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Abstract: This paper considers blow-up and global existence for a semilinear space-time fractional
pseudo-parabolic equation with nonlinear memory in a bounded domain. We determine the critical ex-
ponents of the Cauchy problem when α < γ and α ≥ γ, respectively. The results obtained in this study
are noteworthy extension to the results of time-fractional differential equation. The critical exponent
is consistent with the corresponding Cauchy problem for the time-fractional differential equation with
nonlinear memory, which illustrates that the diffusion effect of the third order term is not strong enough
to change the critical exponents.
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1. Introduction

This paper concerns the blow-up and global existence of solutions to the following space-time
fractional pseudo-parabolic equation with nonlinear memory

Dαt (u − m∆u)(x, t) + (−∆)β/2u(x, t) = 0I1−γ
t

(
|u|p−1u

)
, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0
u(x, 0) = u0(x), x ∈ Ω

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, u0 ∈ C0(Ω), 0 < α < 1, 0 < β ≤ 2, 0 ≤
γ < 1, p > 1 and m > 0. The symbol Dαt denotes the Caputo time fractional derivative, which is defined
by Dαt u = ∂

∂t

[
0I1−α

t (u(t, x) − u0(x))
]
, where 0I1−α

t u = 1
Γ(1−α)

∫ t

0
u(s)

(t−s)α ds. (−∆)β/2 is the fractional Laplace
operator, which may be defined as

(−∆)β/2v(x, t) = F −1
(
|ξ|βF (v)(ξ)

)
(x, t),
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where F denotes the Fourier transform and F −1 represents the inverse Fourier transform in L2(RN).
Recently, we find that space-time fractional differential equations have been used in lots of appli-

cations, such as memory effect, anomalous diffusion, quantum mechanics, Levy flights in physics etc.
(see [1–5]). It describes some physical phenomena more accurate than classical integral differential
equations [6–8]. On the other hand, the pseudo-parabolic equation is also called as the nonclassical
diffusion equation, which is a significant mathematical model used to depict physical phenomena, such
as non-Newtonian, solid mechanics, and heat conduction(see [9, 10]). Some practical problems such
as the power-law memory [11, 12] in time and space require us to consider the space-time fractional
pseudo-parabolic model, for example, [13] considered the case of pseudo-parabolic equations with
fractional derivatives both in time and space.

If α = 1, m > 0, β = 2, γ = 1, Problem (1.1) becomes classical pseudo-parabolic equation, Cao et
al. [14] considered the following semilinear pseudo-parabolic equation

ut − m△ut − △u = up

They investigated the necessary existence, uniqueness for mild solutions and they also studied the
large time behavior of solutions. Ji et al. [15] considered the Cauchy problem of the following space-
fractional pseudo-parabolic equation

ut − m△ut + (−△)σu = up

They considered the global existence, time-decay rates and the large time behavior of the solutions.
There are also many recent results on the behavior of the solutions for the Cauchy problem of fractional
nonclassical diffusion equations [16–19].

In [20, 21], Zhang and Li considered the following nonlinear time-fractional equation in RN and a
bounded domain respectively,

Dαt u − ∆u = 0I1−γ
t

(
|u|p−1u

)
, t > 0, (1.2)

where p > 1, 0 < α < 1, and 0 ≤ γ < 1. They obtained the critical exponent of problem (1.2) for α ≥ γ
and α < γ, respectively.

In [22], Tuan et al. investigated the following two fractional pseudo-parabolic equations
Dαt (u − m∆u)(x, t) + (−∆)σu(x, t) = N(u), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0
u(x, 0) = u0(x), x ∈ Ω

(1.3)

{
Dαt (u − m∆u)(x, t) − ∆u(x, t) = N(u), x ∈ RN , t > 0
u(0, x) = u0(x), x ∈ RN (1.4)

where 0 < α < 1, m > 0 and N(u) has Lipschitz properties. They established the local well-posedness
results including existence, uniqueness and regularity of the local solution for the problem (1.3) and
proved the global existence theorem of problem (1.4).

