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1. Introduction

In population dynamics, the study of traveling waves can help us to understand the mechanisms
behind various propagating wave patterns better [1, 2]. The existence and stability of various types of
wave solutions have been theoretically proved in many population models [3].

Based on the delayed Nicholson’s blowflies equation [4], So and Yang [5] proposed the following
diffusive version of delayed Nicholson’s blowflies equation

∂u(x, t)
∂t

= d1
∂2u(x, t)
∂x2 − δu(x, t) + pu(x, t − τ)e−au(x,t−τ), (1.1)

which describes the population growth of Nicholson’s blowflies with spatial diffusion. So and Yang
[5] studied the stability of the steady-state solutions for system (1.1) under the Dirichlet problem.
So and Zou [6] proved the existence of traveling wavefronts. Stability of traveling wavefronts were
investigated in [7, 8]. Yang [9] studied the existence and stability of periodic traveling waves. In order
to describe the individual diffuse phenomenon during the reproductive cycle and more general birth
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functions, So et al. [10] derived the following reaction-diffusion equation involving nonlocal delay
effects

∂u(x, t)
∂t

= d1
∂2u(x, t)
∂x2 − δu(x, t) + ε

∫ +∞

−∞

Jα(y)b(u(x − y, t − τ))dy, (1.2)

and obtained Hopf bifurcation of model (1.2). See [11–16] for more progress on various types of
traveling waves of system (1.2). In [17], Liang and Wu considered a delayed reaction diffusion equation
with advection

∂u(x, t)
∂t

= d1
∂2u(x, t)
∂x2 + d2

∂u(x, t)
∂x

− δu(x, t) + ε
∫ +∞

−∞

Jα(y)b(u(x + d2τ − y, t − τ))dy, (1.3)

which describes the pattern dynamics of a single-species population with two age classes and a fixed
maturation period living in a spatial transport field and proved the existence of traveling wavefront.
Stability of the traveling wavefronts were investigated in [18–20]. Of particular interest is the influence
of advection terms on the propagation of traveling wave solutions. The influence of advection terms on
traveling wavefronts were studied by many researchers [19,21]. To the best of our knowledge, however,
the work on periodic traveling wave solution in the population model like system (1.3) with advection
effect is relatively rare. Moreover, in the previous studies on periodic traveling wave solutions mainly
focused on theoretical proof, see [9, 11, 22], which lacked the support of numerical simulation.

The objective of this paper is to derive the influence of advection terms on periodic traveling wave
solutions and illustrate our main results by using numerical simulations. In order to make the influ-
ence of advection terms more obvious, in model (1.3), we suppose that the diffusion rate d1 = 0 and
replace the heat kernel function Jα(y) by the Dirac function to eliminate the influence of diffusion and
nonlocal delay. Moreover, we choose the Nicholson’s birth function on account of facilitate numeri-
cal simulations. Therefore, we consider the Nicholson’s blowflies model with delay and advection as
follows:

∂u(x, t)
∂t

= d
∂u(x, t)
∂x

− δu(x, t) + pu(x, t − τ)e−au(x,t−τ), (1.4)

with the following initial condition

u(x, t) = u0(x, t), t ∈ [−τ, 0], x ∈ R.

Here, u(x, t) denotes the total mature population at location x ∈ R and time t ≥ 0; d is the advection
rate of the mature represents the velocity of the spatial transport field; δ is the per capita adult death
rate; p is the maximum per capita daily egg production rate; τ is a delay represents the maturation
time; 1

a is the size at which the population reproduces at its maximum rate, where d, δ, p, a and τ are
positive constants. Moreover, we assume that p > δ such that system (1.4) always has two equilibria
u⋆ = 0 and u∗ = 1

a ln p
δ
∈ R+.

2. Main results

In this part, the existence, stability and bifurcation direction of periodic traveling wave solutions of
system (1.4) is proved theoretically by using the Hopf bifurcation theorem, center manifold theorem
as well as normal form theory [23], which are bifurcated from two equilibria, respectively.

