ (0,m∗), such that Em = 0 is achieved at some v ∈ S m. Then, from Lemma
2.3 (ii) and (2.16), it follows that

0 = Em∗ <
m∗

m
I(v) =

m∗

m
Em = 0,

a contradiction.
(iii) Let mn = m∗ + 1

n . Then, from Lemma 2.3 (ii), Emn < 0 for all n ∈ N+. Similar to the proof of
Item (i), there exists {un} ⊂ S mn , such that

I(un) = Emn < 0, for all n ∈ N+. (3.3)

Since by Lemmas 2.2 (v) and 2.3 (ii),

I(un) = Emn → Em∗ = 0, (3.4)

it follows from (2.5) that {un} is bounded in H1(R3). Set

ρ := lim sup
n→∞

sup
y∈R3

∫
B1(y)
|un|

2 dx.
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Assume ρ = 0. From Lions’ Lemma [26, Lemma 1.21], un → 0 in Ls(R3) for s ∈ (2, 6). By ( f2) and
( f̃ ′4), for any ε > 0, there exist Cε, such that

F(t) ≤ ε |t|
10
3 +Cε |t|

14
3 , for all t ∈ R. (3.5)

Then,

lim
n→∞

∫
R3

F(un)dx ≤ 0.

Thus, by (3.4), one has

0 = Em∗ = lim
n→∞

I(un) ≥ lim
n→∞

(
a
2
∥∇un∥

2
2 +

b
4
∥∇un∥

4
2

)
,

which implies ∥∇un∥2 → 0. Then, it follows from (1.3), (3.5) and (2.1) that

I(un) ≥
1
4
∥∇un∥

2
2

(
2a + b ∥∇un∥

2
2 − 4ε ∥un∥

4
3
2 − 4Cε ∥un∥

2
3
2 ∥∇un∥

2
2

)
.

Therefore, if we choose ε > 0 small enough, I(un) ≥ 0 for large n ∈ N+. This contradicts (3.3).
Thus, ρ > 0. Up to subsequence, there exists {yn} ⊂ R

3 and v ∈ H1(R3)\{0}, such that un(x+yn) =: un ⇀

v in H1(R3), un → v in Lp
loc(R

3) for p ∈ [2, 6) and un(x) → v(x) a.e. in R3. Then, ∥un∥
2
2 = ∥un∥

2
2 → m∗,

I(un) → Em∗ and ∥v∥22 ≤ m∗. As a consequence, by (3.4), Lemma 2.1, Lemma 2.2 (v) and Lemma 2.3
(ii), we obtain

0 = Em∗ = lim
n→∞

I(un)

= I(v) + lim
n→∞

[I(un − v) +
b
2
∥∇u∥22 ∥∇(un − v)∥22]

≥ E∥v∥22 + Em∗−∥v∥22
= 0,

(3.6)

which implies ∥∇(un − v)∥22 → 0. Then, using (3.5), (2.1) and (1.3), one can show that

lim
n→∞

I(un − v) ≥ 0.

Therefore, from (3.6), it follows that I(v) = limn→∞ I(un) = Em∗ = 0. Noting that by Item (ii), Em is
not achieved for any m ∈ (0,m∗), we conclude that ∥v∥22 = m∗. Hence, Em∗ = 0 is achieved at v ∈ S m∗ .

(iv) For any minimizer v ∈ S m of I, from the Pohozaev identity associated to (1.1) (see (2.20)) and
the fact that I(v) = Em ≤ 0, we deduce that

0 ≥ I(v) = I(v) −
1
3

P(v) =
a
3
∥v∥22 +

b
12
∥v∥42 +

1
2
λ(v)m

and, therefore, λ(v) < 0.
(v) From Item (ii), m∗ > 0. Arguing indirectly, we suppose that there exists v ∈ S m∗ such that