Motivated by the results we have mentioned, in this article, we obtain sharp blow-up and global
existence results of problem (1.1) on the condition that γ ≤ α and γ > α.

We get the following conclusions when γ ≤ α.
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Theorem 1.1. Assume that γ ≤ α, p > 1 and u0 ∈ C0(Ω).
(1) If pγ ≤ 1 and u0 ≥ 0, u0 . 0, then the weak solutions of (1.1) blow up in a finite time in
C ((0,∞),C0(Ω)).
(2) If pγ > 1 and ∥u0∥L∞(Ω) is small enough, then the weak solution of (1.1) in C((0,∞), C0(Ω)) exists
globally.

We get the following conclusions when γ > α.

Theorem 1.2. Assume that γ > α, p > 1, σ = 1 − γ and u0 ∈ C0(Ω).
(1) If p < 1 + σ

α
and u0 ≥ 0, u0 . 0, then the weak solutions of (1.1) blow up in a finite time in

C ((0,∞),C0(Ω)).
(2) If p ≥ 1 + σ

α
and ∥u0∥L∞(Ω) is small enough, then the weak solutions of (1.1) in C ((0,∞),C0(Ω))

exists globally.

Our proof of blow up results is based on the asymptotic properties of solutions for an ordinary
fractional differential inequality. Compared with the results of time-fractional differential equation,
the major difference between the space-time fractional Eq (1.1) and Eq (1.2) is that the definition of
weak solution and mild solution. The critical exponent is consistent with the corresponding Cauchy
problem for the time-fractional differential equation with nonlinear memory [21], which shows that the
diffusion effect of the third order term is not strong enough to change the critical exponents.

The structure of this article is as follows. In Section 2, we present some definitions and properties
that will be used in the next section. In Section 3, we give the proof of our main results.

2. Preliminaries

This section presents some preliminaries concerning special functions and fractional knowledge
that will be used in the next sections.

First, we review some definitions and properties of the fractional knowledge including fractional
integrals and fractional derivatives. For T > 0 and u ∈ L1((0,T )), the left and right Riemann-Liouville
fractional integrals of the order α ∈ (0, 1) are defined by [3]

0Iαt u =
1
Γ(α)

∫ t

0

u(s)
(t − s)1−αds, tIαT u =

1
Γ(α)

∫ T

t

u(s)
(s − t)1−αds,

where Γ is the Gamma function. If f ∈ Lp((0,T )), g ∈ Lq((0,T )) and p, q ≥ 1, 1/p + 1/q = 1, then we
have ∫ T

0

(
0Iαt f

)
g(t)dt =

∫ T

0

(
tIαT g

)
f (t)dt. (2.1)

The Caputo fractional derivatives are defined by

Dαt f =
d
dt 0I1−α

t [ f (t) − f (0)], tD
α
T f = −

d
dt tI1−α

T [ f (t) − f (T )],

If f ∈ AC([0,T ]), then Dαt f and tD
α
T f exist almost everywhere on [0,T ] and Dαt f = 0I1−α

t f ′(t), tD
α
T g =

−tI1−α
T g′(t). Moreover, assuming f ∈ C([0,T ]),Dαt f ∈ L1(0,T ), g ∈ AC([0,T ]) and g(T ) = 0, for all
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T > 0 and α ∈ (0, 1), we have∫ T

0
g(t)

(
Dαt f

)
dt =

∫ T

0
( f (t) − f (0))tD

α
T gdt, (2.2)

which is called the formula of integration by parts for fractional derivatives.
Now, we recall the Mittag-Leffler function which is defined by [23]

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, α, β ∈ C,Re(α) > 0, Eα(z) = Eα,1(z), z ∈ C, (2.3)

and its Riemann-Liouville fractional integral satisfies

0I1−α
t

(
tα−1Eα,α (λtα)

)
= Eα,1 (λtα) for λ ∈ C, 0 < α < 1.