For the equilibrium u⋆ = 0, we have the following result.
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Theorem 2.1. For each fixed wave velocity c, when the advection rate d > c, Eq (1.4) has a branch
of periodic traveling waves bifurcating from u⋆ for the bifurcation parameter τ near τ⋆n , with period
approximately equals to 2π

ω⋆
. Moreover, if κ⋆ > 0 (resp. < 0), the bifurcation is backward (resp.

forward) and periodic traveling waves are unstable (resp. have the same stability as u⋆ before the
bifurcation), where ω⋆, τ⋆n and κ⋆ are shown in Eqs (2.6), (2.7) and (2.15), respectively.

Proof. Let the traveling wave variable s = x + ct and u(x, t) = v(s), then Eq (1.4) can be rewriten as

(c − d)v̇(s) = −δv(s) + pv(s − cτ)e−av(s−cτ). (2.1)

Linearizing system (2.1) around v⋆ = u⋆ = 0, we have

(c − d)v̇(s) = −δv(s) + pv(s − cτ). (2.2)

The characteristic equation of system (2.2) is

(c − d)λ + δ − pe−cτλ = 0. (2.3)

When τ = 0, Eq (2.3) reduces to
(c − d)λ + δ − p = 0,

which has a real root λ = p−δ
c−d . If 0 < c < d, we have λ < 0 ; if c > d, then λ > 0 .

Assume that there is some ω > 0 such that λ = iω is a root of Eq (2.3), i.e.,

i(c − d)ω + δ − pe−icτω = 0.

From Euler’s formula, we obtain p sin(cτω) = (d − c)ω,
p cos(cτω) = δ.

(2.4)

In view of sin2(cτω) + cos2(cτω) = 1, from system (2.4), we have

(c − d)2ω2 = p2 − δ2. (2.5)

Equation (2.5) have a positive solution

ω⋆ =

√
p2 − δ2

(d − c)2 .
(2.6)

Substituting ω⋆ into Eq (2.4), we obtain

τ⋆n =
nπ + arctan

(
(d−c)ω⋆

δ

)
cω⋆

n = 0, 1, 2, · · ·, if c < d,

n = 1, 2, 3, · · ·, if c > d.

 (2.7)

It implies that Eq (2.3) has a pair of purely imaginary roots λ = ±iω⋆ when τ = τ⋆n . Moreover, we have

d

dλ

[
(c − d)λ + δ − pe−cτλ

]∣∣∣∣∣
τ=τ⋆n

= c − d + cδτ⋆n ± i(c2 − cd)τ⋆nω⋆ , 0,
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i.e., λ = iω⋆ is a simple root of Eq (2.3). Moreover, we need to check the transversality condition in
the Hopf bifurcation theorem. To this end, we discuss the sign of

Re
dλ

dτ

∣∣∣∣∣
τ=τ⋆n

.

Taking derivatives of system (2.3) with respect to τ yields that

(c − d)
dλ

dτ
+ pcτe−cτλdλ

dτ
+ pcλe−cτλ = 0. (2.8)

Noticing that pe−cτλ = (c − d)λ + δ, we rewrite Eq (2.8) as

(c − d)
dλ

dτ
+ cτ[δ + (c − d)λ]

dλ

dτ
+ cλ[δ + (c − d)λ] = 0.

Hence, we obtain
dλ

dτ
= −

cδλ + c(c − d)λ2

c − d + cτδ + cτ(c − d)λ
.

Separating the real part, we yield

Re
dλ

dτ

∣∣∣∣∣
τ=τ⋆n

=
c(c − d)2ω2

⋆

(c − d + cδτ⋆n )2 + [(c2 − cd)τ⋆nω⋆]2 > 0.

It implies that the purely imaginary roots of Eq (2.3) will fall into the right half plane of the complex
plane when the delay τ increases slightly around the critical value τ = τ⋆n . Based on the continuity
of function λ(τ), we know that only the case of c < d satisfies the transversality condition, i.e., when
c < d, equation (1.4) has 2π

ω⋆
−periodic traveling waves bifurcating from u⋆.