I(v) = Em∗ = 0. Then,
a
2
∥∇v∥22 +

b
4
∥∇v∥42 =

∫
R3

F(v)dx, (3.7)
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and there exists λ(v) ∈ R, such that v is a solution of (1.1) with λ = λ(v). As in Item (iv), λ < 0.
Moreover, v lies in the corresponding Nehari manifold, i.e.,

a∥∇v∥22 + b∥∇v∥42 = λ∥v∥
2
2 +

∫
R3

f (v)vdx, (3.8)

and satisfies the folowing Pohozaev identity

a
6
∥∇v∥22 +

b
6
∥∇v∥42 =

λ

2
∥v∥22 +

∫
R3

F(v)dx, (3.9)

Noting that f (t)t ≤ 10
3 F(t), combining (3.7) and (3.8), we conclude that

a
5
∥∇v∥22 −

b
20
∥∇v∥42 ≥ −

3λ
10
∥v∥22. (3.10)

In view of (3.7) and (3.9), we then obtain that

2a
3
∥∇v∥22 +

b
6
∥∇v∥42 = −λ∥v∥

2
2,

which, jointly with (3.10), implies ∥∇v∥42 = 0. Hence, v = 0, contrary to v ∈ S m∗ . The proof is
complete.

Now we present the proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2] (i) In order to show that the minimizer v ∈ S m of I is a ground state of
(1.1) with λ = λ(v), it is equivalent to prove that for any ω ∈ H1(R3)\{0}, such that J′λ(ω) = 0,

Jλ(ω) ≥ Jλ(v) = Em −
1
2
λm.

In view of Lemma 2.5, for L := m > 0, there exists a continuous path γ : [0,T ]→ H1(R3) satisfying
Jλ(ω) = maxt∈[0,T ] Jλ(γ(t)) and there exists t0 ∈ (0,T ), such that ∥γ(t0)∥22 = m. As a consequence,

Jλ(ω) = max
t∈[0,T ]

Jλ(γ(t)) ≥ Jλ(γ(t0)) = I(γ(t0)) −
1
2
λm ≥ Em −

1
2
λm,

as required.
Now, we prove that any minimizer v of I on S m has constant sign. Indeed, for any given minimizer

v ∈ S m of I, using the notations v+ := max{0, v} and v− := min{0, v}, if m± := ∥v±∥22 , 0, then
m = m+ + m− and, thus, by (2.15), we have

Em = I(v) = I(v+) + I(v−) +
b
2

∫
R3
|∇v+|2dx

∫
R3
|∇v−|2dx

≥ I(v+) + I(v−) ≥ Em+ + Em− ≥
m+

m
Em +

m−

m
Em = Em,

which implies ∫
R3
|∇v+|2dx

∫
R3
|∇v−|2dx = 0.
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Therefore, we obtain v+ = 0 or v− = 0, a contradiction. Hence, v has constant sign. Without loss of
generality, we may assume v ≥ 0. Noting that by regularity, any nonnegative ground state of (1.1) with
λ = λ(v) is of class C1, we also deduce from [27, Theorem 2] that v is radially symmetric with respect
to the origin up to translation in R3 (i.e., v(x) = v(r), where r = |x|). Moreover, in view of [28, Lemma
3.2], we can follow the same line of the proof of [21, Theorem 1.4] to prove that v is nonincreasing
with respect to the radial variable. Therefore, we obtain that the minimizer v is radially symmetric up
to translation and monotone with respect to r. We omit the details and leave them to the reader.

(ii) Obviously, from (i), we infer that any ground state ω ∈ H1(R3) of (1.1) satisfies

Jλ(ω) = Em −
1
2
λm. (3.11)

Arguing indirectly, we assume that ∥ω∥22 , m. For given δ :=
∣∣∣√m − ∥ω∥2

∣∣∣ > 0 and L := m > 0,
from Lemma 2.5, there exists a continuous path γ : [0,T ] → H1(R3) and there exists t0 ∈ (0,T ), such
that ∥γ(t0)∥22 = m and ∥γ(t0) − ω∥2 ≥ δ. Then, from Lemma 2.5 (ii), we have

Jλ(ω) > Jλ(γ(t0)) = I(γ(t0)) −
1
2
λm ≥ Em −

1
2
λm,

which contradicts with (3.11). It follows that ∥ω∥22 = m and I(ω) = Em. This completes the proof.
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