Let α ∈ (0, 1), µ ∈ R and πα
2 < µ < min{π, πα}. Then

Eα,β(z) = −
N∑

k=1

1
Γ(β − αk)

1
zk + O

(
1

zN+1

)
, µ ≤ | arg(z)| ≤ π (2.4)

with |z| → +∞. The Wright type function which was considered by Mainardi [24]

ϕα(z) =
∞∑

k=0

(−z)k

k!Γ(−αk + 1 − α)
=

1
π

∞∑
k=0

(−z)kΓ(α(k + 1)) sin(π(k + 1)α)
k!

(2.5)

for 0 < α < 1, z ∈ C. It is an entire function and has the following properties (see [1]).

(1)ϕα(θ) ≥ 0 for θ ≥ 0 and
∫ ∞

0
ϕα(θ)dθ = 1.

(2)
∫ ∞

0
ϕα(θ)e−zθdθ = Eα,1(−z), z ∈ C. (2.6)

(3)α
∫ ∞

0
θϕα(θ)e−zθdθ = Eα,α(−z), z ∈ C. (2.7)

Then we consider the spectral problem (see [25]){
(−∆)β/2φ j(x) = λβ/2j φ j(x), x ∈ Ω, β ∈ (0, 2],
φ j(x) = 0, x ∈ ∂Ω,

(2.8)

and the set of the eigenvalues of the spectral problem consists of a sequence

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λ j ≤ . . .↗ ∞

Let etαθA denote the semigroup inΩ under the Dirichlet boundary condition whereA = (−∆)
β
2 (m∆−

I)−1. We define the operators Pα(t) and S α(t) as

Pα(t)u0 =

∫ ∞

0
ϕα(θ)etαθAu0dθ, S α(t)u0 = α

∫ ∞

0
θϕα(θ)etαθAu0dθ, t ≥ 0,
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where ϕα(θ) is given by (2.5). By [26] and the properties of Pα(t) and S α(t), we can deduce that

∥Pα(t)u0∥L∞(Ω) ≤ C ∥u0∥L∞(Ω) ,

∥S α(t)u0∥L∞(Ω) ≤ C ∥u0∥L∞(Ω) ,

∥APα(t)u0∥L∞(Ω) ≤
C
tα
∥u0∥L∞(Ω) , (2.9)

0I1−α
t

(
tα−1S α(t)Au0

)
= Pα(t)Au0 = APα(t)u0. (2.10)

Lemma 2.1. Assume that q > 1, f ∈ Lq ((0,T ),C0 (Ω)) . Let w(t) =
∫ t

0
(t − s)α−1S α(t − s) f (s)ds, then

0I1−α
t w =

∫ t

0
Pα(t − s) f (s)ds.

Proof. The proof is similar to that of Theorem 2.4 in [26]. By Fubini theorem and (2.10), we have

0I1−α
t w =

1
Γ(1 − α)

∫ t

0
(t − s)−α

∫ s

0
(s − τ)α−1S α(s − τ)G f (τ)dτds

=
1

Γ(1 − α)

∫ t

0

∫ t

τ

(t − s)−α(s − τ)α−1S α(s − τ)G f (τ)dsdτ

=
1

Γ(1 − α)

∫ t

0

∫ t−τ

0
(t − s − τ)−αsα−1S α(s)G f (τ)dsdτ

=

∫ t

0
Pα(t − τ)G f (τ)dτ.

Hence, we get the conclusion. □

Remark 2.2. For α = 1, β = 2, the conclusion of Lemma 2.1 still holds.

Lemma 2.3. (see [20])Let T > 0, p > 1, 0 ≤ γ < 1, γ ≤ α, σ = 1 − γ, a > 0, and b > 0. If w > 0
satisfies w ∈ C([0,T ]), 0I1−α

t (w − w(0)) ∈ AC([0,T ]) and, for almost every t ∈ [0,T ],

Dαt w + aw ≥ b0I1−γ
t wp,

then the following conclusions hold.
(1) For every l ≥ p(α+σ)

p−1 , we have w(0) ≤ K1(a, b, α, γ, p)Tα+σ−
pσ
p−1 + K2(b, α, γ, p)T−

α+σ
p−1 , where

K1 =
p−1

p

(
2ap

bp

) 1
p−1 Γ(l+1)

1
p−1 Γ(l+2−α−σ)

Γ(l+1−σ)
p

p−1

p−1
(l+1)(p−1)−pσ ,

K2 =
p−1

p

(
2

bp

) 1
p−1 Γ(l+1)

1
p−1 Γ(l+2−α−σ)

Γ(l+1−α−σ)
p

p−1

p−1
(l+1)(p−1)−pσ .