Next, we study the stability and bifurcation direction of periodic traveling wave solutions. Let
y(s) = v(cτs) and τ = τ⋆n + γ, γ ∈ R. Equation (2.1) can be rewritten as

ẏ(s) =
c(τ⋆n + γ)

c − d

[
−δy(s) + py(s − 1)e−ay(s−1)

]
. (2.9)

From Taylor’s formula, we have
ẏ(s) = L(γ)ys + H(γ, ys), (2.10)

where L(γ) and H(γ, ·) are given by

L(γ)ϕ = −
c(τ⋆n + γ)

c − d
[δϕ(0) − pϕ(−1)],

and

H(γ, ϕ) =
pc(τ⋆n + γ)

c − d

[
−aϕ2(−1) +

a2

2
ϕ3(−1)

]
+ O(ϕ4(−1)),

for ϕ ∈ C([−1, 0],R), respectively.
Define a bounded variation function as

η(γ, ς) = −
c(τ⋆n + γ)

c − d
[δδ̄(ς) + pδ̄(ς + 1)],
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such that

L(γ)ϕ =
∫ 0

−1
dςη(γ, ς)ϕ(ς),

where δ̄(·) is the Delta function. Moreover, for ψ ∈ C([−1, 0],R), we define

A(γ)ψ(θ) =


dψ(θ)
dθ

, if θ ∈ [−1, 0),∫ 0

−1
dςη(γ, ς)ψ(ς), if θ = 0,

and

N(γ)ψ(θ) =

 0, if θ ∈ [−1, 0),
H(γ, ψ), if θ = 0.

Hence, we can rewrite Eq (2.10) as
ẏs = A(γ)ys + N(γ)ys, (2.11)

where ys(θ) = y(s + θ), θ ∈ [−1, 0].
Define the adjoint operator A∗ of A(0) and the bilinear form as

A∗φ(ξ) =


−
dφ(ξ)
dξ

, if ξ ∈ (0, 1],∫ 0

−1
dςη(0, ς)φ(−ς), if ξ = 0,

and

⟨φ, ψ⟩ = φ̄(0)ψ(0) −
∫ 0

−1

∫ ς

0
φ̄(ζ − ς)dςη(0, ς)ψ(ζ)dζ,

where ψ ∈ C([−1, 0],R) and φ ∈ C([0, 1],R). Then, we have ⟨φ, A(0)ψ⟩ = ⟨A∗φ, ψ⟩. Hence, we obtain
that q∗(χ) = Deicω⋆τ⋆n χ is the eigenfunction of A∗ associated with −icω⋆τ

⋆
n , and q(θ) = eicω⋆τ⋆n θ is the

eigenfunction of A(0) associated with icω⋆τ
⋆
n , where D = 1

1+ cτ⋆n δ
c−d −icω⋆τ⋆n

. So, we yield

⟨q∗, q̄⟩ = 0, ⟨q∗, q⟩ = 1.

As a solution ys of system (2.11) with γ = 0, we define z(s) = ⟨q∗, ys⟩ and

W(s, θ) = ys(θ) − z(s)q(θ) − z̄(s)q̄(θ). (2.12)

Then, we yield ⟨q∗,W⟩ = 0 and

W(s, θ) = W(z, z̄, θ) ≜ W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · ·.

It follows ⟨q∗, ẏs⟩ = ⟨q∗, A(0)ys⟩ + ⟨q∗,N(0)ys⟩ that

ż(s) =icω⋆τ
⋆
n z(s) + D̄H(0, ys)

=icω⋆τ
⋆
n z(s) + D̄H(0, z(s)q(θ) + z̄(s)q̄(θ) +W(z, z̄, θ)).
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Let

f (z, z̄)(s) ≜ D̄H(0, z(s)q(θ) + z̄(s)q̄(θ) +W(z, z̄, θ)) = f20
z2

2
+ f11zz̄ + f02

z̄2

2
+ f21

z2z̄
2
+ · · ·,

where

f20 =
−2apcD̄τ⋆n

c − d
e−2icω⋆τ⋆n , f11 =

−2apcD̄τ⋆n
c − d

, f02 =
−2apcD̄τ⋆n

c − d
e2icω⋆τ⋆n ,

and

f21 =
apcD̄τ⋆n

c − d

[
3ae−icω⋆τ⋆n − 4e−icω⋆τ⋆n W11(−1) − 2eicω⋆τ⋆n W20(−1)

]
.