(2) If pγ ≤ 1, then we have T < +∞.
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3. Finite time blow-up and global existence

This section is dedicated to proving Theorems 1.1 and 1.2 . First, we give the definition of mild
solution of (1.1).

Definition 3.1. Let u0 ∈ C0 (Ω) and T > 0, we call that u ∈ C ([0,T ],C0 (Ω)) is a mild solution of
(1.1), if u satisfies the following integral equation

u = Pα(t)u0 +

∫ t

0
(t − τ)α−1S α(t − τ)G 0I1−γ

t

(
|u|p−1u

)
dτ

where G = −(m∆ − I)−1.

Theorem 3.2. Let p > 1, 0 < α ≤ 1, 0 < β ≤ 2, and 0 ≤ γ < 1, If u0 ∈ C0(Ω), there exists T = T (u0) >
0 and a unique mild solution u ∈ C ([0,T ],C0(Ω)) to the problem (1.1). The solution u can be extended
to a maximal interval [0,Tmax) and either Tmax = +∞ or Tmax < +∞ and ∥u∥L∞((0,T ),L∞(Ω)) → +∞ as
T → T−max. Furthermore, if u0 ≥ 0, u0 . 0, then u(t, x) > 0 and u(t, x) ≥ Pα(t)u0 for t ∈ (0,Tmax) and
x ∈ Ω.

Proof. The proof is similar to that of Theorem 3.2 in [26]. By the contraction mapping principle and
the properties of Pα(t) and S α(t), we can get the conclusion. The main different is that operators Pα(t)
and S α(t) are expressed by semigroup generated by the infinitesimal generatorA = (−∆)

β
2 (m∆ − I)−1,

but the semigroup in [26] is generated by −∆. □

Here, we assume u0 ∈ C0(Ω) for convenience of proof. In fact, if u0 belongs to Lebesgue space, we
can obtain the similar existence results under certain conditions.

Remark 3.3. Let 0 < α < 1, r ∈ (q,+∞] and qc =
N(p−1)

β
. Let u0 ∈ Lq (Ω) , αqc < q < +∞. Then there

exists T > 0 such that problem (1.1) has a mild solution u in C ([0,T ], Lq (Ω)) ∩C ((0,T ], Lr (Ω)) .

Then we give the definition of weak solution of (1.1) as follows.

Definition 3.4. Let u0 ∈ L1(Ω) and T > 0, u ∈ Lp ((0,T ), Lp(Ω)) is called a weak solution of (1.1) if∫
Ω

∫ T

0

[
0I1−γ

t

(
|u|p−1u

)
φ + u0

(
tD

α
Tφ

)
+ mu

(
tD

α
T∆φ

)]
dtdx =

∫
Ω

∫ T

0
u (−∆)

β
2 φdtdx

+

∫
Ω

∫ T

0
u
(

tD
α
Tφ

)
dtdx +

∫
Ω

∫ T

0
mu0

(
tD

α
T∆φ

)
dtdx

for every φ ∈ C2,1
(
Ω̄, [0,T ]

)
with φ = 0 on ∂Ω and φ(x,T ) = 0 for x ∈ Ω̄. Moreover, if T > 0 can be

arbitrarily chosen, u is called a global weak solution of (1.1).

Lemma 3.5. Let T > 0, u0 ∈ C0(Ω), if u ∈ C ([0,T ],C0(Ω)) is a mild solution of (1.1), then u is a
weak solution of (1.1).

Proof. Suppose that u ∈ C ([0,T ],C0 (Ω)) is a mild solution of (1.1), then

u − u0 = Pα(t)u0 − u0 +

∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds

Electronic Research Archive Volume 31, Issue 5, 2555–2567



2561

where G = −(m∆ − I)−1. Now, noting that by Lemma 2.1,

0I1−α
t

(∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds

)
=

∫ t

0
Pα(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds.

so, we have

0I1−α
t (u − u0) = 0I1−α

t (Pα(t)u0 − u0) +
∫ t

0
Pα(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds

Then, for every φ ∈ C2,1
(
Ω̄, [0,T ]

)
with φ = 0 on ∂Ω and φ(·,T ) = 0.∫

Ω
0I1−α

t (u − u0) G −1φdx = I1(t) + I2(t) (3.1)

where

I1(t) =
∫
Ω

0I1−α
t (Pα(t)u0 − u0) G −1φdx, I2(t) =

∫
Ω

∫ t

0
Pα(t − s)0I1−γ

t

(
|u|p−1u

)
dsφdx.

By (2.9) and the dominated convergence theorem, we get

dI1

dt
= −

∫
Ω

Pα(t)u0 (−∆)
β
2 φdx +

∫
Ω

0I1−α
t (Pα(t)u0 − u0) G −1φtdx. (3.2)

For arbitrary h > 0, t ∈ [0,T ) and t + h ≤ T , we obtain

1
h

(I2(t + h) − I2(t)) =
1
h

∫ t+h

0

∫
Ω

Pα(t + h − s)0I1−γ
t

(
|u|p−1u

)
dsφ(t + h, x)dx

−
1
h

∫ t

0

∫
Ω

Pα(t − s)0I1−γ
t

(
|u|p−1u

)
udsφ(t, x)dx

=I3(h) + I4(h) + I5(h),

where

I3(h) =
1
h

∫
Ω

∫ t+h

t

∫ ∞

0
ϕα(θ)T ((t + h − s)αθ) 0I1−γ

t

(
|u|p−1u

)
dθdsφ(t + h, x)dx,

I4(h) =
1
h

∫
Ω

∫ t

0

∫ ∞

0
ϕα(θ) (T ((t + h − s)αθ) − T ((t − s)αθ)) 0I1−γ

t

(
|u|p−1u

)
dθdsφ(t, x)dx,

I5(h) =
1
h

∫
Ω

∫ t

0

∫ ∞

0
ϕα(θ)T ((t + h − s)αθ) 0I1−γ

t

(
|u|p−1u

)
dθds(φ(t + h, x) − φ(t, x))dx.

Using the dominated convergence theorem, we conclude that

I3(h)→
∫
Ω

0I1−γ
t

(
|u|p−1u

)
φdx as h→ 0,

I5(h)→
∫
Ω

∫ t

0

∫ ∞

0
ϕα(θ)T ((t − s)αθ) 0I1−γ

t

(
|u|p−1u

)
dθdsφtdx
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=

∫
Ω

∫ t

0
Pα(t − s)0I1−γ

t

(
|u|p−1u

)
dsφtdx as h→ 0.

Since

I4(h)

= −

∫
Ω

∫ t

0

∫ ∞

0

∫ 1

0
αθϕα(θ)(t + τh − s)α−1 (−∆)

β
2 G (T ((t + τh − s)αθ))N(u)dτdθdsφdx

= −

∫
Ω

(−∆)
β
2

∫ t

0

∫ ∞

0

∫ 1

0
αθϕα(θ)(t + τh − s)α−1G T ((t + τh − s)αθ)N(u)dτdθdsφdx

= −

∫
Ω

∫ t

0

∫ ∞

0

∫ 1

0
αθϕα(θ)(t + τh − s)α−1G T ((t + τh − s)αθ)N(u)dτdθds (−∆)

β
2 φdx

where N(u) = 0I1−γ
t

(
|u|p−1u

)
.

Using dominated convergence theorem, we have

I4(h)→ −
∫
Ω

∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds (−∆)

β
2 φdx as h→ 0.