Next, we compute W11(θ) and W20(θ). Taking derivatives of system (2.12) with respect to s yields that

Ẇ =ẏs − żq − ˙̄zq̄

=A(0)ys + N(0)ys − [icω⋆τ
⋆
n z + f (z, z̄)]q − [−icω⋆τ

⋆
n z̄ + f̄ (z, z̄)]q̄

=A(0)[zq + z̄q̄ +W] + N(0)ys − [icω⋆τ
⋆
n z + f (z, z̄)]q + [icω⋆τ

⋆
n z̄ − f̄ (z, z̄)]q̄

=A(0)W + N(0)ys − f (z, z̄)q − f̄ (z, z̄)q̄,

where

N(0)ys =


1
D̄

f (z, z̄), if θ = 0,

0, if θ ∈ [−1, 0).

Moreover, we have

Ẇ =Wzż +Wz̄ ˙̄z
=[W20z +W11z̄ + · · ·]ż + [W11z +W02z̄ + · · ·]˙̄z
=[W20z +W11z̄][icω⋆τ

⋆
n z + f (z, z̄)] + [W11z +W02z̄][−icω⋆τ

⋆
n z̄ + f̄ (z, z̄)] + · · ·.

Hence, we yield

(2icω⋆τ
⋆
n I − A(0))W20(θ) =


− f20q(θ) − f̄02q̄(θ), if θ ∈ [−1, 0),(

1
D̄
− 1

)
f20 − f̄02, if θ = 0,

and

−A(0)W11(θ) =


− f11q(θ) − f̄11q̄(θ), if θ ∈ [−1, 0),(

1
D̄
− 1

)
f11 − f̄11, if θ = 0.

As θ ∈ [−1, 0), we have
Ẇ20(θ) =2icω⋆τ

⋆
n w20(θ) + f20q(θ) + f̄02q̄(θ),

Ẇ11(θ) = f11q(θ) + f̄11q̄(θ).

Hence, we have

W20(θ) =
i f20

cω⋆τ⋆n
eicω⋆τ⋆n θ +

i f̄02

3cω⋆τ⋆n
e−icω⋆τ⋆n θ + E1e2icω⋆τ⋆n θ,

W11(θ) = −
i f11

cω⋆τ⋆n
eicω⋆τ⋆n θ +

i f̄11

cω⋆τ⋆n
e−icω⋆τ⋆n θ + E2.

(2.13)
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When θ = 0, we obtain∫ 0

−1
dςη(0, ς)W20(ς) =2icω⋆τ

⋆
n W20(0) + f20 + f̄02 −

1
D̄

f20,∫ 0

−1
dςη(0, ς)W11(ς) = f11 + f̄11 −

1
D̄

f11.

(2.14)

Substituting Eq (2.13) into (2.14), we yield

E1 =
f20

D̄
(
2icω⋆τ⋆n −

∫ 0

−1
dςη(0, ς)e2icω⋆τ⋆n ς

) , E2 = −
f11

D̄
∫ 0

−1
dςη(0, ς)

.

It follows [23] that stability and bifurcation direction of periodic orbit is determined by the quantity

κ⋆ = Re
{

i
2cω⋆τ⋆n

[
f11 f20 − 2| f11|

2 −
| f02|

2

3

]
+

f21

2

}
. (2.15)

When κ⋆ > 0 (resp. < 0), there exists ζ > 0 such that for τ ∈ (τn−ζ, τn) (resp. τ ∈ (τn, τn+ζ)), periodic
traveling waves of Eq (1.4) bifurcating from u⋆ are unstable (resp. have the same stability as u⋆ before
the bifurcation). □

Furthermore, for the positive equilibrium u∗ = 1
a ln p

δ
, we obtain the similar result.

Theorem 2.2. For each fixed wave velocity c, when the advection rate d < c and p > δe2, there
exists a branch of periodic traveling wave solutions of system (1.4) with period approximately equals
to 2π

ω∗
, which is bifurcated from u∗ for the bifurcation parameter τ near τ∗n. Moreover, the bifurcation is

backward (resp. forward) and periodic traveling waves are unstable (resp. have the same stability as
u∗ before the bifurcation) if κ∗ > 0 (resp. < 0), where ω∗, τ∗n and κ∗ are shown in Eqs (2.17)–(2.19),
respectively.