Hence, the right derivative of I2 on [0, T) is∫
Ω

0I1−γ
t

(
|u|p−1u

)
φdx −

∫
Ω

∫ t

0
(t − s)α−1G S α(t − s)0I1−γ

t

(
|u|p−1u

)
ds (−∆)

β
2 φdx

+

∫
Ω

∫ t

0
Pα(t − s)0I1−γ

t

(
|u|p−1u

)
dsφtdx

and it is continuous in [0,T ). Therefore,

dI2

dt
=

∫
Ω

0I1−γ
t

(
|u|p−1u

)
φdx −

∫
Ω

∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds (−∆)

β
2 φdx

+

∫
Ω

∫ t

0
Pα(t − s)0I1−γ

t

(
|u|p−1u

)
dsφtdx

=

∫
Ω

0I1−γ
t

(
|u|p−1u

)
φdx −

∫
Ω

∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds (−∆)

β
2 φdx

+

∫
Ω

0I1−α
t

(∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds

)
G −1φtdx, t ∈ [0,T ). (3.3)

Thus, combining (3.1)–(3.3), we conclude that

0 =
∫ T

0

d
dt

∫
Ω

I1−α
t (u − u0)φdxdt =

∫ T

0

dI1

dt
+

dI2

dt
dt

= −

∫ T

0

∫
Ω

Pα(t)u0 (−∆)
β
2 φdxdt +

∫ T

0

∫
Ω

0I1−α
t (Pα(t)u0 − u0) G −1φtdxdt

+

∫ T

0

∫
Ω

0I1−γ
t

(
|u|p−1u

)
φdxdt
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−

∫ T

0

∫
Ω

∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds (−∆)

β
2 φdxdt

+

∫ T

0

∫
Ω

0I1−α
t

(∫ t

0
(t − s)α−1S α(t − s)G 0I1−γ

t

(
|u|p−1u

)
ds

)
G −1φtdxdt,

= −

∫ T

0

∫
Ω

u (−∆)
β
2 φdxdt −

∫ T

0

∫
Ω

(u − u0) tD
α
TG −1φdxdt

+

∫ T

0

∫
Ω

0I1−γ
t

(
|u|p−1u

)
φdxdt.

so, we can get the following equation∫
Ω

∫ T

0

[
0I1−γ

t

(
|u|p−1u

)
φ + u0

(
tD

α
Tφ

)
+ mu

(
tD

α
T∆φ

)]
dtdx =

∫
Ω

∫ T

0
u (−∆)

β
2 φdtdx

+

∫
Ω

∫ T

0
u
(

tD
α
Tφ

)
dtdx +

∫
Ω

∫ T

0
mu0

(
tD

α
T∆φ

)
dtdx.

Hence, this completes the proof. □

Now, we prove Theorem 1.1.

Proof. (1) We proof is given by contraction. Let λ1 > 0 be the first eigenvalue of −∆ and φ1 denote
the corresponding positive eigenfunction with

∫
Ω
φ1(x)dx = 1. From the regularity theory of elliptic

equations, one has φ1 ∈ C2(Ω̄) and φ1(x) = 0 for x ∈ ∂Ω. Suppose that u is a global mild solution to
(1.1). Then we get that u is also a global weak solution of(1.1) by Theorem 3.2 and Lemma 3.5. Let
ψT ∈ C1([0,T ]) with ψT ≥ 0, ψT (T ) = 0. Then, from definition 3.4 and taking φ(x, t) = φ1(x)ψT (t) as a
test function, we have∫

Ω

∫ T

0

[
0I1−γ

t (up)φ1ψT + u0φ1
(

tD
α
TψT

)
− mλ1uφ1

(
tD

α
TψT

)]
dtdx =

∫
Ω

∫ T

0
λ

β
2
1 uφ1ψT dtdx

+

∫
Ω

∫ T

0
uφ1

(
tD

α
TψT

)
dtdx −

∫
Ω

∫ T

0
mλ1u0φ1

(
tD

α
TψT

)
dtdx. (3.4)

Let f (t) =
∫
Ω

uφ1dx, σ = 1 − γ. We have f ∈ C([0,T ]). According to Jensen’s inequality and (3.4),
(2.1), we deduce that∫ T

0
f p (

tIσTψT
)

dt + (1 + mλ1) f (0)
∫ T

0

(
tD

α
TψT

)
dt ≤ λ

β
2
1

∫ T

0
fψT dt + (1 + mλ1)

∫ T

0
f
(

tD
α
TψT

)
dt.