In view of the proof of Theorem 2.2 is similar to Theorem 2.1, we only give the simple proof of
Theorem 2.2 included some key relations.
Proof of Theorem 2.2. Linearizing Eq (2.1) at v∗ = u∗, we obtain the following characteristic equation

(c − d)λ + δ − δ
(
1 − ln

p
δ

)
e−cτλ = 0. (2.16)

When τ = 0, the characteristic equation reduces to (c − d)λ + δ ln p
δ
= 0, which has a real root

λ = δ
d−c ln p

δ
. We know that λ > 0 as 0 < c < d, and λ < 0 with c > d. Similarly to the above process,

we know that when p > e2δ, Eq (2.16) have a pair of simple purely imaginary roots λ = ±iω∗, where

ω∗ =
δ

|c − d|

√
ln

p
δ

(
ln

p
δ
− 2

)
, (2.17)

with

τ = τ∗n =
(n + 1)π + arctan

(
(d−c)ω∗

δ

)
cω∗

, n = 0, 1, 2, · · ·. (2.18)
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Moreover, we have

Re
dλ

dτ

∣∣∣∣∣
τ=τ∗n

=
c(c − d)2ω2

∗

(c − d + cδτ∗n)2 + [(c2 − cd)τ∗nω∗]2 > 0.

It implies that when p > δe2 and c > d, there exists a branch of periodic traveling wave solutions of
system (1.4) with period approximately equals to 2π

ω∗
, which is bifurcated from u∗ for the bifurcation

parameter τ near τ∗n.
Similarly to the above calculation, we get the quantity determined stability and bifurcation direction

of periodic orbit bifurcating from u∗ as follows:

κ∗ = Re
{

i
2cω∗τ∗n

[
g11g20 − 2|g11|

2 −
|g02|

2

3

]
+

g21

2

}
, (2.19)

where

g20 =
acδτ∗n

(
ln p

δ
− 2

)
(c − d) + cτ∗nδ + ic(c − d)ω∗τ∗n

e−2icω∗τ∗n ,

g11 =
acδτ∗n

(
ln p

δ
− 2

)
(c − d) + cτ∗nδ + ic(c − d)ω∗τ∗n

,

g02 =
acδτ∗n

(
ln p

δ
− 2

)
(c − d) + cτ∗nδ + ic(c − d)ω∗τ∗n

e2icω∗τ∗n ,

and

g21 =
acδτ∗ne−icω∗τ∗n

(c − d) + cτ∗nδ + ic(c − d)ω∗τ∗n

[(
ln

p
δ
− 2

) (
2M11(−1) + e2icω∗τ∗n M20(−1)

)
+ a

(
ln

p
δ
− 3

)]
,

M11(−1) = −
ig11

cω∗τ∗n
e−icω∗τ∗n +

iḡ11

cω∗τ∗n
eicω∗τ∗n +

[
c − d + cτ∗nδ + ic(c − d)ω∗τ∗n

]
g11

cτ∗nδ ln p
δ

,

M20(−1) =
ig20

cω∗τ∗n
e−icω∗τ∗n +

iḡ02

3cω∗τ∗n
eicω∗τ∗n +

[
c − d + cτ∗nδ + ic(c − d)ω∗τ∗n

]
g20e−2icω∗τ∗n

2ic(c − d)ω∗τ∗n + cδτ∗n
[
1 −

(
1 − ln p

δ

)
e−2icω∗τ∗n

] .
When κ∗ > 0 (resp. < 0), the bifurcation is backward (resp. forward) and periodic traveling waves are
unstable (resp. have the same stability as u∗ before the bifurcation). □

3. Numerical simulations

In this section, we illustrate our results by showing some numerical simulations. For Theorem 2.1,
we choose the parameters δ = 1, p = 8, a = 1 and d = 27. Set the wave speed c = 4 < d. Hence, we
have the following system

∂u(x, t)
∂t

= 27
∂u(x, t)
∂x

− u(x, t) + 8u(x, t − τ)e−u(x,t−τ). (3.1)

Substituting the traveling wave variable s = x + 4t and u(x, t) = v(s) into Eq (3.1), we have