(3.5)

Moreover,Dαt f exists for t ∈ [0,T ] andDαt f ∈ C([0,T ]). Thus, using (3.5), (2.1) and (2.2), we conclude
that ∫ T

0

(
0Iσt f p)ψT dt ≤ λ

β
2
1

∫ T

0
fψT dt + (1 + mλ1)

∫ T

0
[ f (t) − f (0)]tD

α
TψT dt

= λ
β
2
1

∫ T

0
fψT dt + (1 + mλ1)

∫ T

0
Dαt fψT dt.
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By the arbitrariness of ψT , we obtain

(1 + mλ1)Dαt f + λ
β
2
1 f ≥ 0Iσt f p, t ∈ [0,T ]. (3.6)

It is easy to see that f (0) > 0, then (3.6) is in contradiction with Lemma 2.3 (2). The proof of Theorem
1.1 is finished.

(2)We proof the global existence by the contraction mapping principle. For arbitrary T > 0, we
defined the space Y = {u ∈ L∞ ((0,∞), L∞(Ω)) | ∥u∥Y < ∞} , where ∥u∥Y = supt>0(1 + t)

σ
p−1 ∥u(t)∥L∞(Ω).

Given u ∈ Y, t ≥ 0., let’s set

Ψ(u)(t) = Pα(t)u0 +
1
Γ(σ)

∫ t

0
(t − s)α−1S α(t − s)G

∫ s

0
(s − τ)−γ|u|p−1u(τ)dτds,

Denote E = {u ∈ Y | ∥u∥Y ≤ M} , where M > 0 is small enough. According to γ ≤ α and p > 1
1−σ , we

have that p > 1
1−σ ≥ 1 + σ

α
, σ

p−1 < α and pσ
p−1 < 1. Hence, (2.4) implies that there is a constant C > 0

such that for any u ∈ E and t ≥ 0,

(1 + t)
σ

p−1 ∥Pα(t)u0∥L∞(Ω) ≤ C(1 + t)
σ

p−1

∫ +∞

0
ϕα(θ)e−λ

β
2
1 (1+mλ1)−1tαθdθ ∥u0∥L∞(Ω)

= C(1 + t)
σ

p−1 Eα

(
−λ

β
2
1 (1 + mλ1)−1 tα

)
∥u0∥L∞(Ω)

≤ C(1 + t)
σ

p−1−α ∥u0∥L∞(Ω) , (3.7)

and

(1 + t)
σ

p−1 ∥Ψ(u) − Pα(t)u0∥L∞(Ω)

≤ C(1 + t)
σ

p−1

∫ t

0

∫ s

0
(t − s)α−1(s − τ)−γ

∫ +∞

0
θϕα(θ)e−λ

β
2
1 (1+mλ1)−1(t−s)αθdθ∥u(τ)∥pL∞(Ω)dτds

≤ C(1 + t)
σ

p−1

∫ t

0

∫ s

0
(t − s)α−1(s − τ)−γEα,α

(
−λ

β
2
1 (1 + mλ1)−1 (t − s)α

)
∥u(τ)∥pL∞(Ω)dτds

≤ CMp(1 + t)
σ

p−1

∫ t

0

∫ s

0
(t − s)α−1(s − τ)−γEα,α

(
−λ

β
2
1 (1 + mλ1)−1 (t − s)α

)
(1 + τ)−

pσ
p−1 dτds

≤ CMp(1 + t)
σ

p−1

∫ t

0
(t − s)α−1Eα,α

(
−λ

β
2
1 (1 + mλ1)−1 (t − s)α

) ∫ s

0
(s − τ)−γτ−

pσ
p−1 dτds

= CMp(1 + t)
σ

p−1 B
(
σ, 1 −

pσ
p − 1

) ∫ t

0
(t − s)α−1Eα,α

(
−λ

β
2
1 (1 + mλ1)−1 (t − s)α

)
s1−γ− pσ

p−1 ds (3.8)