− 23v̇(s) = −v(s) + 8v(s − 4τ)e−v(s−4τ). (3.2)
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Here, we only consider the case of the first critical bifurcation parameter τ⋆0 . Based on Section 2, we
know that system (3.2) has periodic solution bifurcating from u⋆ = 0 with τ near τ⋆0 ≈ 1.0471, whose
period approximately equal to 2π

ω⋆
≈ 18.2068. Moreover, by using Mathematica 12.0, we can calculate

that κ⋆ ≈ −1.8848, i.e., the periodic solution is stable, whose bifurcation direction is forward. Let the
initial function v1(s) = cos(s)

10 . In Figure 1(a), we see that the numerical periodic solution of system (3.2)
is bifurcated from u⋆ when τ = 1.0662 > τ⋆0 . It follows Figure 1(b) that solution of (3.2) converges
to the periodic solution. Figure 1(c) shows the numerical periodic traveling waves of Eq (3.1) after
translating back to the original variable.

0 20 40 60 80 100 120 140 160 180 200

s

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

v(
s)

0 50 100 150 200 250 300 350 400

s

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

v(
s)

(a) (b) (c)
Figure 1. (a). Periodic solution of (3.2) for s ∈ [0, 200]; (b). Solution of (3.2) converges
to the periodic solution; (c). Periodic traveling wave solution of (3.1) for t ∈ [0, 100] and
x ∈ [0, 200].

For Theorem 2.2, choosing the parameters d = 0.5, a = 1, δ = 1 and p = 10 such that p > δe2. Let
the wave speed c = 1.2 > d = 0.5. Hence, we obtain the following system

∂u(x, t)
∂t

= 0.5
∂u(x, t)
∂x

− u(x, t) + 10u(x, t − τ)e−u(x,t−τ). (3.3)

The differential equation with wave profile of system (3.3) is

0.7v̇(s) = −v(s) + 10v(s − 1.2τ)e−v(s−1.2τ). (3.4)

It follows Theorem 2.2 that system (3.4) has periodic solution bifurcating from u∗ = ln 10 ≈ 2.303
with τ near τ∗0 ≈ 1.709, where the period approximately equal to 2π

ω∗
≈ 5.269. Moreover, we yield κ∗ ≈

0.1851, i.e., the periodic solution is unstable, whose bifurcation direction is backward. Set the initial
function v2(s) = ln 10 + cos(s)

5 . The numerical periodic solution of system (3.4) with τ = 1.685 < τ∗0
bifurcating from u∗ is shown in Figure 2(a). In Figure 2(b), we see that the periodic solution is unstable.
By translating back to the original variable, the numerical periodic traveling wave solution of Eq (3.3)
bifurcating from u∗ is shown in Figure 2(c).
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Figure 2. (a). Periodic solution of (3.4) for s ∈ [0, 80]; (b). Solution of (3.4) is away
from the periodic solution; (c). Periodic traveling wave solution of (3.3) for t ∈ [0, 100] and
x ∈ [0, 80].

4. Conclusions

In this paper, we investigate the existence, stability and bifurcation direction of periodic traveling
waves for the delayed Nicholson’s blowflies model with advection. By using traveling wave transfor-
mation, the construction of periodic traveling wave solutions of the original model (1.4) is equivalent
to looking for periodic solutions of the delayed Nicholson’s blowflies model (2.1). When introducting
the advection term into the system, we obtain the influence of advection term on the bifurcation po-
sition, stability and bifurcation direction of periodic solutions (see Theorems 2.1 and 2.2). Moreover,
we illustrate our theoretical results by using numerical simulations.

There exist some natural extensions of this article. Indeed, we take the diffusion coefficient of
system (1.3) to be zero in this paper, which greatly reduces the difficulty of our research. In prac-
tice, we also derive the theoretical results of system (1.3) similar to Theorems 2.1 and 2.2 by using
the perturbation technique [22]. However, the numerical simulations of periodic traveling waves for
reaction-diffusion models is very difficult, because the equilibrium points of the corresponding delayed
differential system become hyperbolic in this case. How to use mathematical software to simulate pe-
riodic solutions bifurcated from hyperbolic equilibria of delayed differential equations? These raise us
the future direction.
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