where we have applied (2.6) and (2.7). Moreover, from similar calculations of the above proof, we
know that there is a constant C > 0 such that for any u, v ∈ E and t ≥ 0,

(1 + t)
σ

p−1 ∥Ψ(u) − Ψ(v)∥L∞(Ω)

≤CMp−1(1 + t)
σ

p−1

∫ t

0
(t − s)α−1Eα,α

(
−λ

β
2
1 (1 + mλ1)−1 (t − s)α

) ∫ s

0
(s − τ)−γτ−

pσ
p−1 dτds∥u − v∥Y

≤CMp−1(1 + t)
σ

p−1 B
(
β, 1 −

pσ
p − 1

)
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×

∫ t

0
(t − s)α−1Eα,α

(
−λ

β
2
1 (1 + mλ1)−1 (t − s)α

)
s1−γ− pσ

p−1 ds∥u − v∥Y . (3.9)

It follows from (2.3) and the fact that σ
p−1 < 1 and Eα,α(z) is an entire function that

∫ t

0
(t − s)α−1Eα,α

(
−λ

β
2
1 (1 + mλ1)−1 (t − s)α

)
s1−γ− pβ

p−1 ds

=

∞∑
k=0

∫ t

0

(
−λ

β
2
1 (1 + mλ1)−1

)k
(t − s)αk+α−1s1−γ− pσ

p−1

Γ(αk + α)
ds

=Γ

(
1 −

σ

p − 1

)
tα−

σ
p−1 Eα,α+1− σ

p−1

(
−λ

β
2
1 (1 + mλ1)−1 tα

)
.

Note that σ
p−1 ≤ α and pσ

p−1 < 1. Therefore, from (2.4), (3.7), (3.8) and (3.9), we know Ψ is a strict
contraction on E if ∥u0∥L∞(Ω) and we choose M sufficiently small. Then by the contraction mapping
principle, there exists a unique fixed point u ∈ E. Obviously, u ∈ C ([0,∞),C0(Ω)) . It means that (1.1)
admits a global mild solution. Hence, the proof is completed. □

Finally, we proveTheorem 1.2.

Proof. (1) Suppose that u is a mild solution of (1.1). In the same way as the proof of Theorem 1.1(1),
we obtain that inequality (3.6) still holds in this case. Hence, we obtain the conclusion.
(2) It follows the assumption that p ≥ 1 + σ

α
and γ > α, we deduce that p ≥ 1 + σ

α
> 1

1−σ ,
pσ
p−1 < 1 and

σ
p−1 ≤ α. Then, in the same way as the proof of Theorem 1.1(ii), we can get the conclusion. □

4. Conclusions

In this work, inspired by the method in [20], we obtained blow-up and global existence results for
a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. First,
we define a solution operator which is expressed by a semigroup and discussed its properties. Based
on these properties, we obtained local existence of mild solutions and proved that a mild solution is
also a weak solution. Then, we used the integral representation and the contraction-mapping principle
to prove the global existence results for solutions of the Cauchy problem (1.1). Finally, we used test
function method to prove the blow-up of solutions. Of course, these global existence and blow-up
conclusions and their proof also fit the case m = 0. However, due to the appearance of the third order
term for the Cauchy problem (1.1), the integral representation and the proof are more complicated than
that for the case m = 0. It is noted that the critical exponent is consistent with the corresponding Cauchy
problem for the time-fractional differential equation with nonlinear memory, and we also illustrated that
the diffusion effect of the third order term is not strong enough to change the critical exponents.
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